JPS6348504A - Fiber coil type polarization eliminator - Google Patents

Fiber coil type polarization eliminator

Info

Publication number
JPS6348504A
JPS6348504A JP61191992A JP19199286A JPS6348504A JP S6348504 A JPS6348504 A JP S6348504A JP 61191992 A JP61191992 A JP 61191992A JP 19199286 A JP19199286 A JP 19199286A JP S6348504 A JPS6348504 A JP S6348504A
Authority
JP
Japan
Prior art keywords
coil
diameter
fiber
coils
diameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61191992A
Other languages
Japanese (ja)
Inventor
Katsunari Okamoto
勝就 岡本
Shoichi Sudo
昭一 須藤
Toshito Hosaka
保坂 敏人
Hiroki Ito
弘樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61191992A priority Critical patent/JPS6348504A/en
Publication of JPS6348504A publication Critical patent/JPS6348504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To eliminate a connection point by establishing a specific relation among the coherence distance between a 1st and a 2nd coils formed by winding single-mode optical fibers, the external diameters of the fibers, the diameters of the 1st and the 2nd coils, and the numbers of turns of those coils. CONSTITUTION:The 1st coil 1 formed by winding a single-mode optical fiber 3 N1 times to the diameter 2R1 and the 2nd coil 2 formed by winding the single- mode optical fiber N2 times to the diameter 2b are cascaded and arranged, the center axis of the 2nd coil is slanted at 45 deg. to the center axis of the 1st coil, and the specific relation is set among the coherence distance lc, the fiber external diameter 2b, the coil diameters 2R1 and 2R2 of the 1st and the 2nd coils, and the numbers N1 and N2 of turns of those coils. Therefore, the optical fibers have no connection point and become stable against external force such as vibration and acceleration. Further, when single-mode fibers with a large specific refractive index difference DELTA (e.g. DELTA>1.5%) are used, the bending loss does not increase even if the coil diameter are made small, so a small-sized polarization eliminator can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザ光あるいは発光ダイオードの可干渉性
を解消する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for eliminating coherence of laser light or light emitting diodes.

〔従来の技術〕[Conventional technology]

複屈折ファイバを用いた従来の偏波解消器の構成を第2
図に示す。複屈折ファイバ4及び5の長さは各々Lい−
であり、 L、〉TJ、(3) である。また、複屈折ファイバ4及び5は互いの主軸が
45度傾いて接続されている。
The configuration of the conventional depolarizer using birefringent fiber is
As shown in the figure. The lengths of the birefringent fibers 4 and 5 are each L-
, and L,〉TJ, (3). Further, the birefringent fibers 4 and 5 are connected with their principal axes inclined at 45 degrees.

いま、複屈折ファイバの各々の偏波モードの伝搬時間差
(偏波モード分散)がτP (8eC/1、)であると
すると Δ/、−0τpLI  (m)     (4)が光源
の可干渉距離1eよシ長い場合には複屈折ファイバ4の
出射端では、光は可干渉性を失tうことになる。ここで
、Cは光速である。ただし、複屈折ファイバの主軸に直
線偏光が入射し7た場合には、複屈折ファイバ4の出射
端では、可干渉性?解消することはできないので、あら
ゆる入射状態の光の偏波(あるいは可干渉性)を解消す
るためには、第2図に示す様に長さがLIの2倍以上の
複屈折ファイバ5を主軸を45度傾けて接続しなければ
ならない。
Now, if the propagation time difference (polarization mode dispersion) of each polarization mode of the birefringent fiber is τP (8eC/1,), then Δ/, -0τpLI (m) (4) is the coherence length of the light source 1e If the length is too long, the light will lose its coherence at the output end of the birefringent fiber 4. Here, C is the speed of light. However, if linearly polarized light is incident on the main axis of the birefringent fiber 7, the output end of the birefringent fiber 4 will be coherent? Therefore, in order to eliminate the polarization (or coherence) of light in any incident state, it is necessary to use a birefringent fiber 5 with a length of at least twice the length of LI as its main axis, as shown in Figure 2. must be connected at a 45 degree angle.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の偏波解消器は、上記の様に2本の複屈折ファイバ
を接続する必要があ)、接続部の強度が弱いために振動
や加速度等に対して弱いという欠点があった。
Conventional depolarizers require two birefringent fibers to be connected as described above, and have the disadvantage of being vulnerable to vibrations, acceleration, etc. because the strength of the connection is weak.

本発明の目的は、従来のかかる欠点を除去するために、
単一モード光ファイバを曲げることによって生じる複屈
折を利用し、接続点の無いファイバ型の偏波解消器を提
供することにある。
The object of the present invention is to eliminate such drawbacks of the conventional ones.
The object of the present invention is to provide a fiber-type depolarizer without connection points by utilizing birefringence produced by bending a single mode optical fiber.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明はファイバコイル型偏波解
消器に関する発明であって、可干渉距離がleなる光の
可干渉性を解消する偏波解消器において、外径2bの単
一モード光ファイバが直径2 R,でN1回巻かれた第
1のコイルと、直径2馬でN1回巻かれた第2のコイル
が縦読して配置され、第2のコイルの中心軸が第1のコ
イルの中心軸に対して45度傾けられてお)、可干渉距
離1e、ファイバ外径2b1第1及び第2のコイル直径
2R,,2R,、及び各々のコイルの巻き数N、 、 
N、が以下の関係式: %式%(1) を満足する様に設定されていることを特徴とする。
To summarize the present invention, the present invention relates to a fiber coil type depolarizer, which eliminates the coherence of light with a coherence length le, in which a single mode with an outer diameter of 2b is used. A first coil in which the optical fiber is wound N1 times with a diameter of 2 R, and a second coil in which the optical fiber is wound N1 times with a diameter of 2 R, are arranged vertically, and the central axis of the second coil is aligned with the first coil. ), the coherence distance 1e, the fiber outer diameter 2b1, the first and second coil diameters 2R, 2R, and the number of turns N of each coil,
It is characterized in that N is set so as to satisfy the following relational expression: % expression % (1).

本発明は、光ファイバの曲げ複屈折を利用することと最
も主要な特徴とする。従来の技術とは、ファイバの接続
点が無いことが異なる。
The most important feature of the present invention is that it utilizes the bending birefringence of an optical fiber. The difference from the conventional technology is that there is no fiber connection point.

第1図は、本発明装置の1実施例を示す模式図であ)、
1は第1のコイル、2は第2のコイルであ〕、5は単一
モードファイバである。第1のコイルの直径は2R+、
巻き数はN1であシ、第2のコイルの直径は2R1、巻
き数はNtである。
FIG. 1 is a schematic diagram showing one embodiment of the device of the present invention),
1 is a first coil, 2 is a second coil], and 5 is a single mode fiber. The diameter of the first coil is 2R+,
The number of turns is N1, the diameter of the second coil is 2R1, and the number of turns is Nt.

なお、単一モードファイバの外径は2bである。Note that the outer diameter of the single mode fiber is 2b.

第3図に示す様に、外径2bの光ファイバが曲げ半径R
で曲げられているとき、ファイバ内の応力は次式で与え
られる: (なお第5図は曲げによる応力を説明するための模式図
である) X軸、及びX軸(コイルの中心軸)方向に偏波した直線
偏波モード間の伝搬定数差はΔβBKIID ”” k
 (nX ”’ ny)で与えられる。ただし、k(=
2π/2:λは波長)は波数、nはコア■屈折率、R2
、Pu iまポッケルス係数、νはポアソン比でありn
wm j、 A 5 、Rs−CLl 21、PI3−
1270、y、−7s3o(ψ讐)、νmQ、186で
ある。単一モードファイバのコアは外径に比べて十分小
さいので、コア内の光が感じる応力はlX1(bなる条
件の下で、謬 σXンーー(9) 2プ とおいて式(8)を求めた。式(8)に各々の数値を代
入すると、曲げによって生ずる複屈折率はと表わされる
。偏波分散(X、Y偏波モード間の遅延時間差)はB!
X)IDを用いてと表わされる。第1のコイルによる両
側波モードの波束のずれは、 Δt、−clτpI−2πRI Nl である。この波束のず九dlが光源の可干渉距離1eよ
り大きければ可干渉性を解消することかできる。すなわ
ち o2 1.846    N+>  le         
           (LIR。
As shown in Figure 3, an optical fiber with an outer diameter of 2b has a bending radius of R.
When the fiber is bent at The propagation constant difference between the linearly polarized modes is ΔβBKIID ”” k
(nX ”' ny). However, k(=
2π/2: λ is the wavelength) is the wave number, n is the core ■ refractive index, R2
, Pu i is the Pockels coefficient, ν is Poisson's ratio and n
wm j, A 5 , Rs-CLl 21, PI3-
1270, y, -7s3o (ψenemy), νmQ, 186. Since the core of a single mode fiber is sufficiently small compared to its outer diameter, the stress felt by the light inside the core is lX1(b). By substituting each numerical value into equation (8), the birefringence caused by bending is expressed as: Polarization dispersion (delay time difference between X and Y polarization modes) is B!
X) is expressed using the ID. The shift of the wave packet in the double-sided mode due to the first coil is Δt, −clτpI−2πRI Nl . If the wave packet 9dl is larger than the coherence length 1e of the light source, the coherence can be eliminated. That is, o2 1.846 N+> le
(LIR.

なる条件を満足する様に第1のコイルの直径及び倦き数
を設定すれば良い。更に、従来の技術の項でも述べた様
に、あらゆる偏波状態の入射光の可干渉性を解消するた
めには、第2のコイルによる波束のずれが第1のコイル
による波束のずれの2倍以上でなければならない。すな
わち す Δl、−1846−N、> 2△l、        
α◆馬 でなければならない。式(6)、α◆よシなる条件が第
1及び第2のコイルの間で満足されなければならない。
The diameter and number of coils of the first coil may be set so as to satisfy the following conditions. Furthermore, as mentioned in the section on the prior art, in order to eliminate the coherence of incident light in all polarization states, the shift of the wave packet caused by the second coil must be 2 times the shift of the wave packet caused by the first coil. It must be more than double. That is, Δl, -1846-N, > 2Δl,
α◆ Must be a horse. Equation (6), the condition α◆ must be satisfied between the first and second coils.

〔実施例〕〔Example〕

以下本発明を実施例により更に具体的に説明するが、本
発明はこれら実施例に限定されない。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 第4図は、屈折率差Δ=IIQ、55多、コア径2a=
SOμm、外径21)−12sμ鴬の単一モードファイ
バで種々の直径のコイルを作り、そのコイルの曲げ複屈
折率BBnD及び偏波モード分散τ、を測定した結果で
ある。すなわち、第4図は偏波モード分散rp (ps
/ km、縦軸)及び臼げ複屈折率111311夏DI
 (縦軸)とR(慣、横軸)及び(1/R)2(m−’
、横軸)との関係を示したグラフである。
Example 1 FIG. 4 shows the refractive index difference Δ=IIQ, 55 polygons, core diameter 2a=
These are the results of measuring the bending birefringence BBnD and polarization mode dispersion τ of coils made with various diameters using single mode fibers of SO μm and outer diameter 21)-12 μm. That is, FIG. 4 shows polarization mode dispersion rp (ps
/km, vertical axis) and birefringence index 111311 Summer DI
(vertical axis) and R (horizontal axis) and (1/R)2(m-'
, horizontal axis).

実線は弐αQ及び弐〇めで与えられる理論値であ)、測
定結果は理論値と良く一致していることが分かる。
The solid line is the theoretical value given by 2αQ and 20), and it can be seen that the measurement results are in good agreement with the theoretical value.

上記の単一モードファイバを用いてR,=R,−2、!
Sfiのコイルを作製し、第1及び第2のコイルの巻き
数をN、−21(回)、N、ff142(回)とした。
Using the above single mode fiber, R,=R,−2,!
A Sfi coil was produced, and the number of turns of the first and second coils was set to N, -21 (times) and N, ff142 (times).

R1xm 2.5 Bのとき、弐へQ及び第4図よすl
BB罵MI)l−IXlo−’       %である
ので、第1のコイル及び第2のコイルによる波束のずれ
は Δl!−3α3(μM%)     αづΔ12−6α
6(μ鴨)     然 である。第1のコイルと第2のコイルの主軸(第1図の
YI軸及びY、軸)を互いに45度傾けた場合の偏波状
態を第5図Aに示す。測定は、光源として可干渉距離1
e=25μ惧の半導体レーザ(波長1.3μm1スペク
トル幅Δλ−7onm)を用い、このレーザ光を第1図
の偏波解消器に入射し、出射光を偏光子を通して測定し
た。第5図Bは、レーザの光を直接偏光子に通して測定
したものであシ、偏波方向によって強度の変化があるこ
とが分かる。これに対して、第5図Aは偏光子の方向に
よらず光強度が一定であυ、はぼ完全に偏e、(いい変
えれば、可干渉性)が解消されていることが分かる。な
お第5図は偏波状態を偏光子の角度(度、横軸)と規格
化出力光強度(縦軸)との関係で示したグラフでちる。
R1xm 2.5 When B, Q to 2 and Figure 4 Yoshi l
Since it is %, the deviation of the wave packets due to the first coil and the second coil is Δl! -3α3 (μM%) αzuΔ12-6α
6 (μ duck) It is natural. FIG. 5A shows the polarization state when the main axes of the first coil and the second coil (YI axis and Y axis in FIG. 1) are tilted at 45 degrees with respect to each other. The measurement is performed using a coherence distance of 1 as a light source.
Using a semiconductor laser (wavelength: 1.3 .mu.m, spectrum width: .DELTA..lambda.-7 onm) with e=25 .mu.m, the laser light was incident on the depolarizer shown in FIG. 1, and the emitted light was measured through a polarizer. FIG. 5B is a measurement taken by passing laser light directly through a polarizer, and it can be seen that the intensity changes depending on the polarization direction. In contrast, in FIG. 5A, the light intensity is constant υ regardless of the direction of the polarizer, and it can be seen that the polarization e (in other words, coherence) is almost completely eliminated. Note that FIG. 5 is a graph showing the polarization state as a relationship between the polarizer angle (degrees, horizontal axis) and normalized output light intensity (vertical axis).

〔発明の効果〕〔Effect of the invention〕

以上説明した通シ、本発明においてはファイバの接続点
が無く、2つのコイルを組合せるのみで偏波解消器がで
きるために、振動や加速度等の外力に対して安定である
という利点がある。
As explained above, the present invention has the advantage of being stable against external forces such as vibration and acceleration because there is no fiber connection point and a depolarization device can be created by simply combining two coils. .

また、ファイバコイルを構成する光ファイバとして、比
屈折率差Δの大きな単一モードファイバ(例えば、Δ>
tS%)を使用すれば、コイル径を小さくしても曲げ損
失が大きくならないので小型の偏波解消器が作製できる
という利点がある。
In addition, as the optical fiber constituting the fiber coil, a single mode fiber with a large relative refractive index difference Δ (for example, Δ>
tS%) has the advantage that a compact depolarizer can be manufactured because the bending loss does not increase even if the coil diameter is made small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の1実施例を示す模式図、第2図は
従来の偏波解消器の構成図、第3図は曲げによる応力を
説明するための模式ス、第4図は曲げ複屈折率と偏波モ
ード分散の実測イ1イ及び理論値のグラフ、M5図は本
発明の偏波解消器を用いた場合(A)と用いない場合(
B)の偏波状態の違いを示すグラフである。 1:第1のコイル、2:第2のコイル、5:単一モード
ファイバ、4及び5:複屈折ファイバF?(mm) 第4図
Fig. 1 is a schematic diagram showing one embodiment of the device of the present invention, Fig. 2 is a configuration diagram of a conventional depolarization device, Fig. 3 is a schematic diagram for explaining stress due to bending, and Fig. 4 is a schematic diagram showing an embodiment of the device of the present invention. Graphs of actually measured birefringence and polarization mode dispersion (A) and theoretical values, and diagram (M) show the results when the depolarizer of the present invention is used (A) and when it is not used (A).
It is a graph which shows the difference in the polarization state of B). 1: first coil, 2: second coil, 5: single mode fiber, 4 and 5: birefringent fiber F? (mm) Fig. 4

Claims (1)

【特許請求の範囲】 1、可干渉距離がlcなる光の可干渉性を解消する偏波
解消器において、外径2bの単一モード光ファイバが直
径2R_1でN_1回巻かれた第1のコイルと、直径2
R_2でN_2回巻かれた第2のコイルが縦続して配置
され、第2のコイルの中心軸が第1のコイルの中心軸に
対して45度傾けられており、可干渉距離lc、ファイ
バ外径2b、第1及び第2のコイル直径2R_1、2R
_2、及び各々のコイルの巻き数N_1、N_2が、以
下の関係式: 0.846(b_2/R_1)N_1>lc(1)N_
2/R_2≧(2N_1)/R_1(2)を満足する様
に設定されていることを特徴とするファイバコイル型偏
波解消器。
[Claims] 1. In a depolarizer that eliminates the coherence of light with a coherence length lc, a first coil in which a single mode optical fiber with an outer diameter of 2b is wound N_1 times with a diameter of 2R_1; and diameter 2
A second coil wound N_2 times with R_2 is arranged in cascade, the central axis of the second coil is inclined at 45 degrees with respect to the central axis of the first coil, and the coherence distance lc is outside the fiber. Diameter 2b, first and second coil diameters 2R_1, 2R
_2, and the number of turns N_1 and N_2 of each coil are expressed by the following relational expression: 0.846(b_2/R_1)N_1>lc(1)N_
A fiber coil type depolarizer characterized by being set to satisfy 2/R_2≧(2N_1)/R_1(2).
JP61191992A 1986-08-19 1986-08-19 Fiber coil type polarization eliminator Pending JPS6348504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61191992A JPS6348504A (en) 1986-08-19 1986-08-19 Fiber coil type polarization eliminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61191992A JPS6348504A (en) 1986-08-19 1986-08-19 Fiber coil type polarization eliminator

Publications (1)

Publication Number Publication Date
JPS6348504A true JPS6348504A (en) 1988-03-01

Family

ID=16283812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61191992A Pending JPS6348504A (en) 1986-08-19 1986-08-19 Fiber coil type polarization eliminator

Country Status (1)

Country Link
JP (1) JPS6348504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522366A (en) * 2003-04-01 2006-09-28 コーニング・インコーポレーテッド Rare earth doped fiber coil with reduced cladding diameter and optical amplifier using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522366A (en) * 2003-04-01 2006-09-28 コーニング・インコーポレーテッド Rare earth doped fiber coil with reduced cladding diameter and optical amplifier using the same

Similar Documents

Publication Publication Date Title
JP3410374B2 (en) Structure of cladding pump fiber
US4653917A (en) Fiber optic gyroscope operating with unpolarized light source
US5218652A (en) Depolarizer for electromagnetic radiation
AU2002364176A1 (en) Symmetrical depolarized fiber optic gyroscope
US7702189B2 (en) Fiber optic chemical sensor
US5949930A (en) Apparatus and method for scale factor stabilization in interferometric fiber optic rotation sensors
EP2230484A1 (en) Depolarizer for a fiber optic gyroscope (fog) using high birefringence photonic crystal fiber
JPH03162617A (en) Optical fiber resonator interferometer gyroscope
US7206468B2 (en) Broad-band fiber-optic wave plates
CN110554464B (en) Miniaturized single polarization fiber resonant cavity
JPS6348504A (en) Fiber coil type polarization eliminator
JP2001503140A (en) Sensor device having polarization maintaining fiber
US9651380B2 (en) Integrated optical coupler and fibre-optic system having such an integrated optical coupler
Anjan et al. Environmental performance of fused PM fiber couplers for fiber gyro application
JPH03144337A (en) Measuring method for characteristic of optical fiber
JPS636507A (en) Optical fiber with constant polarized wave
JPS63106519A (en) Optical fiber gyroscope
CN107764253A (en) Optical fibre gyro
EP0534435A1 (en) Fiber optic gyro
Gu et al. High sensitivity rotation sensing based on tunable asymmetrical double-ring structure
JPS6159236A (en) Optical pulse tester for single mode optical fiber
JPS6310403B2 (en)
CN114166201A (en) Integrated polarization suppression optical fiber resonant cavity
JPS60241001A (en) Optical fiber exciter
JPS62291514A (en) Optical-fiber rotating sensor