JPS634792B2 - - Google Patents
Info
- Publication number
- JPS634792B2 JPS634792B2 JP58223244A JP22324483A JPS634792B2 JP S634792 B2 JPS634792 B2 JP S634792B2 JP 58223244 A JP58223244 A JP 58223244A JP 22324483 A JP22324483 A JP 22324483A JP S634792 B2 JPS634792 B2 JP S634792B2
- Authority
- JP
- Japan
- Prior art keywords
- ptfe
- cloth
- roving
- glass fiber
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004744 fabric Substances 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 35
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 30
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 30
- 239000011248 coating agent Substances 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 16
- 239000003365 glass fiber Substances 0.000 claims description 16
- -1 polytetrafluoroethylene Polymers 0.000 claims description 8
- 229920005548 perfluoropolymer Polymers 0.000 claims description 6
- 239000012790 adhesive layer Substances 0.000 claims description 4
- 238000010030 laminating Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 239000011521 glass Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 241000519995 Stachys sylvatica Species 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- WCIOJVGOBKXQPK-UHFFFAOYSA-N 1-ethenoxy-3-propoxypropane Chemical compound CCCOCCCOC=C WCIOJVGOBKXQPK-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- CJDPJFRMHVXWPT-UHFFFAOYSA-N barium sulfide Chemical compound [S-2].[Ba+2] CJDPJFRMHVXWPT-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
Description
【発明の詳細な説明】
本発明は被覆材料に関するものであり、さらに
詳しくは、特定の裏打ち層を有し、基材上にポリ
テトラフルオロエチレンからなる表層を強固に形
成するのに適した被覆材料に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coating material, and more particularly to a coating material having a specific backing layer and suitable for strongly forming a surface layer made of polytetrafluoroethylene on a base material. It's about materials.
ポリテトラフルオロエチレン(以下PTFEと略
記することがある)は耐薬品性、耐熱性、非粘着
性等被覆材料として要求される種々の特性を兼ね
備えた素材であるが、反面そのままでは接着性が
乏しく素材との強固な接合が困難であるという難
点がある。 Polytetrafluoroethylene (hereinafter sometimes abbreviated as PTFE) is a material that has various properties required as a coating material, such as chemical resistance, heat resistance, and non-adhesion, but on the other hand, it has poor adhesive properties when used as is. The disadvantage is that it is difficult to form a strong bond with the material.
PTFEと基材との接着力を改善する試みは種々
なされており、その一つとして、PTFEシートに
ガラス繊維布からなる裏打ち層を設け、該層を介
して基材に接着せしめる方法が提案されている
(特公昭39−25288号公報あるいは特公昭57−5180
号公報などを参照)。 Various attempts have been made to improve the adhesion between PTFE and the base material, and one proposed method is to provide a PTFE sheet with a backing layer made of glass fiber cloth and adhere it to the base material through this layer. (Special Publication No. 39-25288 or Special Publication No. 57-5180)
(Refer to the publication number, etc.)
しかしながら、公知の方法による場合、PTFE
層を通しての蒸気の浸透および凝縮に基づく種々
の弊害が避け難かつた。すなわち、PTFE層の厚
さが小さい場合には、該層を透過した蒸気の凝縮
に基づき、裏打ち材であるガラス繊維布と基材の
界面近傍にフクレが発生し、そのため基材との接
着強度が大幅に低下し、はなはだしい場合には剥
離を生じ、被覆材料としては未だ不充分なもので
あつた。そこで、一般にはPTFE層の厚さを大き
くとり、界面への蒸気の浸透量を低減するという
手法が採用されているが、この場合には、必然的
に被覆材層の可撓性あるいは加工性が低下し、適
用可能な基材形状が制限されるとともに、高価な
PTFEの使用量が増大するという欠点が生じ、さ
らには、PTFE層内での凝縮による被覆層自在の
破壊などの現象もみられた。 However, when using known methods, PTFE
Various disadvantages due to vapor penetration and condensation through the layers were unavoidable. In other words, when the thickness of the PTFE layer is small, blistering occurs near the interface between the backing glass fiber cloth and the base material due to the condensation of vapor that has passed through the layer, which reduces the adhesive strength with the base material. The coating material was still unsatisfactory as a coating material, as the coating material had a significant decrease in coating properties and, in severe cases, peeling occurred. Therefore, a method is generally adopted in which the thickness of the PTFE layer is increased to reduce the amount of vapor permeation to the interface, but in this case, the flexibility or processability of the coating material layer is inevitably This reduces the available substrate shapes, limits the available substrate shapes, and increases the cost.
The disadvantage was that the amount of PTFE used increased, and furthermore, phenomena such as the destruction of the coating layer due to condensation within the PTFE layer were observed.
本発明者らは、上記問題点の認識のもとに鋭意
研究を重ねた交果、ガラス繊維布としてロービン
グクロスという特定構造のものを使用することに
より、PTFE層の厚さを小さくした場合にも、前
記したごとき問題が生じなくなるという驚くべき
知見を見出し、本発明をなすに到つた。 The inventors of the present invention have conducted extensive research based on the recognition of the above problems, and have found that by using a glass fiber cloth with a specific structure called roving cloth, the thickness of the PTFE layer can be reduced. However, the present inventors have made the surprising finding that the above-mentioned problems no longer occur, and have now completed the present invention.
かくして、本発明は上記知見に基づいて完成さ
れたものであり、ポリテトラフルオロエチレンシ
ートに熔融成形可能なパーフルオロポリマーから
なる接着剤層を介してガラス繊維布を積層せしめ
てなる被覆材料において、前記ポリテトラフルオ
ロエチレンシートの厚さが0.2〜1.5mmであり、ガ
ラス繊維布がロービングクロスであることを特徴
とする被覆材料を新規に提供するものである。 Thus, the present invention was completed based on the above findings, and provides a coating material in which a glass fiber cloth is laminated to a polytetrafluoroethylene sheet via an adhesive layer made of a melt-formable perfluoropolymer. The present invention provides a novel covering material characterized in that the polytetrafluoroethylene sheet has a thickness of 0.2 to 1.5 mm, and the glass fiber cloth is a roving cloth.
本発明においては、PTFEシートの厚さが0.2
〜1.5mm、好ましくは0.3〜1.3mmであることが重要
である。かかる範囲よりも小さすぎる場合には、
取扱い中に破損して、孔開きを生ずる恐れがあ
り、一方、大きすぎる場合には、前記した如き、
加工性低下に基づく基材形状の制約、高価な
PTFE使用量の増大、さらには被覆層自体の破壊
などの欠点が生じ、いずれも不都合である。 In the present invention, the thickness of the PTFE sheet is 0.2
It is important that it is ~1.5 mm, preferably 0.3-1.3 mm. If it is smaller than this range,
There is a risk that it will break during handling and cause a hole to form.On the other hand, if it is too large, as mentioned above,
Restrictions on base material shape due to reduced workability, expensive
There are drawbacks such as an increase in the amount of PTFE used and furthermore, destruction of the coating layer itself, both of which are disadvantageous.
本発明において、PTFEシートは熔融成形可能
なパーフルオロポリマーからなる接着剤層を介し
てガラス繊維布に積層される。かかるポリマーは
加熱熔融せしめることにより、軟化したPTFEと
接着するとともに、ガラス繊維層に一部が浸透
し、冷却固化することによりアンカー効果により
PTFE/ガラス繊維布間の強固な接合が達成され
る。かかるポリマーとしては、テトラフルオロエ
チレン(TFE)とパーフルオロオレフインおよ
び/またはパーフルオロ(アルキルビニルエーテ
ル)との各種共重合体、例えばTFE−ヘキサフ
ルオロプロピレン(HFP)共重合体、TFE−パ
ーフルオロ(プロピルビニルエーテル)(PPVE)
共重合体、TFE−HFP−PPVE三元共重合体、
TFE−パーフルオロ(プロポキシプロピルビニ
ルエーテル)(PHVE)共重合体、TFE−HFP−
PHVE三元共重合体等が好ましく採用可能であ
る。 In the present invention, a PTFE sheet is laminated to a glass fiber cloth via an adhesive layer made of a melt-formable perfluoropolymer. By heating and melting this polymer, it adheres to the softened PTFE, and a portion of it also penetrates into the glass fiber layer, and when it cools and solidifies, it creates an anchor effect.
A strong bond between the PTFE/glass fiber cloth is achieved. Such polymers include various copolymers of tetrafluoroethylene (TFE) and perfluoroolefins and/or perfluoro(alkyl vinyl ethers), such as TFE-hexafluoropropylene (HFP) copolymers, TFE-perfluoro(propyl vinyl ether) (PPVE)
Copolymer, TFE-HFP-PPVE terpolymer,
TFE-perfluoro(propoxypropyl vinyl ether) (PHVE) copolymer, TFE-HFP-
A PHVE terpolymer or the like can be preferably employed.
上記のごとき接着剤層の形成方法はとくに限定
されないが、別途熔融成形により得られたパーフ
ルオロポリマーフイルムをPTFEシートとロービ
ングクロスとの間に存在せしめ加圧加熱する方法
が操作性の面から好ましく採用可能である。この
場合、フイルムの厚さは、小さすぎる場合には
PTFE/ガラス繊維布間の接着不良の原因とな
り、また、大きすぎる場合には、ガラス繊維布の
目を通してその裏面までを覆つてしまうことがあ
り、ガラス繊維布/基材間の接着不良の原因とな
るので、25〜100μm程度の範囲から選定するこ
とが好ましい。 Although the method for forming the adhesive layer as described above is not particularly limited, a method in which a perfluoropolymer film separately obtained by melt molding is placed between the PTFE sheet and the roving cloth and heated under pressure is preferable from the viewpoint of operability. Adoptable. In this case, the film thickness is too small.
This can cause poor adhesion between the PTFE and glass fiber cloth, and if it is too large, it may pass through the glass fiber cloth and cover the back side, causing poor adhesion between the glass fiber cloth and the base material. Therefore, it is preferable to select from a range of about 25 to 100 μm.
本発明においては、ガラス繊維布としてロービ
ングシートを使用することが極めて重要である。
ロービングシートは、ロービング、すなわち、連
続フイラメントを数100本以上加撚せずに一束に
まとめたガラス繊維(撚数0.1/25mm以下)を平
織に製織してなるものである。従来、フツ素樹脂
シートの裏打ち材としては、専ら加撚された撚糸
からなるガラスクロス、バグフイルタークロス、
編物、組物が使用されており、ロービングシート
を使用した例は知られていない。 In the present invention, it is extremely important to use a roving sheet as the glass fiber cloth.
The roving sheet is made by weaving roving, that is, glass fibers (twist number of 0.1/25 mm or less) into a plain weave, in which several hundred or more continuous filaments are bundled without twisting. Conventionally, the backing materials for fluororesin sheets have been glass cloth made of twisted yarn, bag filter cloth,
Knitted fabrics and plaited fabrics have been used, and there are no known examples of using roving sheets.
本発明においては、ロービングシートの使用に
より、PTFE層と基材との間に浸透蒸気の排出通
路が確保されるために、浸透蒸気の凝縮・蓄積に
基づくフクレ・剥離などの形成が抑制され、被覆
層の耐久性が著るしく向上する。すなわち、ロー
ビングシートにおいては、ストランドが加撚され
ていないために、フイラメント間の空隙が、横
糸・縦糸の両方向に連続孔として延びており、
PTFEシートとの間の接着媒体であるパーフルオ
ロポリマーの量および基材との間の接着媒体の量
を適切にすれば排出通路が確保されることにな
る。なお、基材との間の接着媒体として比較的高
粘度のものを使用する場合には、ロービングクロ
スにおいてはフイラメント間への接着媒体の浸透
が比較的起こりにくいので、その量が多目でも問
題とならない。 In the present invention, by using the roving sheet, a discharge path for permeated steam is secured between the PTFE layer and the base material, so formation of blisters, peeling, etc. due to condensation and accumulation of permeated steam is suppressed, The durability of the coating layer is significantly improved. That is, in the roving sheet, since the strands are not twisted, the voids between the filaments extend as continuous holes in both the weft and warp directions.
If the amount of perfluoropolymer used as an adhesive medium between the PTFE sheet and the base material is appropriate, a discharge path will be secured. In addition, when using a relatively high-viscosity adhesive medium between the base material and the roving cloth, it is relatively difficult for the adhesive medium to penetrate between the filaments, so even if the amount is large, there will be no problem. Not.
これに対して、従来の撚糸からなるガラスクロ
ス、バグフイルタークロス、編物、組物等を使用
する場合には、PTFEシートあるいは基材との間
の接着媒体がガラス繊維布内に浸透し易く、しか
も、ストランドが加撚されているために、フイラ
メント間の空隙が分断されてしまい、そのために
前記したごとき浸透蒸気の凝縮・蓄積に基づく
種々の欠陥が生じる。 On the other hand, when using conventional twisted yarn glass cloth, bag filter cloth, knitted fabric, braided fabric, etc., the adhesive medium between the PTFE sheet or the base material easily penetrates into the glass fiber cloth. Moreover, since the strands are twisted, the voids between the filaments are divided, resulting in various defects due to the condensation and accumulation of the permeated vapor as described above.
本発明において好適に使用可能なロービングク
ロスとしては、フイラメント径10〜25μm、ロー
ビングのフイラメント数1000本〜10000本、厚み
0.3〜0.9mm程度のものが例示される。 The roving cloth that can be suitably used in the present invention has a filament diameter of 10 to 25 μm, a roving with a number of 1000 to 10000 filaments, and a thickness of
Examples include those with a diameter of about 0.3 to 0.9 mm.
本発明の被覆材料の製造には、通常の積層体の
製造に使用される加熱プレス、加熱ロール等によ
る方法も採用可能であるが、長尺物の製造に際し
ては以下のごとき方法が好ましく採用可能であ
る。すなわち、所定長さのPTFEシートの一面に
パーフルオロポリマーフイルムおよびロービング
クロスをこの順に重ね合わせ、さらにロービング
クロスの下にアルミ箔のごとき耐熱性離型材を配
置し、これをステンレス鋼管のごとき熱伝導性芯
材に巻回し、末端固定のためさらにアルミ箔等を
数回巻き、金属線等で巻回して締付け固定した状
態で、加熱炉内で330〜380℃で加熱する方法であ
る。この場合、十分な接合を達成するために、巻
回しに際しては0.1〜3.0Kg/cm程度の伸張力を加
えることが好ましく、また、加熱時間としては、
厚みに応じて、通常0.5〜2.0時間/cm程度が採用
される。 For the production of the coating material of the present invention, methods using a heated press, heated rolls, etc. used for the production of ordinary laminates can also be adopted, but the following methods can be preferably employed when producing long objects. It is. In other words, a perfluoropolymer film and roving cloth are layered in this order on one side of a PTFE sheet of a predetermined length, and a heat-resistant mold release material such as aluminum foil is placed below the roving cloth, and this is layered with a heat-conducting material such as a stainless steel tube. In this method, the material is wound around a steel core material, then wrapped with aluminum foil or the like several times to secure the ends, then wrapped with metal wire, etc., and then tightened and fixed, and then heated in a heating furnace at 330 to 380°C. In this case, in order to achieve sufficient bonding, it is preferable to apply a stretching force of about 0.1 to 3.0 kg/cm during winding, and the heating time is
Depending on the thickness, approximately 0.5 to 2.0 hours/cm is usually adopted.
本発明の被覆材料は、鉄、アルミニウム、銅あ
るいはこれらの合金類、例えば不銹鋼・真鍮等の
金属をはじめ、ガラス、セメント、コンクリート
等の無機材料、FRP、ポリエチレン、ポリプロ
ピレン、エチレン−酢酸ビニル共重合体、アクリ
ル樹脂、ポリエステル、ポリ塩化ビニル、ポリ塩
化ビニリデン、ポリカーボネート等の合成樹脂、
木材等の有機材料等種々の材質の基材にその材質
に応じた適宜手段により被覆可能である。例え
ば、金属基材、無機材料、木材への被覆に際して
は接着剤を使用する方法が、熱可塑性合成樹脂へ
の被覆に際しては熔融接着による方法が、また、
熱硬化性合成樹脂への被覆に際しては、未硬化体
と積層後、加熱加圧し、硬化と同時に接合を達成
せしめる方法がそれぞれ好ましく採用可能であ
る。 The coating material of the present invention includes metals such as iron, aluminum, copper, or alloys thereof, such as stainless steel and brass, inorganic materials such as glass, cement, and concrete, FRP, polyethylene, polypropylene, and ethylene-vinyl acetate copolymer. Synthetic resins such as coalescence, acrylic resin, polyester, polyvinyl chloride, polyvinylidene chloride, polycarbonate,
It is possible to coat substrates made of various materials such as organic materials such as wood by appropriate means depending on the material. For example, when coating metal substrates, inorganic materials, and wood, there is a method using adhesives, and when coating thermoplastic synthetic resins, there is a method using melt adhesion.
When coating the thermosetting synthetic resin, it is preferable to use a method in which the resin is laminated with an uncured material and then heated and pressurized to achieve bonding at the same time as curing.
本発明の被覆材料は、浸透性流体を取扱う配
管、塔槽類の内張り材として極めて有用であり、
特にFRPに適用した場合には、前記の特長に加
えて、さらに軽量性などの特長も発揮される。 The coating material of the present invention is extremely useful as a lining material for piping and towers and tanks that handle permeable fluids,
Particularly when applied to FRP, in addition to the above-mentioned features, it also exhibits features such as lightness.
次に実施例により本発明をさらに具体的に説明
する。 Next, the present invention will be explained in more detail with reference to Examples.
実施例 1
幅がそれぞれ1mであるPTFEシート(厚さ
0.8mm)、TFE−PPVE共重合体フイルム(厚さ
50μm)およびロービングクロス(フイラメント
径15μm、フイラメント数2040本)と幅が1.1mで
あるアルミ箔とをこの順に重ね、PTFEシートに
2Kg/cmの伸張力を加えながら、外径25cmのステ
ンレス鋼管にそれぞれ30m巻回した。巻回し層の
厚みは約4cmとなつた。固定用にアルミ箔だけを
さらに3回巻回した後、ステンレス鋼線で緊縛し
て固定した。ついで、340℃に保持した電気乾燥
炉中で4時間加熱した。冷却後緊縛を解き、さら
にアルミ箔を除去することによつて積層シートを
得た。Example 1 PTFE sheets each having a width of 1 m (thickness
0.8mm), TFE-PPVE copolymer film (thickness
50μm) and roving cloth (filament diameter 15μm, number of filaments 2040) and aluminum foil with a width of 1.1m were stacked in this order, and while applying a stretching force of 2Kg/cm to the PTFE sheet, it was placed on a stainless steel pipe with an outer diameter of 25cm. Each was wound 30m. The thickness of the wound layer was approximately 4 cm. After wrapping only aluminum foil three more times for fixation, it was tied and fixed with stainless steel wire. Then, it was heated for 4 hours in an electric drying oven maintained at 340°C. After cooling, the binding was released and the aluminum foil was further removed to obtain a laminated sheet.
上で得られた積層シートを一部切取り(30cm×
30cm)、そのロービングクロス両側にエポキシア
クリレート樹脂(日本ユピカ製:ネオポール
8250L)を浸潤させながら、厚さ0.3mmのチヨツプ
ドストランドマツトを10枚重ね、その上に離型紙
を介してガラス平板を置き、5Kgのおもりを載せ
て室温で16時間放置後、80℃で4時間加熱し硬化
させた。 Cut out a part of the laminated sheet obtained above (30cm x
30cm), epoxy acrylate resin (made by Japan U-Pica: Neopol) on both sides of the roving cloth.
8250L), layered 10 sheets of chopped strand pine with a thickness of 0.3 mm, placed a glass flat plate on top with release paper, placed a 5 kg weight on it, and left it at room temperature for 16 hours. It was cured by heating at ℃ for 4 hours.
かくして得られたPTFE表層を有するFRP成形
体のはくり強度(JIS−K−6744:はくり速度50
mm/分)は3.6Kg/cmであつた。また、この成形
体を、デユポン式水蒸気拡散型ライニングテスタ
ーに装着し、PTFE側を沸騰蒸留水に、FRP側を
15℃の冷水に、それぞれ常時接触させ1ケ月間保
持したが、何んらの外観変化も生じず、また、は
くり強度の低下も見られなかつた。 The peeling strength of the FRP molded body having the PTFE surface layer thus obtained (JIS-K-6744: peeling speed 50
mm/min) was 3.6Kg/cm. In addition, this molded body was attached to a Dupont steam diffusion type lining tester, and the PTFE side was exposed to boiling distilled water and the FRP side was exposed to boiling distilled water.
Each piece was kept in constant contact with cold water at 15°C for one month, but no change in appearance occurred, and no decrease in peel strength was observed.
比較例 1
ロービングクロスの代りに、径9μmのガラス
フイラメントを800本加撚してなる硝子糸を縦糸、
横糸として綾織に製織してなる硝子クロスを使用
する以外は実施例1と同様にして、積層シートを
形成せしめ、さらに同様にしてFRP成形体を得
た。この場合には、はくり強度は0.9Kg/cmにす
ぎず、また、ライニングテストにおいては、フク
レおよび白点の発生が観察され、はくり強度は
0.5Kg/cmに低下した。Comparative Example 1 Instead of roving cloth, glass threads made by twisting 800 glass filaments with a diameter of 9 μm were used as warp threads.
A laminated sheet was formed in the same manner as in Example 1, except that a glass cloth woven in a twill weave was used as the weft, and an FRP molded body was obtained in the same manner. In this case, the peel strength was only 0.9 kg/cm, and in the lining test, blisters and white spots were observed, and the peel strength was only 0.9 kg/cm.
It decreased to 0.5Kg/cm.
比較例 2
比較例1において、硝子クロスとして径7μm
のガラスフイラメントを900本加撚してなる硝子
糸を平織に製織してなるものを使用した場合に
も、ライニングテストにおいてフクレおよび白点
の発生が観察され、テスト後のはくり強度は0.9
Kg/cmにすぎなかつた。Comparative Example 2 In Comparative Example 1, the diameter of the glass cloth was 7 μm.
Even when using a glass yarn made by twisting 900 glass filaments and weaving it into a plain weave, blisters and white spots were observed in the lining test, and the peel strength after the test was 0.9.
It was only Kg/cm.
実施例 2および3
ロービングクロスとして、フイラメント径15μ
m、フイラメント数10000本のもの(実施例2)、
フイラメント径21μm、フイラメント数1040本の
もの(実施例3)を使用し、実施例1と同様にし
た場合の初期はくり強度はそれぞれ3.5Kg/cmお
よび3.0Kg/cmであり、いずれの場合もライニン
グテストにおいて全く異常は認められなかつた。Examples 2 and 3 As roving cloth, filament diameter 15μ
m, one with 10,000 filaments (Example 2),
When a filament with a diameter of 21 μm and a filament number of 1040 (Example 3) was used in the same manner as in Example 1, the initial peeling strength was 3.5 Kg/cm and 3.0 Kg/cm, respectively. No abnormality was observed in the lining test.
Claims (1)
形可能なパーフルオロポリマーからなる接着剤層
を介してガラス繊維布を積層せしめてなる被覆材
料において、前記ポリテトラフルオロエチレンシ
ートの厚さが0.2〜1.5mmであり、ガラス繊維布が
ローピングクロスであることを特徴とする被覆材
料。1. A coating material formed by laminating a glass fiber cloth on a polytetrafluoroethylene sheet via an adhesive layer made of a melt-formable perfluoropolymer, wherein the polytetrafluoroethylene sheet has a thickness of 0.2 to 1.5 mm. , a covering material characterized in that the glass fiber cloth is a roping cloth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22324483A JPS60115440A (en) | 1983-11-29 | 1983-11-29 | Coating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22324483A JPS60115440A (en) | 1983-11-29 | 1983-11-29 | Coating material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60115440A JPS60115440A (en) | 1985-06-21 |
JPS634792B2 true JPS634792B2 (en) | 1988-01-30 |
Family
ID=16795051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22324483A Granted JPS60115440A (en) | 1983-11-29 | 1983-11-29 | Coating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60115440A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63126732A (en) * | 1986-11-18 | 1988-05-30 | Nissho Glass Kogyo Kk | Method for processing synthetic resin material |
JPH07366B2 (en) * | 1987-09-26 | 1995-01-11 | 平岡織染株式会社 | Flame retardant sheet |
US4865903A (en) * | 1987-12-09 | 1989-09-12 | Pall Corporation | Chemically resistant composite structures and garments produced therefrom |
JPH0483629U (en) * | 1990-11-29 | 1992-07-21 | ||
KR102066882B1 (en) * | 2012-03-26 | 2020-01-17 | 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. | Downhole cable |
CN103612463B (en) * | 2013-11-19 | 2015-11-18 | 浙江东氟塑料科技有限公司 | PTFE composite plate set composite and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52145488A (en) * | 1976-05-10 | 1977-12-03 | Hitachi Chem Co Ltd | Composite material |
JPS5636064A (en) * | 1979-08-27 | 1981-04-09 | Thompson Christopher John | Position disappearance emission type image piackup device |
JPS575180A (en) * | 1980-06-10 | 1982-01-11 | Fujitsu Ltd | Pattern data processor |
-
1983
- 1983-11-29 JP JP22324483A patent/JPS60115440A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52145488A (en) * | 1976-05-10 | 1977-12-03 | Hitachi Chem Co Ltd | Composite material |
JPS5636064A (en) * | 1979-08-27 | 1981-04-09 | Thompson Christopher John | Position disappearance emission type image piackup device |
JPS575180A (en) * | 1980-06-10 | 1982-01-11 | Fujitsu Ltd | Pattern data processor |
Also Published As
Publication number | Publication date |
---|---|
JPS60115440A (en) | 1985-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3934064A (en) | Composite structures of knitted glass fabric and thermoplastic polyfluoroethylene resin sheet | |
US7828029B2 (en) | Puncture and abrasion resistant, air and water impervious laminated fabric | |
US6787491B2 (en) | Woven composite fabric | |
US4165404A (en) | Process for producing laminates of fabric and fluorocarbon copolymer | |
US20210402730A1 (en) | Methods of producing thermoplastic composites using fabric-based thermoplastic prepregs | |
KR930008696B1 (en) | Manufacturing method for water proof fabrics | |
US3687764A (en) | Method for producing a multilayer reinforced plastic sheet material | |
US20090133829A1 (en) | Method for manufacturing a textile composite intended for mechanical reinforcement of a bitumen-based waterproof coating | |
JPS634792B2 (en) | ||
JP6629751B2 (en) | Fiber-reinforced composite laminate and articles made therefrom | |
JPH02122917A (en) | Manufacture of fiber-reinforced composite molded product | |
JPH1199580A (en) | Material for one-directionally fiber-reinforced composite material and its production | |
JPH043461B2 (en) | ||
JPS6395915A (en) | Manufacture of composite material | |
JPH0725142B2 (en) | Self-curling fiber-reinforced thermoplastic resin sheet, resin tube made of the same, and method for manufacturing resin tube | |
JP2531326B2 (en) | Sheet material for molding fiber reinforced polyamide resin | |
JPS60184341A (en) | Fiber reinforced resin fishing rod | |
CN115096139A (en) | High-adaptability bulletproof plate and manufacturing method thereof | |
JP2007045137A (en) | Rubber product, its manufacturing process, wrapped body for wrapping cure and wrapping cloth for wrapping cure | |
KR19980065797A (en) | Manufacturing method of heat shrinkable cover | |
JPH10309776A (en) | Manufacture of reinforced fluororesin film and fluororesin film obtained by the method | |
GB1575955A (en) | Process for producing laminates of fabric and fluorocarbon copolymer |