GB1575955A - Process for producing laminates of fabric and fluorocarbon copolymer - Google Patents

Process for producing laminates of fabric and fluorocarbon copolymer Download PDF

Info

Publication number
GB1575955A
GB1575955A GB11524/79A GB1152479A GB1575955A GB 1575955 A GB1575955 A GB 1575955A GB 11524/79 A GB11524/79 A GB 11524/79A GB 1152479 A GB1152479 A GB 1152479A GB 1575955 A GB1575955 A GB 1575955A
Authority
GB
United Kingdom
Prior art keywords
fabric
drum
copolymer
laminate
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
GB11524/79A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to GB11524/79A priority Critical patent/GB1575955A/en
Publication of GB1575955A publication Critical patent/GB1575955A/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • B32B2327/18PTFE, i.e. polytetrafluoroethylene

Description

(54) PROCESS FOR PRODUCING LAMINATES OF FABRIC AND FLUOROCARBON COPOLYMER (71) We, E. I. DU PONT DE NE MOURS AND COMPANY, a Corporation organised and existing under the laws of the State of Delaware, United States of America, located at Wilmington, State of Delaware, United States of America, do hereby declare the invention for which we pray that a patent may be granted to us and the method by which it is to be performed to be particularly described in and by the following statement:- This invention relates to a process for producing laminates of fabric and fluorocarbon copolymer.
Various methods for producing laminates of fabric and thermoplastic resin are well known in the art. These methods include (1) calendaring a thermoplastic resin upon a fabric; (2) dipping the fabric into an aqueous dispersion of thermoplastic resin; (3) coating the fabric with an adhesive and then laminating a sheet of thermoplastic resin to it; and (4) coating a sheet of thermoplastic resin with adhesive and then laminating it to fabric.
For example, U.S. Patent 3,446,686 discloses laminating sheets of thermoplastic material to fabric for reinforcing purposes, followed by forming a shaped article from the resultant laminate. This is accomplished by placing a sheet of thermoplastic material over an adhesive-coated surface of a knitted glass fabric, heating the sheet of thermoplastic material and drawing the sheet and fabric into the mold to form the shaped article. Upon cooling, the adhesive adheres the fabric to the molded sheet of thermoplastic material. This approach has a disadvantage of the adhesive being a weak point in the laminate.
The present invention produces a laminate of fabric and fluorocarbon copolymer which has higher adhesion between the components. This higher adhesion is produced by utilizing a process which places a comparatively thin sheet of fluorocarbon copolymer as an interlayer between a thicker sheet of copolymer and the fabric. The interlayer copolymer sheet is formulated to have a lower specific melt viscosity than the copolymer of the thicker sheet.
According to this invention we provide a process for preparing laminates comprised of a first, comparatively thick fluorocarbon copolymer sheet of 5 or more mil thickness and a fabric, by providing an interlayer between the fabric and thick sheet, thinner than the first sheet, of a fluorocarbon copolymer which has a specific melt viscosity sufficiently low to enable the copolymer to wet and penetrate the fabric at fabrication temperatures and which has a specific melt viscosity lower than the specific melt viscosity of the fluorocarbon copolymer of the thick sheet, and then integrally bonding the laminate by means of heat and pressure; wherein the fluorocarbon copolymer of the interlayer is a copolymer comprising 50-95% by weight tetrafluoroethylene, and 50--5 by weight fluoroolefin having the formula CF2=CFY, wherein Y tY is C, to C8 pertluoroaikl radical, or 99-93% by weight tetrafluoroethylene, and 71 /" by weight perfluoroalkyl vinyl ether in which the alkyl group contains 1 to 5 carbon atoms.
Such a laminate is suitable for use in the manufacture of a rigid shaped article by forming the laminate to the desired shape and applying castable material to the fabric surface of the shaped laminate, as claimed in our copending Application No. 7590/77, (Serial No. 1575954).
The fabric useful in the present invention can be woven or knit.
Woven fabrics are those characterized by any of the well-known crisscross weaves and by moderate or low elongation or extension along either major axis of the fiber weave.
Preferably, it is composed of continuous yarn or set of yarns in the form of courses or rows of loops, each row of loops being caught in the previous row of loops, this fabric can be described as a knitted fabric.
Any type of knit can be used in the fabric employed in the present invention. For example, in addition to the plain pearl knit, such knits as the flat jersey knit, the raschel knit the rib stitch and the tricot stitch can be used. Fabrics that are knitted double and are held together by binding stitches, which are known as double knit fabrics, can also be used. Variations on the basic knitting stitch can be used, such as the tuck stitch, wherein periodically the knitting operation loops at desired intervals are left unknitted so as to form knobby or bumpy surface on one or both sides of the knitted fabric which increases its apparent thickness. All these types of knits have in common the feature of the loops of the yarn making up the fabric extending from each surface of the fabric, and of being extensible in all directions.
Generally, an extensibility without breaking of at least 10% in all directions is desired for a knit fabric, with some applications requiring at least 20% extensibility based on the original dimension of the fabric.
The laminate incorporating the fabric (whether woven or knit) will have a relatively corresponding extensibility or lack of extensibility.
The fabric can be knit or woven on any fiber which has temperature stability at the temperature or temperatures required during the processing. Suitable fibers include natural or synthetic fibers, including, for example, metal, polyimide, carbon fibers, glass fibers, graphite fibers, ceramic fibers, asbestos fibers and aromatic amide fibers. Because of their desirable physical properties, glass fibers are more preferred. Glass fiber yarn is used instead of glass monofilament because of the relative fragility of the monofilament.
When the fabric is woven, carbon and graphite fibers are particularly preferred.
When the fabric is knit, glass and aromatic amide fibers are particularly preferred.
The fluorocarbon copolymer of the interlayer may be the same copolymer as that of the thick fluorocarbon copolymer sheet. However, in that case the copolymer of the interlayer is prepared so that its specific melt viscosity is lower than that of the copolymer of the thick sheet. This difference in specific melt viscosity can be produced by varying the amount of initiator used during the copolymerization process.
For example, to obtain copolymers of high specific melt viscosity, the amount of initiator is decreased; to obtain copolymers of low melt viscosity, it is increased.
Additionally, even when the fluorocarbon copolymer of the interlayer is different from the fluorocarbon copolymer of the thick sheet, the fluorocarbon copolymer of the interlayer will have a lower specific melt viscosity of the polymer of the thick sheet.
The lower specific melt viscosity of the copolymer of the interlayer allows it to be flowable at the temperatures required to laminate the thick sheet to the fabric. This flowability enables the inerlayer copolymer to wet and be embedded into the fabric and also to fuse with the fluorocarbon copolymer of the thicker sheet.
By the term "specific melt viscosity" as used herein, is meant the apparent melt viscosity as measured at 3720C under a shear stress of 6.5 pounds per square inch.
The values herein referred to are determined using a melt indicator of the type described in the American Society of Testing Materials Test D-1238-57 T, modified for corrosion resistance to embody a cylinder and orifice of "Ampco" aluminum bronze and a piston weighing 60 grams, having a "Stellite" cobalt chromium - tungsten alloy tip. "Ampco" and "stellite" are registered Trade Marks.
The resin is charged to the 0.375-inch I.D.
cylinder which is held at 3720C+.50C, allowed to come to an equilibrium temperature during 5 minutes, and extruded through the 0.0825-inch diameter, 0.315inch long orifice under a piston loading of 5,000 grams. The specific melt viscosity in poises is calculated as 53,150 divided by the observed extrusion rate in grams per minute.
The fluorocarbon copolymer of the interlayer contains tetrafluoroethylene (TFE) copolymerized with either a fluoroolefin or a perfluoro(alkyl vinyl ether).
When the TFE is copolymerized with a fluoroolefin, the copolymer will contain 5095% by weight of TFE units, and 5F 5% by weight of hexafluoropropylene or other suitable fluoroolein having the formula CF2=CFY, wherein Y is a C, to C8 perfluoroalkyl radical. Copolymers of this type are described in U.S. Patents 2,833,686; 2,946,763; and 3,085,083.
When the TFE is copolymerized with a perfluoroalkyl vinyl ether, the copolymer will contain 99 to 93 /n by weight of the TFE units, and 1--7 by weight of perfluoro(alkyl vinyl ether) in which the alkyl group contains 1 to 5 carbon atoms.
Copolymers of this type are disclosed in U. S. Patent Nos. 3,159,609, 3,180,895; and 3,132,233; all granted to Harris and McCane; and 3,770,711, granted to Harteg and Harsen.
Especially useful is a tetrafluoro ethylene/hexafluoropropylene copolymer (FEP). A preferred FEP copolymer has a hexafluoropropylene (HFP) content between 6.75 and 27 weight percent of the copolymer and more preferably between 14 and 18 weight percent. The copolymers are prepared by reacting tetrafluoroethylene and hexafluoropropylene in an aqueous system contain a dispersing agent and a free radical polymerization initiator according to procedures disclosed in Couture U.S. Patent 3,132,124.
The fluorocarbon copolymer, useful as an interlayer, can have a thickness of from a minimum of about 1 mil (at this thickness handling difficulties occur), to a maximum of no more than one-half the thickness of the fabric used. Preferred because of availability and ease of handling is a thickness of 2-5 mil. The interlayer sheet will be composed of a fluorocarbon copolymer having a sufficiently low specific melt viscosity to enable the copolymer to wet and penetrate the fabric at fabricating temperature. Preferably, when the copolymer is FEP, the specific melt viscosity will be from 5-25x 104 poises, and more preferably from 6--10x104 poises.
The fluorocarbon copolymer utilized can be a preformed film, a freshly formed extrudate applied prior to its being completely cooled, or a dispersion or paste containing the fluorocarbon copolymer which is applied in several coats until the minimum thickness of 1 mil is obtained.
Fluorocarbon polymers utilizable in the thick sheet include the melt-fabricable perhalopolyfluoroethylene copolymers.
The melt-fabricable copolymers of perhalopolyfluoroethylene include chlorotrifluoroethylene and tetrafluoroethylene (TFE) copolymerized with fluoroolefins such as hexafluoropropylene, or with perfluoroalkyl vinyl ether monomers such as perfluoropropyl- or ethyl-vinyl ether, or with nonfluorinated monomers such as alkylenes, e.g., ethylene, including the tetrafluoroethylene/ethylene binary polymers and terpolymers disclosed in U.S. Patents 3,624,250 and 3,342,777.
Preferably the copolymer contains TFE copolymerized with fluoroolefin. More preferably, such a copolymer will contain 50--95% by weight of TFE units and 5 5% by weight of hexafluoropropylene or other suitable fluoroolefin having the formula CF2=CFY, wherein Y is a C, to Ca perfluoroalkyl radical. Copolymers of this type are described in U.S. Patent Nos.
2,833,686; 2,946,763; and 3,085,083.
Especially useful is a tetrafluoroethylene/hexafluoropropylene copolymer (FEP). A preferred FEP copolymer has a hexafluoropropylene content between 6.75 and 27 weight percent of the copolymer and more preferably between 14 and 18 weight percent. The copolymers are prepared by reacting tetrafluoroethylene and hexafluoropropylene in an aqueous system containing a dispersing agent and a free radical polymerization initiator according to procedures disclosed in Couture U.S. Patent 3,132,124.
Another copolymer preferred for use in the thick sheet is tetrafluoroethylene copolymerized with perfluoroalkyl vinyl ethyl monomers, such as perfluoropropyl- or ethyl-vinyl ether, in which the alkyl group contains 1 to 5 carbon atoms. Preferably, the copolymer will contain 99 to 93% by weight of tetrafluoroethylene units, and 17% by weight of perfluoroalkyl vinyl ether.
The thick fluorocarbon copolymer sheet can have a thickness of from 5-100 mils.
Preferably, the thickness will be from 20- 100 mil, more preferably, 5100 mil.
The thick fluorocarbon copolymer sheet will be composed of a fluorocarbon copolymer having a specific melt viscosity higher than that of the interlayer sheet. Preferably, the specific melt viscosity will be 30--60x104 poises, and more preferably, from 40- 60x 104 poises. These are preferred because of their availability.
The thick fluorocarbon copolymer sheet can be applied as a preformed film or as a freshly formed, not completely cooled, extrudate.
The laminates of fabric, interlayer, and thick sheet can be formed by various means.
The following are illustrative: (a) The fabric, then the interlayer and, lastly, the thick sheet are stacked on top of one another; and then sufficient heat and pressure are applied to cause the surface of the fabric to be embedded into the interlayer.
(b) The fabric and interlayer can be prelaminated by heat and pressure. This prelaminate is then made into a laminate by stacking the thick sheets on top of the prelaminate and applying sufficient heat and pressure to form the laminate.
(c) The fabric can be cut to conform to the shape of a mold, and the interlayer prelaminated to it in a conventional vacuum forming machine, and then the thick sheet laminated to the prelaminate.
The temperature used during lamination will usually be at least as high as the crystalline melting temperature of the fluorocarbon copolymer of the thick sheet and will further depend on the pressure and dwell time of the heat and pressure operation.
Preferably, when the copolymer of the thick sheet is FEP, the temperature used during lamination will be from 280"C to 2950C, but can be at any temperature high enough so the interlayer copolymer can flow into the fabric. The pressure used should not be so high as to permanently crush the exposed loops of a knit fabric. The pressure will preferably be no more than 30 pounds per square inch when the fabric is woven and no more than 40 pounds per sqare inch when the fabric is knit.
While applying pressure to a knit fabric invariably causes some slackening of the loops of the fabric, release of the pressure, if not excessive, enables the exposed loops not embedded in the sheet to spring back toward the original form. By reheating the laminate, the spring-back of the exposed loops is increased.
The embodiment of the fabric into the interlayer is characterized by at least sufficient penetration of yarn of the fabric into the interlayer to provide a mechanical bond between the fabric and the interlayer.
When the fabric is knit, the interlayer may even encapsulate the loops of one surface of the knit fabric but this condition is not absolutely necessary for all applications, since mechanical bonding is obtained merely by the copolymer, or interlayer sheet, penetrating the yarn fibers or contacting the yarn of the loops through an angle greater than 1800 around the yarn circumference or both. While at least this minimum penetration of the interlayer into the fabric is desired, total encapsulation of the fabric by the interlayer would be undesirable, because this would deprive the laminate of exposed fabric loops desired for anchoring to a castable material backing.
Typically, penetration of the interlayer into no more than the average of 50 /O of the thickness of the fabric, whether woven or knit, is desired. Since the bond between the fabric and the interlayer is mechanical, no adhesive coating on the fabric or interlayer is needed or desired. The bond between the thick sheet and interlayer of fluorocarbon copolymer, which may have the same melting point but have different melt viscosities, is a fused bond.
The stretchability (or extensibility) of the preferred knit fabric in the resultant laminate enables the laminate to be formed or molded, such as by thermoforming to a shaped article. Thermoforming is the process for drawing the laminate into a three-dimensional article.
The exposed loops of the yarn of the fabric in the laminate serve as an anchor for a layer of castable material which encapsulates the enclosed loops of the fabric and further encapsulates reinforcing material, such as cloth or fiber. According to this embodiment, while the laminate provides a moldable article possessing the surface characteristics of the sheets, the castable material can be used to strengthen the laminate. The castable material can itself reinforce the laminate or can serve to adhere the laminate to a substrate which, in turn, provides reinforcement. The castable material can be applied to the laminate structure either before stretching or after stretching or otherwise forming shaped article and will prevent stretching.
Any material which is sufficiently flowable to encapsulate the exposed loops of the fabric of the laminate which is subsequently hardenable to an adhesive or rigid cast material or reinforced cast material can be used as the matrix for the entire portion of the castable material.
Preferably, the castable material impregnates the fabric sufficiently to meet the fluorocarbon copolymer sheet in the interior of the fabric. For example, the castable material can be a thermosetting type resin, such as epoxy resin or polyester.
Penetration of the castable material into the exposed yarn loops of the fabric mechanically anchors the castable material to the laminate.
Since the castable material is secured to the laminate by mechanical engagement with the fabric, it is important that the yarn of this fabric be strong. For this reason, glass and aromatic amid are the preferred materials of construction of the fabric for the laminate. The glass also supplies high temperature and corrosion-resistance desired for many applications. The preferred fabric is knitted because of the loop density which it provides. The loop density of the fabric should be sufficient to maintain integrity between the fluorocarbon copolymer sheets and a castable material. A plain knit construction obtained by using 31/2 needles per inch provides sufficient loop density for some applications. However, the plain knit obtained by using at least 7 needles per inch is more preferred. The most preferred is a cardigan knit because of its excellent insulative properties.
In the case of double knits, the use of at least 3-1/2 needles per inch gives better results because the knitting involves two sets of needles, or at least 7 needles. In addition to loop density, the loops should be sufficiently large to provide the bulk desired for enabling their encapsulation by castable material as well as to achieve the extensibility desired. This is accomplished by adjustment of the amount of yarn feed per needle of the knitting machine. The effectiveness of knits where the loop density is borderline can be increased by increasing the loop lengths or bulkiness of the fabric to insure that each loop becomes encapsulated by the castable material. The loops should not be so long, however, that the knitted fabric is unstable during handling. The knitted fabric need not be the same on both sides. For example, the side embedded in the fluorocarbon copolymer sheet can be a relatively smooth side, whereas, the exposed side can be ribbed in order to provide more bulk for impregnation by castable material which ordinarily will not involve pressure, but just the flowability of the castable material.
When the castable material is to provide reinforcement to the laminate, the reinforcing material embedded in the castable material provides further reinforcement. An example of reinforcing material includes glass fibers, roving, and matt which can be used in a conventional laying-up process of coating the fabric with castable material, applying the reinforcing material to the surface of the castable material while still flowable, coating the reinforcing material with additional castable material, applying additional reinforcing material, and so on. This method is especially useful for applying a polyester/glass matt, chopped glass roving backing material to the laminate. Another procedure is to simultaneously coat the fabric surface of the laminate with castable material and chopped glass strands.Still another procedure is the spiral winding technique of laying down continuous filament yarn or roving of glass within the polyester. The thickness of the casting material when used for reinforcement will depend on the strength and rigidity desired.
When used as an adhesive, the thickness of the castable material will depend on the thickness at which the desired adhesive effect is obtained. A preferred adhesive is epoxy resin. Prior to coating the fabric side of the laminate with castable material or prior to making the laminate, any sizing agent that is on the fabric which may interfere with either the fluorocarbon copolymer sheet or castable material penetration into the fabric or which degrades during treatment, can be removed by such operations as heating to burn off the sizing or water and solvent soaking. An agent which makes the fabric more wettable, especially to the castable material, can be applied to the fabric. An example of such an agent is the water-hydrolyzable organo silanes such as those disclosed in German Patent Publication 1,954,233.
The laminates produced by this process are useful in general to form articles having the fluorocarbon copolymer sheet as one surface and the fabric as the opposite surface. The fabric provides an anchor to the sheet. The laminates can be used in such applications as structural articles, molds, mold liners, and linings in general for such applications as ventilation hoods, ducts, bench top covers and conveyor belts, with the need of castable material to back up the laminates depending on the application.
The laminates produced by the present invention are especially useful as a liner, because the linings that are most chemically resistant are also the most difficult to adhere to support surfaces, such as plastic or metal substrates. Once the bond between the lining and the support surface breaks, the resultant void becomes a point of intense corrosion caused by permeation of the chemicals in contact with the lining therethrough. The present invention has the advantage of achieving bonding between the lining and the support surface through the more permanent, less chemically effected mechanical type of bond via the fabric.
One main advantage of this invention is the ability of the laminates having a knitted fabric to be thermoformed. Thermoforming involves a stretching of the fluorocarbon copolymer sheets and extension of the fabric, when knitted, to the shape desired.
One shaped article which can be made from laminate of present invention is a dished head for a chemical process vessel comprising an inner laminate of thick sheet, interlayer sheet, and fabric running immediate to the thickness of the head, and an outer layer of castable material, which can be glass-reinforced polyester.
Dished heads normally have an inside dished radius R which is 80 to 100 percent of the inside diameter R, of the head and a depth D of at least 20 percent of the inside diameter.
A dished head can also be made by cutting the laminate into shaped segments and piecing and lead-welding together in the dished head configuration.
A process for molding laminates such as to the dished head shape, without creating thin spots in the sheet, involves uniformly heating a sheet of the laminate and allowing it to sag under its own weight to approximately the same surface area as that of the shaped article, followed by shaping the laminate to the article shape desired, and cooling the structure so as to retain this shape.
To explain in greater detail, an oven is used in which is positioned a rectangular frame which supports the periphery of a laminate (fabric side up). The laminate lies over a male mold positioned within the oven and having the shape desired for the inner surface of a dished head. Upon heating, the laminate sags so that its unsupported region takes the shape indicated by the mold which is approximately a catenary curve. The stress throughout the unsupported region of the laminate during this sagging is about equal so that the thinning of the polymer sheet of the laminate is uniform. This sagging is accompanied by a corresponding amount of stretching of the fabric component of the laminate.The temperature of heating used will depend somewhat on the resin employed as the melt-fabricable polymeric sheet in the laminate, but usually the temperature will be well above the crystalline melting temperature of the polymer so that the sagging occurs during heat-up of the oven, and then the heating is stopped when the amount of sagging desired is complete.
The mold is positioned beneath the sagging laminate at a distance such that when the unsupported region of the laminate touches the mold, the surface area of the sagged laminate and of the mold are about the same. This provides visual indication of when the laminate should be shaped. At this time, the frame is lowered to encompass the mold and allow the laminate to drape over and assume the configuration of the mold. To obtain fitting of the laminate about the vertical circumference of the mold, a vacuum is applied beneath the laminate in this region by supply lines connected to a vacuum source. The vacuum can also be communicated through the mold to its surface to insure desired shaping of the laminate. This use of vacuum to draw the heated laminate down onto the mold can be called "vacuum shaping".The resultant molded or shaped laminate has a fairly uniform sheet thickness (greatest and smallest thickness within 75 percent of one another), and is cooled sufficiently while in contact with the mold to be able to sustain its shape when removed from the mold. The shaped laminate is then released from the frame and is trimmed as desired. The reinforcing castable material backing such as a glass-reinforced polyester or adhesivemetal substrate is then applied to the fabric side of the shaped article as hereinbefore described.
Laminates of the present invention can also be shaped into articles which do not involves thermoforming such as into a cylinder by wrapping the laminate around a mandrel (polymer side facing the mandrel) to meet itself, followed by conventional heat sealing technique to weld the abutting edges of the laminate together. For example, the fabric is stripped back from the abutting edges on the fabric side of the laminate, and the edges and a bead of fluorocarbon copolymer are heated in contact with one another sufficiently that they heat bond together. A castable material can then be applied to the fabric side of the cylinder; in this case the castable material can be glassreinforced polyester. The cylinder can then be removed from the mandrel and a bead of fluorocarbon copolymer can be welded along the abutting edges on the mandrel side of the laminate.The resultant cylinder can be used as the cylindrical section of a process vessel. Alternatively, the castable material can be an adhesive for adhering the cylinder to the interior surface of a metal cylinder for process vessel application. In either event, the sheet of the dished head can be welded through a bead of fluorocarbon copolymer along the upper edge of the head to the lower edge of sheet of the cylinder to form a continuous lining between the bottom and side of the process vessel.
Another application for laminates of the present invention is to form a duct of much greater length to diameter ratio wherein the inner surface is the melt-fabricable copolymer sheet and the outer surface is the fabric, such as a tube. Such duct can be made by the same conventional technique as the cylinder. The stretchability of the laminate enables its ends to be heated and flared for joining with other ducts or cylindrical shapes.
As in the case of dished head and cylinder, respectively, the duct can be combined with reinforcing castable material, such as glass-reinforced polyester, to form an essentially plastic rigid duct.
Alternatively, the castable material can be an adhesive which bonds the laminate to the inner wall of metal tubing to form a lined duct.
Laminates of the present invention can be shaped into cylindrical shapes having cross sections other than round, e.g, square or rectangular cross-sectional shapes can be formed.
Laminates of the present invention are further illustrated by the following examples: EXAMPLE 1 A flexible sheet material is prepared as follows: A fabric (Layer A) is placed in superposed contact with one surface of an interlayer sheet (Layer B) and the opposite surface of the interlayer sheet is placed in superposed contact with one surface of a thick sheet (Layer C).
The fabric of Layer A is a knit-glass fabric of the following description: 1/2 Cardigan, 10 Courses per inch, 150/4 Beta yarn, 24.5 Ounces per square yard.
The interlayer sheet of Layer B is a 2-mil thick film which was prepared by melt extrusion from a tetrafluoroethylene/hexafluoropropylene copolymer (FEP), wherein the hexafluoropropylene content is 16% by weight, the copolymer characterized by specific melt viscosity of about 8x 104 poises at 372"C.
The thick sheet of Layer C is a 60-mil thick film which was prepared by melt extrusion from a tetrafluoroethylene/hexafluoropropylene copolymer, wherein the hexafluoropropylene content is 16% by weight, the copolymer characterized by a specific melt viscosity of about 50x 104 poises at 3720 C.
The layers are integrally bonded by means of heat and pressure. The bonding of the layers is accomplished by pressing the assembled materials through a rotary-type heated press (with the fabric in contact with the rotary drum of the press). The assembly is subjected to a pressure of about 40 pounds per square inch at a temperature of about 282"C. for about 2 minutes. The rotary press is of the type sold as a Rotocure (Registered Trade Mark) by Adam and United Corporation.
The product is flexible and the fabric is embedded about one-half its depth into the FEP film. The level of adhesion between the FEP film and the fabric, as measured by the ASTM-D-751 peel test, is greater than 18 pounds per inch.
EXAMPLE 2 A flexible sheet material is prepared as in Example 1, except that Layer C is an FEP film 9095 mils thick.
This product is flexible and the fabric is embedded about one-half of its depth into the FEP film. The level of adhesion between the FEP film and the fabric, as measured by the ASTM-D-751 peel test, is greater than 18 pounds per inch.
EXAMPLE 3 Three rotary-type drums are positioned in a vertical straight line series. The first (top) and third (bottom) drums rotate in the same direction, e.g., clockwise, and the second (middle) drum rotates in the opposite direction, e.g., counterclockwise. The drums are sufficiently close that a work object removed from one drum quickly comes in contact with the next drum.
An extruder is associated with the drums.
The extruder is positioned so that an extrudate, freshly extruded through an extruder die, can be placed onto and in direct contact with the middle drum.
The work object travels through the drum series at a rate of approximately one foot per minute and is in contact with each drum for approximately two minutes.
The first drum is a pressure roll having a face temperature of 295-3050C. The second drum is a casting drum having a face temperature of 195--205"C. The third drum is a cooling drum having a face temperature of 35-700C.
The extruder die has an opening sufficiently large to form an extrudate which is 60 mils thick and 20 inches wide. The extruding is at a temperature of 327"C.
The flexible sheet material is formed as follows: The fabric of Example I is pre-laminated to the interlayer of Example 1 by placing the fabric with the interlayer superimposed upon it, in contact with the first drum (fabric side facing the drum). The heat of the pressure roll pre-laminates the two layers. The pre-laminate then passes onto the casting drum upon which the extrudate has already been positioned. The interlayer side of the prelaminate comes into contact with the extrudate. The laminate is bonded while passing around the casting drum.
The polymer of the extrudate is the same as that of the thick sheet of Example 1. The laminate is then cooled by passing around the cooling drum.
The laminate has the same characteristics as the product formed in Example 1.
WHAT WE CLAIM IS: 1. A process for preparing a laminate composed of a first, comparatively thick fluorocarbon copolymer sheet of 5 or more mil thickness and a fabric, by providing an interlayer between the fabric and thick sheet, thinner than the first sheet, of a fluorocarbon copolymer having a specific melt viscosity sufficiently low to enable the copolymer to wet and penetrate the fabric at fabrication temperatures and lower than the specific melt viscosity of the fluorocarbon copolymer of the thick sheet, and then integrally bonding the laminate by means of heat and pressure; wherein the fluorocarbon copolymer is a copolymer of 5095% by weight tetrafluoroethylene, and 505 /O by weight fluoroolefin having the formula CF2=CFY, wherein Y is a C, to C8 perfluoroalkyl radical, or 99-93% by weight tetrafluoroethylene and 7-1% by weight perfluoro(alkylvinyl ether) in which the alkyl group contains I to 5 carbon atoms.
2. The process of Claim I wherein the fluorocarbon copolymer is a tetrafluoroethylene/fluoroolefin copolymer having a fluoroolefin content between 6.75 to 27% by weight, and wherein the fluoroolefin is hexafluoropropylene.
3. The process of Claim I or 2 wherein the fabric is a knit.
4. The process of Claim 3 wherein the knitted fabric is made from glass fiber yarns.
5. The process of any one of Claims 1 to 4 wherein the interlayer has a thickness of 1 mil to one-half the thickness of the fabric and is composed of a fluorocarbon copolymer with a specific melt viscosity of from 5 to 25x 104 poises, and the thick fluorocarbon sheet has a thickness 6f 5- 100 mils and is composed of a fluorocarbon
**WARNING** end of DESC field may overlap start of CLMS **.

Claims (8)

**WARNING** start of CLMS field may overlap end of DESC **. weight, the copolymer characterized by a specific melt viscosity of about 50x 104 poises at 3720 C. The layers are integrally bonded by means of heat and pressure. The bonding of the layers is accomplished by pressing the assembled materials through a rotary-type heated press (with the fabric in contact with the rotary drum of the press). The assembly is subjected to a pressure of about 40 pounds per square inch at a temperature of about 282"C. for about 2 minutes. The rotary press is of the type sold as a Rotocure (Registered Trade Mark) by Adam and United Corporation. The product is flexible and the fabric is embedded about one-half its depth into the FEP film. The level of adhesion between the FEP film and the fabric, as measured by the ASTM-D-751 peel test, is greater than 18 pounds per inch. EXAMPLE 2 A flexible sheet material is prepared as in Example 1, except that Layer C is an FEP film 9095 mils thick. This product is flexible and the fabric is embedded about one-half of its depth into the FEP film. The level of adhesion between the FEP film and the fabric, as measured by the ASTM-D-751 peel test, is greater than 18 pounds per inch. EXAMPLE 3 Three rotary-type drums are positioned in a vertical straight line series. The first (top) and third (bottom) drums rotate in the same direction, e.g., clockwise, and the second (middle) drum rotates in the opposite direction, e.g., counterclockwise. The drums are sufficiently close that a work object removed from one drum quickly comes in contact with the next drum. An extruder is associated with the drums. The extruder is positioned so that an extrudate, freshly extruded through an extruder die, can be placed onto and in direct contact with the middle drum. The work object travels through the drum series at a rate of approximately one foot per minute and is in contact with each drum for approximately two minutes. The first drum is a pressure roll having a face temperature of 295-3050C. The second drum is a casting drum having a face temperature of 195--205"C. The third drum is a cooling drum having a face temperature of 35-700C. The extruder die has an opening sufficiently large to form an extrudate which is 60 mils thick and 20 inches wide. The extruding is at a temperature of 327"C. The flexible sheet material is formed as follows: The fabric of Example I is pre-laminated to the interlayer of Example 1 by placing the fabric with the interlayer superimposed upon it, in contact with the first drum (fabric side facing the drum). The heat of the pressure roll pre-laminates the two layers. The pre-laminate then passes onto the casting drum upon which the extrudate has already been positioned. The interlayer side of the prelaminate comes into contact with the extrudate. The laminate is bonded while passing around the casting drum. The polymer of the extrudate is the same as that of the thick sheet of Example 1. The laminate is then cooled by passing around the cooling drum. The laminate has the same characteristics as the product formed in Example 1. WHAT WE CLAIM IS:
1. A process for preparing a laminate composed of a first, comparatively thick fluorocarbon copolymer sheet of 5 or more mil thickness and a fabric, by providing an interlayer between the fabric and thick sheet, thinner than the first sheet, of a fluorocarbon copolymer having a specific melt viscosity sufficiently low to enable the copolymer to wet and penetrate the fabric at fabrication temperatures and lower than the specific melt viscosity of the fluorocarbon copolymer of the thick sheet, and then integrally bonding the laminate by means of heat and pressure; wherein the fluorocarbon copolymer is a copolymer of 5095% by weight tetrafluoroethylene, and 505 /O by weight fluoroolefin having the formula CF2=CFY, wherein Y is a C, to C8 perfluoroalkyl radical, or 99-93% by weight tetrafluoroethylene and 7-1% by weight perfluoro(alkylvinyl ether) in which the alkyl group contains I to 5 carbon atoms.
2. The process of Claim I wherein the fluorocarbon copolymer is a tetrafluoroethylene/fluoroolefin copolymer having a fluoroolefin content between 6.75 to 27% by weight, and wherein the fluoroolefin is hexafluoropropylene.
3. The process of Claim I or 2 wherein the fabric is a knit.
4. The process of Claim 3 wherein the knitted fabric is made from glass fiber yarns.
5. The process of any one of Claims 1 to 4 wherein the interlayer has a thickness of 1 mil to one-half the thickness of the fabric and is composed of a fluorocarbon copolymer with a specific melt viscosity of from 5 to 25x 104 poises, and the thick fluorocarbon sheet has a thickness 6f 5- 100 mils and is composed of a fluorocarbon
copolymer with a specific melt viscosity of from 30 to 60x 104 poises.
6. A process according to Claim 1 substantially as described herein.
7. A process for preparing a laminate comprising a comparatively thick fluoro carbon copolymer sheet and a fabric substantially as described herein with reference to any one of Examples 1 to 3.
8. A laminate when produced by the process of any one of Claims 1 to 7.
GB11524/79A 1977-02-23 1977-02-23 Process for producing laminates of fabric and fluorocarbon copolymer Expired GB1575955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB11524/79A GB1575955A (en) 1977-02-23 1977-02-23 Process for producing laminates of fabric and fluorocarbon copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB11524/79A GB1575955A (en) 1977-02-23 1977-02-23 Process for producing laminates of fabric and fluorocarbon copolymer

Publications (1)

Publication Number Publication Date
GB1575955A true GB1575955A (en) 1980-10-01

Family

ID=9987833

Family Applications (1)

Application Number Title Priority Date Filing Date
GB11524/79A Expired GB1575955A (en) 1977-02-23 1977-02-23 Process for producing laminates of fabric and fluorocarbon copolymer

Country Status (1)

Country Link
GB (1) GB1575955A (en)

Similar Documents

Publication Publication Date Title
US4165404A (en) Process for producing laminates of fabric and fluorocarbon copolymer
US3934064A (en) Composite structures of knitted glass fabric and thermoplastic polyfluoroethylene resin sheet
JP3004066B2 (en) Composite sheet that can be thermoformed
US4800113A (en) Fiber reinforced thermoplastic articles and process for the preparation thereof
JP3199559B2 (en) Speaker damper and method of manufacturing the same
EP0218995B1 (en) Process for producing a waterproof cloth
US3723234A (en) Knit reinforcing fabric and resin laminate
US4282905A (en) Manufacture of seamless laminated tubing
KR20130121858A (en) Uni-directional fibre preform having slivers and consisting of reinforcing fibre bundles, and a composite material component
JP2013126790A (en) Fibre-reinforced resin moulding, and vehicle interior material using the same
US5240773A (en) Fabric reinforced thermoplastic resins
CA1101324A (en) Process for producing laminates of fabric and fluorocarbon copolymer
EP1631431A2 (en) Process for fabricating polymeric articles
GB1392569A (en) Composite structures
GB1575955A (en) Process for producing laminates of fabric and fluorocarbon copolymer
US3317645A (en) Method for forming molded articles
JP2005313455A (en) Multi-axis fabric, its production method, preform material, and fiber-reinfoced plastic molding
CA2010781C (en) Process for preparing products containing polyalkene fibres
GB2237583A (en) Fibre reinforced thermoplastic composites
US11440293B2 (en) Layered product
JPS634792B2 (en)
JP2007203579A (en) Glass fiber preform substrate for fiber-reinforced plastics, glass fiber preform, its manufacturing process, and fiber-reinforced plastic
US20230311371A1 (en) Reinforced synthetic product with curved geometry
CN113396050A (en) Multilayer sheet and method for producing multilayer sheet
AU2022231587A1 (en) Layered sheet and method for molding layered sheet molded product

Legal Events

Date Code Title Description
PS Patent sealed
PCNP Patent ceased through non-payment of renewal fee