JPS6347533A - Leaf spring made of ceramic material and the like - Google Patents

Leaf spring made of ceramic material and the like

Info

Publication number
JPS6347533A
JPS6347533A JP18805086A JP18805086A JPS6347533A JP S6347533 A JPS6347533 A JP S6347533A JP 18805086 A JP18805086 A JP 18805086A JP 18805086 A JP18805086 A JP 18805086A JP S6347533 A JPS6347533 A JP S6347533A
Authority
JP
Japan
Prior art keywords
leaf spring
stress
approx
center
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18805086A
Other languages
Japanese (ja)
Other versions
JPH06103050B2 (en
Inventor
Shigemi Sato
繁美 佐藤
Hideo Yamamoto
秀夫 山本
Toyoyuki Tono
東野 豊之
Ryusuke Adachi
隆介 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP61188050A priority Critical patent/JPH06103050B2/en
Publication of JPS6347533A publication Critical patent/JPS6347533A/en
Publication of JPH06103050B2 publication Critical patent/JPH06103050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/021Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
    • F16F1/022Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties made of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/18Leaf springs
    • F16F1/185Leaf springs characterised by shape or design of individual leaves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Springs (AREA)

Abstract

PURPOSE:To prevent the breakage of a leaf spring by making the center load supporting part of said leaf spring made of ceramic, etc. wider than both end supporting parts and reducing stress on the side end edge of the center part of said leaf spring. CONSTITUTION:A leaf spring 4 is formed into a rhomboid shape in which the board width of its center part is approx. 36mm while both side edge parts 9 are at an angle of approx. 30 deg. to an axial direction. When a load is applied to the leaf spring 4, the highest stress part is generated at the center part in the axial direction, while stresses in the vicinity of both side edge parts 9 are relatively low. That is, the stress values are, approx. 20-25kgf/mm<2> in a zone 6, approx. 25-30kgf/mm<2> in zones 7, and approx. 30kgf/mm<2> or more in a zone 8. Accordingly, any breakage starting from the side edge parts 9 of the center of the leaf spring 4 can hardly occur.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、セラミックス材利く例えばアルミナ、ジルコ
ニア、窒化硅素、炭化硅素など)、ガラス、特殊セメン
ト、金属間化合物(例えばTiAβ、Ti3AJ’、N
!3Afなど)などの脆性材tミ1からなる板ばねに関
する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to ceramic materials such as alumina, zirconia, silicon nitride, silicon carbide, etc.), glass, special cements, and intermetallic compounds (such as TiAβ, Ti3AJ', N
! It relates to a leaf spring made of a brittle material such as 3Af, etc.).

〈従来の技術〉 耐熱性、耐蝕性、耐摩耗性などを特徴とする特殊環境下
に於て使用される板ばねとしてセラミックス、金属間化
合物、ガラス、特殊セメントなどからなる板ばねを用い
ることができるが、いずれも脆く、切欠感受性が高いた
め、端縁部などの応力集中し易い部位の微小なりラック
を起点として早期に折損する場合が多かった。例えば、
第1図及び第2図に示したように、例えば窒化硅素から
なる長方形の板ばね1を、支持部材2にJ、り両端にて
支持し、その中央部に荷重部月3を介して負荷を加える
ような3点曲げ方式にて使用した場合には、特に、板ば
ねの中央部の両側縁部9に応力集中が発生し、同部分か
ら折損し易い。この傾向は所謂セラミックス材料(例え
ばアルミナ、ジルコニア、窒化硅素、炭化硅素など)、
ガラス、特殊セメント、金属間化合物(例えばTiAβ
、T)3A、!2、Ni3△βなど)などの脆性イ、イ
料に笠しく見られる傾向である。
<Conventional technology> Leaf springs made of ceramics, intermetallic compounds, glass, special cement, etc. can be used as leaf springs used in special environments, which are characterized by heat resistance, corrosion resistance, wear resistance, etc. However, all of them are brittle and highly sensitive to notches, so they often break early starting from minute racks in areas where stress is likely to concentrate, such as the edges. for example,
As shown in FIGS. 1 and 2, a rectangular leaf spring 1 made of silicon nitride, for example, is supported at both ends by a support member 2, and a load is applied to the central part of the spring 1 through a load member 3. When the leaf spring is used in a three-point bending method, stress concentration occurs particularly at both side edges 9 of the central part of the leaf spring, and the leaf spring is likely to break from that part. This trend is reflected in so-called ceramic materials (e.g. alumina, zirconia, silicon nitride, silicon carbide, etc.)
Glass, special cements, intermetallic compounds (e.g. TiAβ
,T)3A,! This tendency is clearly seen in brittle A and I materials such as 2, Ni3Δβ, etc.).

そこで、従来は、板ばねの側縁部の隅部を平面或いは曲
面により面取りし、しかも面取り部の粗ざを極力小さく
することによりこのような応ツノ集中を極力回避するよ
うにしていた。しかしながら、このような面取りを施し
ても隅部の応力がかなり高いことから、引張り応ツノ側
の隅部が破壊の起点となり易い。
Conventionally, the corners of the side edges of the leaf springs are chamfered with flat or curved surfaces, and the roughness of the chamfered portions is made as small as possible to avoid such concentration of stress as much as possible. However, even with such chamfering, the stress at the corner is quite high, so the corner on the tension-responsive horn side tends to become the starting point of fracture.

このような3点曲げに於いて、従来は応力分イ[が幅方
向に沿って均一であると考えられていたが、発明者によ
る実験によれば、第2図に示されたように、長方形の板
ばね1に3点曲げを加えた場合には、当然に荷重部材3
の近傍に最も高い応力が発生するが、特に幅方向につい
て中央部及び側縁部9の近傍に於りる応力が比較的高く
なることが見出された。この場合、板ばね1の材料は窒
化硅素からなり、そのヤング率は28,0OOffyf
/馴−であって、その寸法は、板厚1.0trvn、板
幅28.2m、長さ62.48であった。支持部材2及
び荷重部材3の幅は4馴、両支持部材2の内端間の距離
は46#であって、荷重部材3に加えられた荷重は”1
5に9fであった。尚、得られた最大応力値は、33N
gf/馴2であった。
In such three-point bending, it was conventionally thought that the stress component I was uniform along the width direction, but according to experiments conducted by the inventor, as shown in Fig. 2, When a rectangular leaf spring 1 is bent at three points, the load member 3 naturally
The highest stress occurs in the vicinity of , and it has been found that the stress in the center and in the vicinity of the side edges 9 is relatively high, particularly in the width direction. In this case, the material of the leaf spring 1 is silicon nitride, and its Young's modulus is 28,0OOffyf
The dimensions were 1.0trvn in thickness, 28.2m in width, and 62.48m in length. The width of the support member 2 and the load member 3 is 4mm, the distance between the inner ends of both support members 2 is 46mm, and the load applied to the load member 3 is 1mm.
It was 9f on 5th. The maximum stress value obtained was 33N.
It was gf/familiar 2.

従って、このような長方形の板ばねに於ては、側縁部9
の応力が高くなり、しかも側縁部9の隅部の応力集中に
より、同部分よりの破壊が発生し易くなる。
Therefore, in such a rectangular leaf spring, the side edge 9
The stress becomes high, and furthermore, due to the stress concentration at the corner of the side edge 9, breakage from the corner becomes more likely to occur.

〈発明が解決しようと覆る問題点〉 このような従来技術の問題点及び発明者の知見に鑑み、
本発明の主な目的は、改善された強度を有する脆性材料
から仮ばねを提供することにある。
<Problems that the invention attempts to solve> In view of the problems of the prior art and the inventor's knowledge,
The main object of the invention is to provide a temporary spring from a brittle material with improved strength.

〈問題点を解決するための手段〉 このような目的は、本発明によれば、両端にて支持され
かつその略中央部にて荷車を支持するようにしたセラミ
ックス、ガラス又は金属間化合物等の材料からなる仮ば
ねで必って、前記両端支持部分よりも前記中央荷重支持
部分が広幅にされていることを特徴とするセラミックス
材料等からなる板ばねを提供することにより達成される
。特に、板ばねの両端支持部分の側縁部と中央荷重支持
部分の側縁部とを結ぶ直線が前記板ばねの軸線方向に対
して5゜〜45゜の角度をなすと良い。
<Means for Solving the Problems> According to the present invention, this object is achieved by using a material made of ceramics, glass, intermetallic compounds, etc., which is supported at both ends and supports the cart approximately at its center. This can be achieved by providing a leaf spring made of a ceramic material or the like, in which the central load supporting portion is wider than the end supporting portions of the temporary spring made of the material. In particular, it is preferable that a straight line connecting the side edges of the end-supporting portions of the leaf spring and the side edges of the central load-supporting portion form an angle of 5° to 45° with respect to the axial direction of the leaf spring.

〈作用〉 このようにすれば、板ばねの中央部の側端縁に於ける応
力が比較的小さくなり、応力集中に基因する板ばねの折
損を防止することができる。
<Function> By doing so, the stress at the side edges of the central portion of the leaf spring becomes relatively small, and breakage of the leaf spring due to stress concentration can be prevented.

〈実施例〉 第3図は本発明に基づく仮ばねの平面図である。<Example> FIG. 3 is a plan view of a temporary spring according to the invention.

この板ばね4は、第2図に示した板ばねと同様に窒化硅
素からなるもので、第2図の板ばねと同一のばね定数(
32,5KIf/mm)を有するように、その中央部の
板幅が約36m、両側縁部9が軸線方向に対して約30
”の角度をなすような菱形としである。尚、この板ばね
4の全長は62.4mであった。
This leaf spring 4 is made of silicon nitride like the leaf spring shown in FIG. 2, and has the same spring constant (
32.5 KIf/mm), the board width at the center is about 36 m, and both side edges 9 are about 30 m in the axial direction.
The leaf spring 4 had a diamond shape forming an angle of 1.5 m.The total length of this leaf spring 4 was 62.4 m.

この板ばね4に第1図及び第2図について前記したのと
同様な荷車を加えた所、第3図に示されたような応力分
布を得た。即ら、最も高い応力の部分は前記と同様に軸
線方向の中央部に発生づるが、前記とは異なり、両側縁
部9の近傍の応力が比較的低く抑えられている。具体的
な応力値は、領域5に於ては20KJf/m2以下、領
域6に於ては20〜25Kgf/履2、領域7に於ては
25〜30に3f/rrvn” 、領域8に於ては30
に9’(’/rrvn一以上でおった。従って、板ばね
4の中央の側縁部9を起点とする破壊が発生しにくい。
When a cart similar to that described above with reference to FIGS. 1 and 2 was added to this leaf spring 4, a stress distribution as shown in FIG. 3 was obtained. That is, the highest stress occurs at the center in the axial direction as before, but unlike the above, the stress in the vicinity of both side edges 9 is kept relatively low. The specific stress values are 20KJf/m2 or less in region 5, 20 to 25Kgf/m2 in region 6, 25 to 30 to 3f/rrvn in region 7, and 3f/rrvn in region 8. It's 30
9'('/rrvn1 or more. Therefore, breakage starting from the central side edge 9 of the leaf spring 4 is unlikely to occur.

尚、本実施例に於ける最大応力値は、34にびf/#2
であった。
In addition, the maximum stress value in this example is 34 f/#2
Met.

このように、板ばねを、その両端支持部分よりも中央部
分に於いて広幅となるように形成することにより、応力
集中に基因覆る折損を防止し得るばかりでなく、高応力
部分の面積が小ざくなり、それによる強度上の信頼性の
向上の効果も1qられる。また、本実施例の場合、第1
図及び第2図に示した長方形の板ばねに対して面積が約
36%小さく汎み、材料費を節約することができる。特
に、セラミックスのような脆性材料に於ては、有効体積
、有効面積が大ぎい程強度の信頼性が低下する傾向がお
り、有効体積、有効面積の低減は強度信顕性の向上につ
ながる。
In this way, by forming the leaf spring so that the center part is wider than the supporting parts at both ends, it is possible not only to prevent breakage due to stress concentration, but also to reduce the area of high stress parts. The effect of improving reliability in terms of strength is also reduced by 1q. In addition, in the case of this embodiment, the first
The area is approximately 36% smaller than the rectangular leaf spring shown in FIG. 2 and FIG. 2, and material costs can be saved. Particularly in the case of brittle materials such as ceramics, the reliability of strength tends to decrease as the effective volume and effective area become larger, and reducing the effective volume and effective area leads to improved strength reliability.

第4図〜第9図は本発明の異なる実施例を示すものであ
る。第4図及び第5図に示した実施例に於ては、軸線方
向端10及び中央部の側縁部11がそれぞれ切除されて
いる。第6図及び第7図に示された実施例に於ては、両
支持部に平行部12を設は支持部の安定性が高められて
いる。第5図及び第7図に示された実施例については、
両側縁部11が切除されているため、荷重点部分の安定
性が高められる。第8図及び第9図に示された実施例は
、側縁部13がそれぞれ外向きに凹或いは凸な曲線によ
り郭成されるようにして菱形を形成してなるものでおる
4 to 9 show different embodiments of the present invention. In the embodiment shown in FIGS. 4 and 5, the axial ends 10 and the central side edges 11 are cut away. In the embodiment shown in FIGS. 6 and 7, parallel portions 12 are provided on both supports to increase the stability of the supports. For the embodiments shown in FIGS. 5 and 7,
Since both side edges 11 are cut off, the stability of the load point portion is enhanced. In the embodiment shown in FIGS. 8 and 9, the side edges 13 are each curved outwardly to form a rhombus.

第10図〜第12図は、前記したような菱形の形状の特
徴を定める角度θの計測要領を図示したもので、例えば
第7図に示した実施例の場合には、第10図に示された
ように、支持部の側縁部の点と荷重部の側縁部の点を結
ぶ直線14の軸線15方向に対する角度をθとし、第1
1図に示されたように、同様の実施例を4点曲げに応用
した場合には、支持部の側縁部と該支持部に近接する荷
重部の側縁部とを結ぶ直線14の軸線15の方向に対す
る角度を0としてあり、第8図に示した実施例の場合に
は、第12図に示されたように、支持部の側縁部の点と
荷重部の側縁部の点を結ぶ直線14の軸線15の方向に
対する角度をθとして必る。
10 to 12 illustrate the method for measuring the angle θ that determines the characteristics of the rhombus shape as described above. For example, in the case of the embodiment shown in FIG. 7, the method shown in FIG. As shown in FIG.
As shown in Figure 1, when a similar embodiment is applied to four-point bending, the axis of the straight line 14 connecting the side edge of the support part and the side edge of the load part adjacent to the support part In the case of the embodiment shown in FIG. 8, as shown in FIG. 12, the angle with respect to the direction of 15 is 0. The angle of the straight line 14 connecting the lines with respect to the direction of the axis 15 is θ.

一般にOが小さいと、従来の長方形板ばねのように側縁
部の応力が高くなり同部分の強度が問題となり好ましく
ない。逆に、θが45°以上になると、第3図に於て中
央部の両側に形成される2つの孤立した比較的応力の高
い領域7の横幅が側縁部9に達するようになり、同部分
の応力集中が問題となる。そこで、一般に角度0を5゜
〜45゜の範囲とすると良く、特に10’〜30’の範
囲にするのが最も好ましい。
In general, if O is small, the stress at the side edges becomes high as in conventional rectangular leaf springs, which poses a problem in the strength of the same portions, which is not preferable. Conversely, when θ becomes 45° or more, the widths of the two isolated relatively high stress regions 7 formed on both sides of the central portion in FIG. Stress concentration in the area becomes a problem. Therefore, it is generally preferable that the angle 0 be in the range of 5° to 45°, and most preferably in the range of 10' to 30'.

〈発明の効果〉 このように本発明によれば、脆性材料の仮ばねの形状を
好適に定めるのみで応力集中に基因する破壊を防止しく
qるばかりでなく、仝体向な強度を高めしかも材料を節
約することができるためその効果は極めて大である。
<Effects of the Invention> As described above, according to the present invention, by appropriately determining the shape of the temporary spring made of brittle material, it is possible to not only prevent breakage due to stress concentration, but also increase the general strength. The effect is extremely large because materials can be saved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は3点曲げ方式の荷重要領を示す側面図でおる。 第2図は従来形式の長方形板ばね及びその3点曲げ方式
下に於ける応力分イ「を示す平面図である。 第3図は本発明に基づく菱形板ばね及びその3点曲げ方
式下に於りる応力分布を示す平面図である。 第4図〜第9図は本発明に基づく板ばねの異なる実施例
を示す平面図である。 第10図〜第12図は、3点曲げ或いは4点曲げ下にあ
る2種類の仮ばねの実施例に於ける形状の特性を現わす
角度θの計測要領を示す平面図でおる。
Figure 1 is a side view showing the loading area of the three-point bending method. FIG. 2 is a plan view showing a conventional rectangular leaf spring and its stress distribution under the three-point bending method. FIG. FIG. 4 to 9 are plan views showing different embodiments of the leaf spring according to the present invention. FIGS. 10 to 12 show three-point bending or FIG. 3 is a plan view showing a procedure for measuring an angle θ representing the shape characteristics of two types of temporary springs under four-point bending.

Claims (2)

【特許請求の範囲】[Claims] (1)両端にて支持されかつその略中央部にて荷重を支
持するようにしたセラミックス、ガラス、セメント又は
金属間化合物等の材料からなる板ばねであつて、 前記両端支持部分よりも前記中央荷重支持部分が広幅に
されていることを特徴とするセラミックス材料等からな
る板ばね。
(1) A leaf spring made of a material such as ceramics, glass, cement, or an intermetallic compound that is supported at both ends and supports the load at approximately the center thereof, the center being closer to the support portions at both ends. A leaf spring made of a ceramic material or the like, characterized by a load-supporting portion having a wide width.
(2)前記板ばねの前記両端支持部分の側縁部と前記中
央荷重支持部分の側縁部とを結ぶ直線が前記板ばねの軸
線方向に対して5゜〜45゜の角度をなすことを特徴と
する特許請求の範囲第1項に記載のセラミックス材料等
からなる板ばね。
(2) A straight line connecting the side edges of the both end support portions of the leaf spring and the side edge of the central load support portion forms an angle of 5° to 45° with respect to the axial direction of the leaf spring. A leaf spring made of a ceramic material or the like according to claim 1.
JP61188050A 1986-08-11 1986-08-11 Leaf spring made of ceramic material Expired - Lifetime JPH06103050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61188050A JPH06103050B2 (en) 1986-08-11 1986-08-11 Leaf spring made of ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61188050A JPH06103050B2 (en) 1986-08-11 1986-08-11 Leaf spring made of ceramic material

Publications (2)

Publication Number Publication Date
JPS6347533A true JPS6347533A (en) 1988-02-29
JPH06103050B2 JPH06103050B2 (en) 1994-12-14

Family

ID=16216806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61188050A Expired - Lifetime JPH06103050B2 (en) 1986-08-11 1986-08-11 Leaf spring made of ceramic material

Country Status (1)

Country Link
JP (1) JPH06103050B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090372A (en) * 2001-09-20 2003-03-28 Denki Kagaku Kogyo Kk Silicon nitride made disc spring material, its manufacturing method and its use
JP2003097605A (en) * 2001-09-25 2003-04-03 Ntn Corp Clutch unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7154674B1 (en) * 2021-07-02 2022-10-18 NatureArchitects株式会社 Elastic support structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635735A (en) * 1979-08-29 1981-04-08 Sumitomo Chem Co Ltd Heat resistant spring
JPS58178032A (en) * 1982-04-12 1983-10-18 Mitsubishi Steel Mfg Co Ltd Belleville spring
JPS6188033A (en) * 1984-10-04 1986-05-06 Kyocera Corp Spring made of ceramics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635735A (en) * 1979-08-29 1981-04-08 Sumitomo Chem Co Ltd Heat resistant spring
JPS58178032A (en) * 1982-04-12 1983-10-18 Mitsubishi Steel Mfg Co Ltd Belleville spring
JPS6188033A (en) * 1984-10-04 1986-05-06 Kyocera Corp Spring made of ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090372A (en) * 2001-09-20 2003-03-28 Denki Kagaku Kogyo Kk Silicon nitride made disc spring material, its manufacturing method and its use
JP2003097605A (en) * 2001-09-25 2003-04-03 Ntn Corp Clutch unit

Also Published As

Publication number Publication date
JPH06103050B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
JP2000105164A (en) Pressure sensor
JPS6347533A (en) Leaf spring made of ceramic material and the like
US4641055A (en) Piezoelectric resonator with notched sides
JPS6347534A (en) Leaf spring made of ceramic material and the like
JP2004135052A (en) Tuning fork type vibrator
JP3280437B2 (en) Vertical boat
JPH06168536A (en) Holding member for magnetic disk substrate and magnetic disk device using this member
JPH08327656A (en) Semiconductor acceleration sensor
JPH08102446A (en) Wafer boat
JPH0851031A (en) Core structure for transformer with gap
JP4123241B2 (en) Method for dividing ceramic substrate
SE9803043L (en) Component carrier with improved component retention
JP3413372B2 (en) Diamond blade for cutting hard material and cutting device
JP2001159504A (en) Substrate flatness measuring device
JPH01290454A (en) Thermal head
JP3141582B2 (en) Porcelain and its manufacturing method
JPH036029Y2 (en)
JP2004177367A (en) Angular velocity sensor element
JPS6364330A (en) Semiconductor device
JP2000214024A (en) Semiconductor pressure sensor
JP2004096568A (en) It-cut quartz crystal resonator
JPS6189013A (en) Method of cutting substrate
JPH04169857A (en) Semiconductor acceleration sensor
JP2005088453A (en) Diamond scriber
JP3619843B2 (en) Fixing a material with a large expansion coefficient with a material with a small expansion coefficient

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term