JPS634734B2 - - Google Patents

Info

Publication number
JPS634734B2
JPS634734B2 JP11087381A JP11087381A JPS634734B2 JP S634734 B2 JPS634734 B2 JP S634734B2 JP 11087381 A JP11087381 A JP 11087381A JP 11087381 A JP11087381 A JP 11087381A JP S634734 B2 JPS634734 B2 JP S634734B2
Authority
JP
Japan
Prior art keywords
frequency
station
base station
pilot signal
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11087381A
Other languages
Japanese (ja)
Other versions
JPS5813037A (en
Inventor
Shigeo Nakajima
Shunichiro Egami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11087381A priority Critical patent/JPS5813037A/en
Publication of JPS5813037A publication Critical patent/JPS5813037A/en
Publication of JPS634734B2 publication Critical patent/JPS634734B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/01Reducing phase shift

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、周波数変動補正誤差を小さくする周
波数変動補正方式に関するものである。 衛星通信システムでは、衛星や地球局の周波数
変換器の局部発振器で生じる周波数変動を補正す
るために、周波数変動補正(以下AFC:Auto
Frequency Controlと呼ぶ)技術が使用される。
とくに、基地局と多数の移動局あるいは小形局と
の間に数kbit/sから数十kbit/sの低速度の信
号を伝送するSCPC衛星通信システムでは、この
AFC補正誤差をできるだけ小さくすることは重
要な課題である。 以下に従来のAFC方式を説明し、その欠点を
示す。なお、ここでは基地局と衛星との間の無線
周波数帯と衛星と移動局との間の無線周波数帯が
異なる移動衛星通信方式について説明する。第1
図は、想定したシステムの構成図を示したもので
ある。第1図において、1は基地局、2は擬似移
動局、3は衛星、4−1から4−Nは移動局であ
る。また、ETERは基地局より送信及び基地局
で受信する無線周波数帯、MTは擬似移動局及び
移動局より送信する無線周波数帯、MRは擬似移
動局及び移動局で受信する無線周波数帯である。
図に示すように、第1図のシステムは基地局から
の信号を各移動局に伝送し、各移動局からの信号
を基地局に伝送するシステムである。ここで、擬
似移動局は基地局からのAFC用パイロツト信号
を受信して基地局の周波数変換器の局部発振器の
周波数を制御する機能と、AFC用パイロツト信
号を送信する機能を有する局である。 第2図は、移動局から基地局への従来のAFC
方式の構成例を示したものである。第2図におい
て、図面上の各部分回路の番号と名称の対応を表
1に示す。
The present invention relates to a frequency fluctuation correction method that reduces frequency fluctuation correction errors. In satellite communication systems, Frequency Fluctuation Correction (AFC: Auto
A technique called Frequency Control) is used.
This is especially true in SCPC satellite communication systems that transmit low-speed signals of several kbit/s to several tens of kbit/s between a base station and many mobile stations or small stations.
It is an important issue to make the AFC correction error as small as possible. The conventional AFC method will be explained below and its drawbacks will be shown. Note that a mobile satellite communication system in which the radio frequency band between the base station and the satellite and the radio frequency band between the satellite and the mobile station are different will be described here. 1st
The figure shows the configuration of the assumed system. In FIG. 1, 1 is a base station, 2 is a pseudo mobile station, 3 is a satellite, and 4-1 to 4-N are mobile stations. In addition, ET and ER are the radio frequency bands transmitted from and received by the base station, MT is the radio frequency band transmitted from the pseudo mobile station and mobile station, and MR is the radio frequency band received by the pseudo mobile station and mobile station. be.
As shown in the figure, the system of FIG. 1 is a system in which a signal from a base station is transmitted to each mobile station, and a signal from each mobile station is transmitted to the base station. Here, the pseudo mobile station is a station that has the function of receiving the AFC pilot signal from the base station and controlling the frequency of the local oscillator of the frequency converter of the base station, and the function of transmitting the AFC pilot signal. Figure 2 shows conventional AFC from mobile station to base station.
This shows an example of the system configuration. In FIG. 2, Table 1 shows the correspondence between the numbers and names of each partial circuit on the drawing.

【表】【table】

【表】 第2図の動作を説明する。擬似移動局のパイロ
ツト信号発生器1より送信されるパイロツト信号
は、衛星を経由して基地局で受信される。このと
きの基地局のX点での周波数変動量ΔFX Mr→E
は、経由した各周波数変換器の局部発振器の周波
数変動量の総和であり、 ΔFX ΔFX Mr→E=ΔMrp+ΔMr1+ΔMr2+ΔS+ΔE1
ΔE2(1) となる。Y点での周波数変動量はAFC回路15
によりVCO11がΔFX Mr→Eだけ偏移するから零
となる。一方、移動局より送信される伝送信号の
X点での周波数変動量ΔFX Mi→Eは、 ΔFX Mi→E=ΔMi1+ΔMi2+ΔS+ΔE1+ΔE2 (2) となり、Y点での周波数変動量ΔFY Mi→Eは、 ΔFY Mi→E=ΔFX Mi→E−ΔFX Mr→E =(ΔMrp+ΔMr1+ΔMr2) −(ΔMi1+ΔMi2 (3) となる。 このように、式3より明らかなように各移動局
からの周波数変動量は最大 |ΔFY Mi→E|nax=|ΔMrp| +|ΔMr1|+|ΔMr2| +|ΔMi1|+|ΔMi2| (4) となる。従つて、従来のAFC方式では、パイロ
ツト信号発生器の周波数変動量と擬似移動局及び
各移動局の各送信周波数変換器での周波数変動量
を補正することができない欠点がある。 本発明はこの欠点を改善することを目的とし、
擬似移動局において送信するパイロツト信号の周
波数を受信局部発振器の周波数変動量だけ故意に
偏移させて送信するとともに、各移動局では基地
局からの到来周波数の周波数変動量に相当する分
だけ故意に送信周波数を偏移させて送信するもの
で、その特徴は、基地局と多数の子局が通信衛星
を介して接続されると共に擬似局が基地局近傍に
もうけられ、擬似局は基地局より送信される周波
数変動補正用の第1パイロツト信号を通信衛星を
介して受信して受信周波数に従つて基地局の送信
周波数変換器4の局部発振周波数5を制御する機
能及び子局から基地局への周波数変動補正用の第
2パイロツト信号を通信衛星を介して送信する機
能とを有し、擬似局からの第2パイロツト信号の
周波数を提供するパイロツト信号発生器21の周
波数が擬似局の受信周波数変換器18,20の周
波数変動量に相当する分だけ故意に偏移され、か
つ各子局では当該子局の送信周波数を基地局から
の第1パイロツト信号の周波数変動量に相当する
分だけ故意に偏移させるごとき周波数変動補正方
式にある。以下図面により実施例を説明する。 第3図は本発明の実施例である。第3図におけ
る各部分回路の番号と名称との対応を表2にまと
めて示す。
[Table] The operation shown in Figure 2 will be explained. A pilot signal transmitted from a pilot signal generator 1 of a pseudo mobile station is received by a base station via a satellite. Frequency fluctuation amount ΔFX Mr→E at point X of the base station at this time
is the sum of the frequency fluctuations of the local oscillators of each frequency converter that passed through, and ΔFX ΔFX Mr→E=Δ MrpMr1Mr2SE1 +
ΔE2 (1). The amount of frequency fluctuation at point Y is determined by AFC circuit 15.
As a result, VCO11 shifts by ΔFX Mr→E, so it becomes zero. On the other hand, the frequency fluctuation amount ΔFX Mi→E of the transmission signal transmitted from the mobile station at point The quantity ΔFY Mi→E is ΔFY Mi→E=ΔFX Mi→E−ΔFX Mr→E = (Δ MrpMr1Mr2 ) −(Δ Mi1Mi2 (3). In this way, it is clear from Equation 3. The maximum amount of frequency fluctuation from each mobile station is |ΔFY Mi→E| nax = |Δ Mrp | +|Δ Mr1 |+|Δ Mr2 | +|Δ Mi1 |+|Δ Mi2 | (4) Therefore, the conventional AFC method has the disadvantage that it cannot correct the amount of frequency fluctuation of the pilot signal generator and the amount of frequency fluctuation at each transmission frequency converter of the pseudo mobile station and each mobile station. The aim is to improve this shortcoming,
The frequency of the pilot signal transmitted at the pseudo mobile station is intentionally shifted by the frequency variation of the receiving local oscillator, and each mobile station is intentionally shifted by the frequency variation of the incoming frequency from the base station. It transmits by shifting the transmission frequency, and its characteristics are that the base station and many slave stations are connected via communication satellites, and a pseudo station is set up near the base station, and the pseudo station is transmitted from the base station. A function of receiving a first pilot signal for frequency fluctuation correction via a communication satellite and controlling the local oscillation frequency 5 of the transmission frequency converter 4 of the base station according to the reception frequency, and the frequency change from the slave station to the base station. The frequency of the pilot signal generator 21, which has a function of transmitting a second pilot signal for fluctuation correction via a communication satellite, and provides the frequency of the second pilot signal from the pseudo station, is changed to the reception frequency converter of the pseudo station. 18 and 20, and each slave station intentionally shifts its transmission frequency by an amount corresponding to the frequency fluctuation of the first pilot signal from the base station. It is based on a frequency fluctuation correction method such as shifting the frequency. Examples will be described below with reference to the drawings. FIG. 3 shows an embodiment of the invention. The correspondence between the numbers and names of each partial circuit in FIG. 3 is summarized in Table 2.

【表】【table】

【表】 なお、以下の説明では、変調回路及び復調回路
で使用する発振器の周波数変動量は、発振周波数
が低いため十分小さいと考え無視する。第3図に
おいて、基地局の端子1からは各移動局向けの複
数の変調波が入力し、パイロツト信号発生器2の
出力であるAFC用パイロツト信号(1波)が回
路3で合成される。これらの信号は周波数変換器
4,6を経由して基地局より送信され、衛星を経
由して擬似移動局及び各移動局で受信される。擬
似移動局で受信されるこの信号は周波数変換器1
8,20で周波数変換されてAFC回路22に入
力する。AFC回路は第2図のAFC回路15に示
すように、パイロツト信号検出回路、周波数差検
出回路、及びVCO制御電圧発生回路から構成さ
れており、AFC回路入力の周波数変動量を零と
するようにVCOを制御する。従つて、基地局の
VCO5の周波数偏移量ΔFE1はパイロツト信号発
生器2のパイロツト信号が経由した各周波数変換
器の局部発振周波数変動量で与えられ、 ΔFE1=ΔEp+Δt E1+Δt E2 +ΔS1+ΔMr1+ΔMrp (5) となる。また、第3図の点Bにおける衛星から送
信される周波数の周波数変動量ΔFSは、 ΔFS=ΔFE1−(ΔEp+Δt E1 +Δt E2+ΔS1) =(ΔMr1+ΔMrp) (6) となる。 各移動局では、式(6)に示す周波数変動量を有す
る周波数を受信し、周波数変換器27,29で周
波数変換してAFC回路32に入力する。AFC回
路32の入力点での周波数変動量は式(6)に示す周
波数変動量に加えて、周波数変換器27での周波
数変動量ΔMi1、周波数変換器29での周波数変
動量ΔMi2が相加されるから、VCO28の周波数
偏移ΔFMiは、 ΔFMi=(ΔMr1+ΔMrp) +ΔMi1+ΔMi2 (7) となる。端子36に出力される信号は、周波数変
換器29と31の局部発振器が同一に使用される
から周波数変動が零となる。 また、端子37からの基地局への信号は、局部
発振器34の周波数が周波数変換器33と35に
共通して使用されるから、この周波数変動ΔMi3
を打ち消すことができ、移動局のD点での周波数
変動量ΔFD Miは、 ΔFD Mi=(ΔMr1+ΔMrp) +ΔMi2 (8) となる。一方、擬似移動局のパイロツト信号発生
器21から送信されるパイロツト信号について
は、第3図のE点で周波数変動量ΔFE Mrが、 ΔFE Mr=ΔMrp+ΔMr1 (9) となる。ここで、局部発振器24は周波数変換器
23と26とで共通に利用されるから、周波数変
動量ΔMr2は送信周波数変動に含まれない。 擬似移動局より送信されるパイロツト信号の周
波数変動量と移動局より送信される伝送信号の周
波数変動量の差異ΔFは、式(8)と式(9)の比較より、 ΔF=ΔFD Mi−ΔFE Mr=ΔMi2 (10) となり、最悪値では、 |ΔF|nax=|ΔMi2| (11) となる。この周波数変動量ΔFは、従来のAFC方
式で説明したようにAFCで補正できない誤差周
波数となるが、一般にMi1Mi2であるからΔMi1
≫ΔMi2となり、式(11)と式(4)の比較より明らかな
ように、本方式では従来のAFC方式より周波数
変動補正誤差を著しく小さくすることができる。 以上説明したように、本発明では擬似移動局よ
り送信するパイロツト信号の周波数を、擬似移動
局の各受信周波数変換器の局部発振器で生じる周
波数変動量だけ故意に周波数偏移させて送信し、
各移動局では基地局からの到来周波数の周波数変
動量を基地局への送信周波数に含め、故意に送信
周波数を偏移させて送信できる構成としているた
め、各移動局から送信する周波数の周波数変動量
と擬似移動局から送信するパイロツト信号の周波
数変動との差異を小さくでき、基地局の受信部に
設けたAFC回路による周波数変動補正誤差を小
さくできる利点がある。 また、擬似移動局においてパイロツト信号発生
器の周波数を受信周波数変換器の局部発振器周波
数として使用し、擬似移動局及び移動局において
1個の局部発振器の周波数と複数の送信周波数変
換器の局部発振器周波数の生成に使用することに
より、必要な局部発振器の個数を減少できる利点
がある。 なお、ここでは移動衛星通信システムを対象に
説明したが、移動局をある定められた場所に設置
する小形局に置きかえたシステムに対しても本発
明を同様に適用できることはもちろんである。
[Table] Note that in the following explanation, the amount of frequency fluctuation of the oscillator used in the modulation circuit and the demodulation circuit is considered to be sufficiently small because the oscillation frequency is low, and will be ignored. In FIG. 3, a plurality of modulated waves for each mobile station are input from a terminal 1 of the base station, and an AFC pilot signal (one wave) output from a pilot signal generator 2 is synthesized in a circuit 3. These signals are transmitted from the base station via frequency converters 4 and 6, and received by the pseudo mobile station and each mobile station via the satellite. This signal received by the pseudo mobile station is transmitted to the frequency converter 1
The signal is frequency-converted at steps 8 and 20 and input to the AFC circuit 22 . As shown in AFC circuit 15 in Fig. 2, the AFC circuit is composed of a pilot signal detection circuit, a frequency difference detection circuit, and a VCO control voltage generation circuit, and is designed to reduce the amount of frequency fluctuation of the AFC circuit input to zero. Control VCO. Therefore, the base station
The frequency deviation amount ΔF E1 of the VCO 5 is given by the amount of local oscillation frequency fluctuation of each frequency converter through which the pilot signal of the pilot signal generator 2 passes, ΔF E1 = Δ Ep + Δ t E1 + Δ t E2 + Δ S1 + Δ Mr1 + Δ Mrp (5). Also, the frequency fluctuation amount ΔF S of the frequency transmitted from the satellite at point B in Figure 3 is as follows: ΔF S = ΔF E1 − (Δ Ep + Δ t E1 + Δ t E2 + Δ S1 ) = (Δ Mr1 + Δ Mrp ) (6 ) becomes. Each mobile station receives a frequency having a frequency variation shown in equation (6), converts the frequency using frequency converters 27 and 29, and inputs the frequency to the AFC circuit 32. The frequency fluctuation amount at the input point of the AFC circuit 32 is determined by the frequency fluctuation amount Δ Mi1 at the frequency converter 27 and the frequency fluctuation amount Δ Mi2 at the frequency converter 29 in addition to the frequency fluctuation amount shown in equation ( 6) . Therefore, the frequency deviation ΔF Mi of the VCO 28 becomes ΔF Mi = (Δ Mr1 + Δ Mrp ) + Δ Mi1 + Δ Mi2 (7). Since the local oscillators of the frequency converters 29 and 31 are used in the same manner, the signal outputted to the terminal 36 has no frequency fluctuation. Furthermore, since the frequency of the local oscillator 34 is commonly used by the frequency converters 33 and 35, the signal from the terminal 37 to the base station has a frequency variation Δ Mi3
can be canceled out, and the frequency fluctuation amount ΔF D Mi at point D of the mobile station becomes ΔF D Mi = (Δ Mr1 + Δ Mrp ) + Δ Mi2 (8). On the other hand, regarding the pilot signal transmitted from the pilot signal generator 21 of the pseudo mobile station, the frequency fluctuation amount ΔF E Mr at point E in FIG. 3 becomes ΔF E MrMrpMr1 (9). Here, since the local oscillator 24 is commonly used by the frequency converters 23 and 26, the frequency fluctuation amount Δ Mr2 is not included in the transmission frequency fluctuation. The difference ΔF between the frequency variation of the pilot signal transmitted from the pseudo mobile station and the frequency variation of the transmission signal transmitted from the mobile station is calculated from the comparison of equations (8) and (9) as follows: ΔF=ΔF D Mi − ΔF E Mr = Δ Mi2 (10), and at the worst value, |ΔF| nax = |Δ Mi2 | (11). This frequency fluctuation amount ΔF becomes an error frequency that cannot be corrected by AFC as explained in the conventional AFC method, but in general, since Mi1Mi2 , Δ Mi1
≫Δ Mi2 , and as is clear from the comparison of equations (11) and (4), this method can significantly reduce the frequency fluctuation correction error than the conventional AFC method. As explained above, in the present invention, the frequency of the pilot signal transmitted from the pseudo mobile station is intentionally shifted by the amount of frequency fluctuation caused by the local oscillator of each reception frequency converter of the pseudo mobile station, and then transmitted.
Each mobile station includes the amount of frequency fluctuation in the frequency arriving from the base station in the transmission frequency to the base station, and is configured to intentionally shift the transmission frequency and transmit. This has the advantage that the difference between the frequency fluctuation and the frequency fluctuation of the pilot signal transmitted from the pseudo mobile station can be reduced, and the frequency fluctuation correction error by the AFC circuit provided in the receiving section of the base station can be reduced. In addition, the frequency of the pilot signal generator is used as the local oscillator frequency of the receiving frequency converter in the pseudo mobile station, and the frequency of one local oscillator and the local oscillator frequencies of multiple transmitting frequency converters are used in the pseudo mobile station and the mobile station. This has the advantage of reducing the number of local oscillators required. Although the present invention has been described with reference to a mobile satellite communication system, it goes without saying that the present invention can be similarly applied to a system in which a mobile station is replaced with a small station installed at a certain predetermined location.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は移動衛星通信システムの構成例、第2
図は従来のAFC方式による移動局から基地局へ
の回線の構成例、第3図は本発明によるシステム
構成例のブロツク図である。 1……基地局、2……擬似移動局、3……衛
星、4−1,4−2,……,4−N……移動局。
Figure 1 shows an example of the configuration of a mobile satellite communication system.
The figure shows an example of the configuration of a line from a mobile station to a base station using the conventional AFC method, and FIG. 3 is a block diagram of an example of the system configuration according to the present invention. 1...Base station, 2...Pseudo mobile station, 3...Satellite, 4-1, 4-2,..., 4-N...Mobile station.

Claims (1)

【特許請求の範囲】 1 基地局と多数の子局が通信衛星を介して接続
されると共に擬似局が基地局近傍にもうけられ、
擬似局は基地局より送信される周波数変動補正用
の第1パイロツト信号を通信衛星を介して受信し
て受信周波数に従つて基地局の送信周波数変換器
4の局部発振周波数5を制御する機能及び子局か
ら基地局への周波数変動補正用の第2パイロツト
信号を通信衛星を介して送信する機能とを有し、
擬似局からの第2パイロツト信号の周波数を提供
するパイロツト信号発生器21の周波数が擬似局
の受信周波数変換器18,20の周波数変動量に
相当する分だけ故意に偏移され、かつ各子局では
当該子局の送信周波数を基地局からの第1パイロ
ツト信号の周波数変動量に相当する分だけ故意に
偏移させることを特徴とする周波数変動補正方
式。 2 擬似局のパイロツト信号発生器21の出力周
波数が、擬似局での送信周波数変換と受信周波数
変換とに共用されるごとき特許請求の範囲第1項
の周波数変動補正方式。
[Claims] 1. A base station and a large number of slave stations are connected via communication satellites, and a pseudo station is established near the base station,
The pseudo station has the function of receiving the first pilot signal for frequency fluctuation correction transmitted from the base station via a communication satellite and controlling the local oscillation frequency 5 of the transmission frequency converter 4 of the base station according to the reception frequency. It has a function of transmitting a second pilot signal for frequency fluctuation correction from the slave station to the base station via a communication satellite,
The frequency of the pilot signal generator 21 that provides the frequency of the second pilot signal from the pseudo station is intentionally shifted by an amount corresponding to the frequency variation of the receiving frequency converters 18 and 20 of the pseudo station, and A frequency fluctuation correction method is characterized in that the transmission frequency of the slave station is intentionally shifted by an amount corresponding to the amount of frequency fluctuation of the first pilot signal from the base station. 2. The frequency fluctuation correction method according to claim 1, wherein the output frequency of the pilot signal generator 21 of the pseudo station is shared for transmission frequency conversion and reception frequency conversion in the pseudo station.
JP11087381A 1981-07-17 1981-07-17 Compensation system for frequency variation Granted JPS5813037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11087381A JPS5813037A (en) 1981-07-17 1981-07-17 Compensation system for frequency variation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11087381A JPS5813037A (en) 1981-07-17 1981-07-17 Compensation system for frequency variation

Publications (2)

Publication Number Publication Date
JPS5813037A JPS5813037A (en) 1983-01-25
JPS634734B2 true JPS634734B2 (en) 1988-01-30

Family

ID=14546862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11087381A Granted JPS5813037A (en) 1981-07-17 1981-07-17 Compensation system for frequency variation

Country Status (1)

Country Link
JP (1) JPS5813037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145734U (en) * 1988-03-30 1989-10-06

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169235A (en) * 1983-03-16 1984-09-25 Nec Corp Transmitting and receiving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145734U (en) * 1988-03-30 1989-10-06

Also Published As

Publication number Publication date
JPS5813037A (en) 1983-01-25

Similar Documents

Publication Publication Date Title
US5280644A (en) Frequency control circuit, and associated method, for a receiver operative to receive signals-transmitted thereto in intermittent bursts
EP0795978A2 (en) Frequency control for frequency division channels
US4509200A (en) Satellite telecommunications system
US4466130A (en) Two pilot frequency control for communication systems
JPS634734B2 (en)
US7212509B1 (en) Method for regulating a frequency offset in a base-station receiver of a data communications system
JP2001119333A (en) Mobile object communication system and doppler shift correction communication method
US3632891A (en) Circuit arrangement for the insertion of telephone channels in the intermediate frequency junctions for repeater stations
EP0990340A1 (en) Method of synchronization
JPS6366095B2 (en)
JPH1155142A (en) Digital satellite broadcasting receiver
US3991372A (en) Circuit for reversing doppler signal modifying a carrier
JP3184270B2 (en) Communication device having reference signal frequency calibration function
JPS5811143B2 (en) Transmission frequency control device
JP3460949B2 (en) Communication device
JP2001244834A (en) Communication equipment
JPH05206917A (en) Transmission/reception device of time division duplex system or time division multiple access/time division duplex system
JP2795178B2 (en) DAMA communication device
JPH04369930A (en) Frequency control system for tdma-tdd communication
JP2669237B2 (en) Mobile satellite communication system
JPS626373B2 (en)
JPH0974406A (en) Transmitter
JPH0722979A (en) Radio transceiver
JPH04238419A (en) Pilot signal insertion circuit
JPS6098735A (en) Repeater with internal switching function