JPS6347275B2 - - Google Patents
Info
- Publication number
- JPS6347275B2 JPS6347275B2 JP56197728A JP19772881A JPS6347275B2 JP S6347275 B2 JPS6347275 B2 JP S6347275B2 JP 56197728 A JP56197728 A JP 56197728A JP 19772881 A JP19772881 A JP 19772881A JP S6347275 B2 JPS6347275 B2 JP S6347275B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- discharge
- discharge excitation
- cathode
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000615 nonconductor Substances 0.000 claims 1
- 239000002470 thermal conductor Substances 0.000 claims 1
- 230000005284 excitation Effects 0.000 description 30
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/036—Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Lasers (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
Description
【発明の詳細な説明】
(発明の技術分野)
本発明はガス・トランスポート型のガス・レー
ザ装置に係り、特に実効放電長を短くし、かつガ
スの冷却効率を改善させたガス・レーザ装置に関
する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a gas transport type gas laser device, and particularly to a gas laser device with a shortened effective discharge length and improved gas cooling efficiency. Regarding.
(発明の技術的背景)
従来のガス・トランスポート型炭酸ガスレーザ
装置は、第1図に示すように放電励起用の陰極1
と陽極2とが対向配置された放電励起部3と、こ
の放電励起部3にレーザガスを送り込む送風機部
4と、放電励起部3で高温となつたレーザガスを
冷却する熱交換器部5と、送風機部4と熱交換器
部5とを連結する連結部6とを有している。(Technical Background of the Invention) A conventional gas transport type carbon dioxide laser device has a cathode 1 for discharge excitation as shown in FIG.
and an anode 2 are disposed facing each other, a blower section 4 that sends laser gas to the discharge excitation section 3, a heat exchanger section 5 that cools the laser gas heated to a high temperature in the discharge excitation section 3, and a blower. It has a connecting part 6 that connects the part 4 and the heat exchanger part 5.
そして、放電励起部3でレーザ発振を促す全反
射鏡7と半反射鏡8とがガス流を挾むよう配置さ
れ、送風機4および放電励起用の陰極1、陽極2
への電圧供給電源9が別途設けられている。 A total reflection mirror 7 and a semi-reflection mirror 8 that promote laser oscillation in the discharge excitation unit 3 are arranged to sandwich the gas flow, and a blower 4 and a cathode 1 and an anode 2 for discharge excitation are arranged to sandwich the gas flow.
A voltage supply power source 9 is separately provided.
この装置では矢印10の方向へレーザビームが
発射される。 This device emits a laser beam in the direction of arrow 10.
このような従来のガス・トランスポート型炭酸
ガスレーザ装置の放電励起部3におけるガスは、
一軸方向(矢印11の方向)に高速で通過する構
造のもので、放電により高温となつたガスは放電
励起部3を通過した後、熱交換器5に送られて冷
却される。 The gas in the discharge excitation section 3 of such a conventional gas transport type carbon dioxide laser device is
It has a structure in which the gas passes at high speed in a uniaxial direction (in the direction of arrow 11), and the gas heated to high temperature due to discharge passes through the discharge excitation section 3, and then is sent to the heat exchanger 5 and cooled.
(背景技術の問題点)
このようなレーザ装置の出力効率を更に上げる
ためには、放電励起用の陰極1と陽極2との間隔
を広げて、放電励起部の容積を増し、かつ励起電
気入力を増す必要がある。(Problems in the Background Art) In order to further increase the output efficiency of such a laser device, the distance between the cathode 1 and the anode 2 for discharge excitation must be widened to increase the volume of the discharge excitation section, and the excitation electric input must be increased. It is necessary to increase
また、これに伴つて、ガスの冷却効果も上げる
必要がある。 Along with this, it is also necessary to increase the cooling effect of the gas.
したがつて放電励起部3のガス流をチヨーク板
等を用いて乱流状態となし、かつ高速で流出させ
る必要が生じるが、このためには、送風機は大容
量のものが必要となる。 Therefore, it is necessary to make the gas flow in the discharge excitation section 3 turbulent using a choke plate or the like and to make it flow out at high speed, but for this purpose, a large-capacity blower is required.
(発明の目的)
本発明は上記事情に対処してなされたもので、
ガス流を放電励起部において実効放電長を短く、
かつ冷却効率を向上させたガスレーザ装置を提供
するものである。(Object of the invention) The present invention has been made in response to the above circumstances, and
Shorten the effective discharge length of the gas flow at the discharge excitation part,
The present invention also provides a gas laser device with improved cooling efficiency.
(発明の概要)
本発明のガス・レーザ装置は、レーザガスの供
給される放電励起部に供給されるレーザガスを分
流させるガス衝突部を設け、このガス衝突部の上
流側に放電励起用陰極を、下流側の分流された各
流路に放電励起用陽極を設置することにより、両
極間の実効放電長を短くし、併せて冷却効率を向
上させたものである。(Summary of the Invention) The gas laser device of the present invention is provided with a gas collision part that divides the laser gas supplied to the discharge excitation part to which the laser gas is supplied, and a cathode for discharge excitation on the upstream side of the gas collision part. By installing a discharge excitation anode in each branched flow path on the downstream side, the effective discharge length between the two poles is shortened, and cooling efficiency is also improved.
(発明の実施例)
第2図は本発明のガス・レーザ装置の一実施例
の縦断面図、第3図は同実施例の要部の拡大斜視
図である。(Embodiment of the Invention) FIG. 2 is a longitudinal cross-sectional view of an embodiment of the gas laser device of the present invention, and FIG. 3 is an enlarged perspective view of a main part of the embodiment.
これらの図において、レーザガス流路は、矢印
11′で示すように流入路12より隔壁13の間
を通り放電励起部14において左右対称に分流さ
れ、流出路15を通り風洞16内の熱交換器17
を経て送風器18に送り込まれるよう構成されて
いる。 In these figures, the laser gas flow path starts from the inflow path 12, passes between the partition walls 13, is split symmetrically at the discharge excitation section 14, as shown by an arrow 11', and passes through the outflow path 15 to the heat exchanger in the wind tunnel 16. 17
It is configured such that the air is sent to the blower 18 through the air.
一方、放電励起用電極は、放電励起部14のガ
ス流上流側に棒状の陰極19が配置され、また、
分流された下流側に多分割の板状陽極20が配置
されている。 On the other hand, in the discharge excitation electrode, a rod-shaped cathode 19 is arranged on the gas flow upstream side of the discharge excitation part 14, and
A multi-divided plate-shaped anode 20 is arranged on the downstream side of the branched flow.
さらに、ガスの分流を生じさせるガス衝突部2
1は、分流する側に案内傾斜面を有する断面屋根
型をなしており、ベリリアのような熱伝導性およ
び電気絶縁性の良好な材料から成つている。 Furthermore, a gas collision part 2 that causes gas separation
1 has a cross-sectional roof shape with a guide slope on the side where the flow is diverted, and is made of a material with good thermal conductivity and electrical insulation, such as beryllia.
上記構成のガスレーザ装置においては、放電励
起用の陰極19および陽極20に励起電気入力を
印加するとガス流が両極間でT字状に分流してい
る結果、放電部Aは第2図に点線で示すように広
がりをもつことになり、短い実効放電長で所要の
放電起体積を得ることができる。 In the gas laser device having the above configuration, when an excitation electric input is applied to the cathode 19 and the anode 20 for discharge excitation, the gas flow is divided between the two electrodes in a T-shape, and as a result, the discharge part A is indicated by the dotted line in FIG. As shown in the figure, it has a spread, and the required discharge volume can be obtained with a short effective discharge length.
なお、レーザ・ビーム22は放電励起部14で
第2図の紙面に垂直な方向に発射される。 Note that the laser beam 22 is emitted by the discharge excitation unit 14 in a direction perpendicular to the paper plane of FIG.
(発明の効果)
以上述べたように、放電励起部内レーザガス流
を衝突部に衝突させて分流させ、衝突部の上流に
放電励起用の陰極を、下流の分流された各流路に
陽極を配置することにより、実効放電長は従来装
置の半分に減り、アークなしに励起入力電力を大
幅に増大させることができる。(Effects of the Invention) As described above, the laser gas flow in the discharge excitation part is made to collide with the collision part and divided, and the cathode for discharge excitation is placed upstream of the collision part, and the anode is placed downstream in each of the divided flow paths. By doing so, the effective discharge length is reduced to half that of the conventional device, and the excitation input power can be significantly increased without arcing.
更に放電励起部の中央に設けたガス衝突部のガ
ス冷却作用により、冷却効果が増大され、かつガ
ス衝突部においてガスの乱流形成が促進されて、
より高い励起電気入力の印加が可能となつて、大
出力のレーザ光を得ることができる。 Furthermore, the cooling effect is increased by the gas cooling effect of the gas collision part provided at the center of the discharge excitation part, and the formation of gas turbulence is promoted in the gas collision part.
It becomes possible to apply a higher excitation electric input, and a high-output laser beam can be obtained.
ちなみに、T字型のガス流路(断面積50×800
mm3)に圧力30Torr、流速30m/sの媒体ガス
(CO2、N2、Heの混合ガス)を流し、直流放電励
起により一回折返しのコ字型共振器(出力結合35
%)から3KWのレーザ出力を得ることができる。 By the way, T-shaped gas flow path (cross-sectional area 50 x 800
mm 3 ) at a pressure of 30 Torr and a flow rate of 30 m/s, a medium gas (mixed gas of CO 2 , N 2 , and He) was flowed through the tube, and DC discharge excitation was used to create a once-folded U-shaped resonator (output coupling 35
%) can obtain a laser power of 3KW.
第1図は従来のガス・トランスポート型炭酸ガ
スレーザ装置の縦断面図、第2図は本発明の一実
施例レーザ装置の縦断面図、第3図は第2図に示
した実施例の要部斜視図である。
14……放電励起部、19……放電励起用陰
極、20……放電励起用陽極、21……ガス衝突
部、22……レーザ・ビーム。
FIG. 1 is a longitudinal sectional view of a conventional gas transport type carbon dioxide laser device, FIG. 2 is a longitudinal sectional view of a laser device according to an embodiment of the present invention, and FIG. FIG. DESCRIPTION OF SYMBOLS 14...Discharge excitation part, 19...Cathode for discharge excitation, 20...Anode for discharge excitation, 21...Gas collision part, 22...Laser beam.
Claims (1)
れた複数の陽極と、 この陽極間に設けられ、前記陰極から前記陽極
に流れるレーザガスを分流し冷却する、断面山形
の熱的良導体で電気的絶縁体のガス衝突部と、 よりなるガス・レーザ装置。[Scope of Claims] 1. A cathode, a plurality of anodes arranged opposite to each other at equal distances from the cathode, and a plurality of anodes provided between the anodes to cool the laser gas by dividing the laser gas flowing from the cathode to the anode. , a gas collision part that is a good thermal conductor and an electrical insulator with a chevron-shaped cross section; and a gas laser device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19772881A JPS58100476A (en) | 1981-12-10 | 1981-12-10 | Gas-laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19772881A JPS58100476A (en) | 1981-12-10 | 1981-12-10 | Gas-laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58100476A JPS58100476A (en) | 1983-06-15 |
JPS6347275B2 true JPS6347275B2 (en) | 1988-09-21 |
Family
ID=16379349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19772881A Granted JPS58100476A (en) | 1981-12-10 | 1981-12-10 | Gas-laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58100476A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5068789A (en) * | 1973-10-23 | 1975-06-09 | ||
JPS57160185A (en) * | 1981-03-28 | 1982-10-02 | Tomoo Fujioka | Excitation method for discharge excitation type co gas laser and laser device thereof |
-
1981
- 1981-12-10 JP JP19772881A patent/JPS58100476A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5068789A (en) * | 1973-10-23 | 1975-06-09 | ||
JPS57160185A (en) * | 1981-03-28 | 1982-10-02 | Tomoo Fujioka | Excitation method for discharge excitation type co gas laser and laser device thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS58100476A (en) | 1983-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3772610A (en) | Arcless electrode construction for gas transport laser | |
US4247829A (en) | Silent discharge type gas laser device | |
JPS5812755B2 (en) | Electrically excited laser device | |
US4077018A (en) | High power gas transport laser | |
US3875531A (en) | Integrated laser system | |
JP2002502548A (en) | Ultrasonic and subsonic lasers with RF discharge excitation | |
US3860887A (en) | Electrically excited high power flowing gas devices such as lasers and the like | |
JPS6347275B2 (en) | ||
US4058778A (en) | High power gas transport laser | |
JPS61116889A (en) | Discharge excitation short pulse laser device | |
US20160308325A1 (en) | Air-cooled carbon-dioxide laser | |
Khare et al. | Operational characteristics and power scaling of a transverse flow transversely excited CW CO 2 laser | |
JP3088579B2 (en) | Laser device | |
JP2531526B2 (en) | Gas laser device | |
JPS6335116B2 (en) | ||
JPS6348881A (en) | Gas laser oscillator | |
JPH0133956B2 (en) | ||
RU2153744C2 (en) | Gaseous-discharge co laser | |
JPH01214184A (en) | Pulse laser oscillation device | |
JPS6288384A (en) | Gas laser device | |
JPH05343777A (en) | Pulse laser equipment | |
JPS6235589A (en) | Laser oscillator | |
JP3259161B2 (en) | Gas laser oscillation device | |
US5034960A (en) | Arrangement for the input of energy into a conducting electrical gas discharge, especially for a gas laser | |
JP2566585B2 (en) | Optical waveguide type gas laser device |