JPS58100476A - Gas-laser device - Google Patents

Gas-laser device

Info

Publication number
JPS58100476A
JPS58100476A JP19772881A JP19772881A JPS58100476A JP S58100476 A JPS58100476 A JP S58100476A JP 19772881 A JP19772881 A JP 19772881A JP 19772881 A JP19772881 A JP 19772881A JP S58100476 A JPS58100476 A JP S58100476A
Authority
JP
Japan
Prior art keywords
section
discharge
gas
excitation
discharge excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19772881A
Other languages
Japanese (ja)
Other versions
JPS6347275B2 (en
Inventor
Takashi Shigematsu
孝 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP19772881A priority Critical patent/JPS58100476A/en
Publication of JPS58100476A publication Critical patent/JPS58100476A/en
Publication of JPS6347275B2 publication Critical patent/JPS6347275B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To reduce effective discharge length up to half conventional devices, and to increase excitation input power largely without arc by making a laser gas flow in a discharge excitation section collide with a collision section, branching the flow and arranging a cathode for discharge excitation to the upper stream of the collision section and anodes to each flow path branched in a lower stream. CONSTITUTION:A laser gas flow path is formed in such a manner that the gas passes between partition walls 13 from an inflow path 12 as shown in arrows 11' and is branched bilateral symmetrically in the discharge excitation section 14, passes through outflow paths 15 and is forwarded into a blower 18 through heat exchangers 17 in a wind tunnel 16. On the other hand, the cylindrical cathodes 19 are arranged at the upper stream side of the gas flow of the discharge excitation section 14 and the tabular anodes 20 divided into multiple sections are disposed at the lower stream side branched in the electrodes for discharge excitation. The gas collision section 21 takes ridge section form with guide inclined planes at the branching side, and the gas flow is branched in T shape between both electrodes when excitation electric input is applied to the cathodes 19 for discharge excitation and the anodes 20. Accordingly, a discharge section A has an extent shown in dotted lines, and discharge excitation volume required can be obtained in short effective discharge length.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はガス・トランスポート型のガス・レーザ装置に
係り、特に実効放電長を短くし、かつガスの冷却効率を
改善させたガス・レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a gas transport type gas laser device, and particularly to a gas laser device with a shortened effective discharge length and improved gas cooling efficiency. Regarding.

(発明の技術的背景) 従来のガス・トランスポート型炭酸ガスレーザ装置は、
第1図に示すように放電励起用の陰極1と陽極2とが対
向配置された放電励起部3と、この放電励起部3にレー
ザガスを送り込む送風機部4と、放電励起部3で高温と
なったレーザガスを冷却する熱交換器部5と、送風機部
4と熱交換器部5とを連結する連結部6とを有している
(Technical Background of the Invention) A conventional gas transport type carbon dioxide laser device is
As shown in FIG. 1, a discharge excitation section 3 in which a cathode 1 and an anode 2 for discharge excitation are arranged facing each other, a blower section 4 that sends laser gas to this discharge excitation section 3, and a high temperature in the discharge excitation section 3 are generated. The heat exchanger section 5 has a heat exchanger section 5 that cools the laser gas, and a connection section 6 that connects the blower section 4 and the heat exchanger section 5.

そして、放電励起部3でレーザ発振を促す全反射鏡7と
半反射鏡8とがガス流を挾むよう配置され、送風機4お
よび放電励起用の陰極1、陽極2への電圧供給電源9が
別途設けられている。
A total reflection mirror 7 and a semi-reflection mirror 8 that promote laser oscillation in the discharge excitation unit 3 are arranged to sandwich the gas flow, and a voltage supply power source 9 is separately provided to the blower 4 and the cathode 1 and anode 2 for discharge excitation. It is provided.

この装置では矢印10の方向へレーザビームが発射され
る。
This device emits a laser beam in the direction of arrow 10.

このような従来のガス・トランスポート型炭酸ガスレー
ザ装置の放電励起部6におけるガスは、−軸方向(矢印
11の方向)に高速で通過する構造のもので、放電によ
り高温となったガスは放電励起部3を通過した後、熱交
換器5に送られて冷却される。
The gas in the discharge excitation section 6 of such a conventional gas transport type carbon dioxide laser device has a structure in which it passes at high speed in the -axis direction (direction of arrow 11), and the gas that has become hot due to the discharge is discharged. After passing through the excitation section 3, it is sent to a heat exchanger 5 and cooled.

(背景技術の問題点) このようなレーザ装置の出力効率を更に上げるためには
、放電励起用の陰極1と陽極2との間隔を広げて、放電
励起部の容積を増し、がっ励起電気入力を増す必要があ
る。
(Problems in the Background Art) In order to further increase the output efficiency of such a laser device, the distance between the cathode 1 and the anode 2 for discharge excitation is increased, the volume of the discharge excitation part is increased, and the excitation electricity is increased. I need more input.

また、これに伴って、ガスの冷却効果も上げる必要があ
る。
Along with this, it is also necessary to improve the cooling effect of the gas.

したがって放電励起部3のガス流をテ冒−り板等を用い
て乱流状態となし、かつ高速で流出させる必要が生じる
が、このためには、送風機は大容量のものが必要となる
Therefore, it is necessary to make the gas flow in the discharge excitation section 3 turbulent by using a blade plate or the like and to make it flow out at high speed, but for this purpose, a large-capacity blower is required.

(発明の目的) 本発明は上記事情に対処してなされたもので、ガス流を
放電励起部において実効放電長を短く、かつ冷却効率を
向上させたガスレーザ装置を提供するものである。
(Object of the Invention) The present invention has been made in response to the above-mentioned circumstances, and provides a gas laser device in which the effective discharge length of the gas flow in the discharge excitation section is shortened and the cooling efficiency is improved.

(発明の概要) 本発明のガス・レーザ装置は、レーザガスの供給される
放電励起部に供給されるレーザガスを分流させるガス衝
突部を設け、このガス衝突部の5上流側に放電励起用陰
極を、下流側の分流された各流路に放電励起用陽極を設
置することにより、両極間の実効放電長を短くし、併せ
て冷却効率を向上させたものである。
(Summary of the Invention) The gas laser device of the present invention is provided with a gas collision part that divides the laser gas supplied to the discharge excitation part to which the laser gas is supplied, and a cathode for discharge excitation on the 5 upstream side of the gas collision part. By installing a discharge excitation anode in each branched flow path on the downstream side, the effective discharge length between the two poles is shortened, and cooling efficiency is also improved.

(発明の実施例) 第2図は本発明のガス・レーザ装置の一実施例の縦断面
図、第3図は同実施例の要部の拡大斜視図である。
(Embodiment of the Invention) FIG. 2 is a longitudinal cross-sectional view of an embodiment of the gas laser device of the present invention, and FIG. 3 is an enlarged perspective view of a main part of the embodiment.

これらの図において、レーデガス流路は、矢印11′で
示すように流入路12より隔壁13の間を通り放電励起
部14において左右対称に分流されS流出路15を通り
風洞16内の熱交換器17を経て送風器18に送り込ま
れるよう構成されている。
In these figures, the Lede gas flow path starts from the inflow path 12, passes between the partition walls 13, is branched symmetrically at the discharge excitation section 14, and passes through the S outflow path 15 to the heat exchanger in the wind tunnel 16, as shown by an arrow 11'. The air is sent to the blower 18 through the air blower 17 .

一方、放電励起用電極は、放電励起部14のガス流上流
側に棒状の陰極19が配置され、また、分流された下流
側に多分割の板状陽極20が配置されている。
On the other hand, in the discharge excitation electrode, a rod-shaped cathode 19 is arranged on the gas flow upstream side of the discharge excitation part 14, and a multi-divided plate-shaped anode 20 is arranged on the branched downstream side.

さらに、ガスの分流を生じさせるガス衝突部21は、分
流する側に案内傾斜面を有する断面屋根型をなしており
、ベリリアのような熱伝導性および電気絶縁性の良好な
材料から成っている。
Furthermore, the gas collision part 21 that causes the gas to split has a roof-shaped cross section with a guide slope on the splitting side, and is made of a material with good thermal conductivity and electrical insulation, such as beryllia. .

上記構成のガスレーザ装置においては、放電励起用の陰
極19および陽極20に励起電気入力を印加するとガス
流が両極間でT字状に分流している結果、放電部Aは第
2図に点線で示すように広がりをもつことになり、短い
実効放電長で所要の放電起体積を得ることができる。
In the gas laser device having the above configuration, when an excitation electric input is applied to the cathode 19 and the anode 20 for discharge excitation, the gas flow is divided between the two electrodes in a T-shape, and as a result, the discharge part A is indicated by the dotted line in FIG. As shown in the figure, it has a spread, and the required discharge volume can be obtained with a short effective discharge length.

なお、レーザ・ビーム22は放電励起部14で第2図の
紙面に垂直な方向に発射される。
Note that the laser beam 22 is emitted by the discharge excitation unit 14 in a direction perpendicular to the paper plane of FIG.

(発明の効果) 以上述べたように、放電励起部内レーザガス流を衝突部
に衝突させて分流させ、衝突部の上流に放電励起用の陰
極を、下流の分流された各流路に陽極を配置することに
より、実効放電長は従来装置の半分に識り、アークなし
に励起入力電力を大幅に増大させることができる。
(Effects of the Invention) As described above, the laser gas flow in the discharge excitation part is made to collide with the collision part and divided, and the cathode for discharge excitation is placed upstream of the collision part, and the anode is placed downstream in each of the divided flow paths. By doing so, the effective discharge length can be reduced to half that of conventional devices, and the excitation input power can be significantly increased without arcing.

更に放電励起部の中央に設けたガス衝突部のガス冷却作
用により、冷却効果が増大され、かつガス衝突部におい
てガスの乱流形成が促進されて、より高い励起電気入力
の印加が可能となって、大出力のレーザ光を得ることが
できる。
Furthermore, the cooling effect of the gas collision section provided at the center of the discharge excitation section increases the cooling effect and promotes the formation of gas turbulence at the gas collision section, making it possible to apply higher excitation electrical input. Therefore, a high-output laser beam can be obtained.

ちなみに、T字型のガス流路(断面積50 X 800
−)に圧力30To計、流速30 ssA の媒体ガス
(CO2、馬、Heの混合ガス)を流し、直流放電励起
により一回折返しのコ字型共振器(出力結合35%)か
ら3 KWのレーザ出力を得ることができる。
By the way, T-shaped gas flow path (cross-sectional area 50 x 800
-), a medium gas (mixed gas of CO2, horse, and He) was flowed at a pressure of 30 To meter and a flow rate of 30 ssA, and a 3 KW laser was generated from a once-folded U-shaped resonator (output coupling 35%) by direct current discharge excitation. You can get the output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガス・トランスポート型炭酸ガスレーザ
装置あ縦断面図、第2図は本発明の一実施例レーザ装置
の縦断面図、第6図は第2図に示した実施例の要部斜視
図である。 14 ・・・・・・放電励起部 19 ・・・・・・放電励起用陰極 20 ・・・・・・放電励起用陽極 21 ・・・・・・ ガス衝突部 中22 ・・・・・・ レーザ・ビーム(7317)代
理人弁理士 則 近 憲 佑(ほか1名)
FIG. 1 is a vertical cross-sectional view of a conventional gas transport type carbon dioxide laser device, FIG. 2 is a vertical cross-sectional view of an embodiment of the laser device of the present invention, and FIG. 6 is a schematic diagram of the embodiment shown in FIG. FIG. 14... Discharge excitation section 19... Discharge excitation cathode 20... Discharge excitation anode 21... Gas collision section middle 22... Laser Beam (7317) Representative Patent Attorney Noriyuki Chika (and 1 other person)

Claims (1)

【特許請求の範囲】 1、レーザガスの供給される放電励起部に、供給される
レーザガスな分流させるガス衝突部を設け、このガス衝
突部の上流側に放電励起用陰極を、下流側の分流された
各流路に放電励起用陽極を設置したことを特徴とするガ
ス・レーザ装置。 2、ガス衝突部は、熱伝導性および電気絶縁性の良好な
材料により形成されて成る特許請求の範囲第1項記載の
ガス・レーザ装置。
[Scope of Claims] 1. A discharge excitation section to which laser gas is supplied is provided with a gas collision section for dividing the supplied laser gas, and a cathode for discharge excitation is provided on the upstream side of this gas collision section, and a discharge excitation section is provided on the upstream side of the gas collision section, and a discharge excitation section on the downstream side A gas laser device characterized in that an anode for discharge excitation is installed in each flow path. 2. The gas laser device according to claim 1, wherein the gas collision part is formed of a material with good thermal conductivity and electrical insulation.
JP19772881A 1981-12-10 1981-12-10 Gas-laser device Granted JPS58100476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19772881A JPS58100476A (en) 1981-12-10 1981-12-10 Gas-laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19772881A JPS58100476A (en) 1981-12-10 1981-12-10 Gas-laser device

Publications (2)

Publication Number Publication Date
JPS58100476A true JPS58100476A (en) 1983-06-15
JPS6347275B2 JPS6347275B2 (en) 1988-09-21

Family

ID=16379349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19772881A Granted JPS58100476A (en) 1981-12-10 1981-12-10 Gas-laser device

Country Status (1)

Country Link
JP (1) JPS58100476A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068789A (en) * 1973-10-23 1975-06-09
JPS57160185A (en) * 1981-03-28 1982-10-02 Tomoo Fujioka Excitation method for discharge excitation type co gas laser and laser device thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068789A (en) * 1973-10-23 1975-06-09
JPS57160185A (en) * 1981-03-28 1982-10-02 Tomoo Fujioka Excitation method for discharge excitation type co gas laser and laser device thereof

Also Published As

Publication number Publication date
JPS6347275B2 (en) 1988-09-21

Similar Documents

Publication Publication Date Title
US4841538A (en) CO2 gas laser device
US4500998A (en) Gas laser
US3772610A (en) Arcless electrode construction for gas transport laser
JPS5860588A (en) Te-shaped laser
US3860887A (en) Electrically excited high power flowing gas devices such as lasers and the like
US4058778A (en) High power gas transport laser
JPS58100476A (en) Gas-laser device
GB1326779A (en) Of jerusalem gas laser
JPS6350857Y2 (en)
US5034960A (en) Arrangement for the input of energy into a conducting electrical gas discharge, especially for a gas laser
JPS5840353B2 (en) Vertical flow carbon dioxide laser oscillator
JPS59129484A (en) Orthogonal type gas laser generator
JPS6295884A (en) Gas laser oscillator
Sugawara et al. 20-kW Fast-Axial-Flow CO 2 Laser with High-Frequency Turboblowers
JPS5838950B2 (en) Laterally excited gas laser device
JPS5698887A (en) Laser oscillator
JPS62119990A (en) Gas laser oscillator
JPS6310916B2 (en)
JPH0312977A (en) Triaxially orthogonal laser oscillator
JPH01214184A (en) Pulse laser oscillation device
JPS62130576A (en) Carbon dioxide gas laser oscillator
JPH02277278A (en) Gas flow straightening device for orthogonal carbon dioxide gas laser
JPS61160984A (en) Co2 laser oscillation device
JPS6288384A (en) Gas laser device
JPH05343777A (en) Pulse laser equipment