JPS6346926B2 - - Google Patents

Info

Publication number
JPS6346926B2
JPS6346926B2 JP55068035A JP6803580A JPS6346926B2 JP S6346926 B2 JPS6346926 B2 JP S6346926B2 JP 55068035 A JP55068035 A JP 55068035A JP 6803580 A JP6803580 A JP 6803580A JP S6346926 B2 JPS6346926 B2 JP S6346926B2
Authority
JP
Japan
Prior art keywords
ethylbenzene
activated clay
temperature
electrical insulating
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55068035A
Other languages
Japanese (ja)
Other versions
JPS56165205A (en
Inventor
Masaki Odagiri
Masashi Inaba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP6803580A priority Critical patent/JPS56165205A/en
Publication of JPS56165205A publication Critical patent/JPS56165205A/en
Publication of JPS6346926B2 publication Critical patent/JPS6346926B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気絶縁油に関する。更に詳しくはエ
チルベンゼンヘビーエンドを精製する電気絶縁油
の製造方法に関する。 上記のエチルベンゼンヘビーエンドとは、ベン
ゼンをエチレンにてアルキル化するエチルベンゼ
ン製造工程で得られるエチルベンゼンヘビーエン
ドを意味する。以下同様。このエチルベンゼンヘ
ビーエンド中にはアルキルジフエニルアルカン類
等が含有されていることが知られている。しかし
ながらエチルベンゼンヘビーエンドは含有する成
分が極めて多く、かつ不飽和化合物やカルボニル
化合物を含み、単なる蒸留ではそれらが分離でき
ない。従つて以前はエチルベンゼンヘビーエンド
から電気絶縁油等の高品質を要求されるものが製
造出来るとは考えられず、実質的に大部分が燃料
として消費されていた。 従来電気絶縁油としては鉱油類あるいは塩化ジ
フエニール等が用いられていたが、塩化ジフエニ
ールはその毒性のために近年使用が規制されてお
り、現在主として用いられているものは、鉱油
類、アルキルベンゼン、ポリブテン、アルキルナ
フタレン、アルキルジフエニルエタン、シリコー
ン油等である。この中アルキルジフエニルエタン
は水素ガス吸収性が高いこと、耐電圧特性が高い
こと、高引火点のわりには低粘度であること、コ
ロナ特性にすぐれる等多くの特長を有している為
近年その需要が著るしく増大している。しかしな
がら従来アルキルジフエニルエタンは主としてア
ルキルベンゼン類へのスチレンの付加等により製
造されており製造コストが高いという欠点があ
る。 特開昭54−23088にはエチルベンゼンヘビーエ
ンドから蒸留によつて得られる液体誘電体組成物
が開示されている。然しながら、該組成物は蒸留
以外の精製を受けていない為に、カルボニル化合
物や不飽和化合物等を含み、電気特性が市販のア
ルキルジフエニルエタン類と比べ特に劣つた数値
を示すばかりでなく、更に重要な因子である熱及
び酸化安定性に著しく欠けるという欠点がある。 本発明の目的はこれらの課題を解決して、経済
的に安価な、且品質的に優秀な電気絶縁油を提供
するにある。 本発明の原料である、エチルベンゼンヘビーエ
ンドとは前述の如くベンゼンをエチレンによりア
ルキル化してエチルベンゼンを製造する工程にお
いて生成する粗アルキル化生成物からベンゼン、
エチルベンゼン、ジエチルベンゼン、トリエチル
ベンゼン等の軽沸分を蒸留により留去したヘビー
エンド(残留物)である。該アルキル化は、塩化
アルミニウム法、固体酸法のいずれの方法によつ
てもさしつかえない。かかるエチルベンゼンヘビ
ーエンドの主成分は次式、、で示される様
な化合物である。 (R1、R3、R4、R5、R7、R9は水素、直鎖若しく
は分枝アルキル基又は直鎖若しくは分枝アルケニ
ル基、R2、R6、R8は直鎖若しくは分枝アルキレ
ン基又は直鎖若しくは分枝アルケニレン基、pは
1〜6、q、r、s、uは1〜5、tは1〜4の
整数) エチルベンゼンヘビーエンドを単なる蒸留によ
りタール分および軽質分の除去を行つただけでは
不飽和結合やカルボニル基を持つ不純物が多く色
相、熱安定性が悪く目的の製品は得られない。 従来かかる不純物の除去には水添精製、吸着除
去による精製法が用いられているがこれらの操作
ではカルボニル分の除去は出来るとしても不飽和
化合物の除去が不十分である。 本発明はエチルベンゼンヘビーエンドをボトム
温度300℃以下にて減圧蒸留して少くなくとも常
圧下の沸点が350℃以上の重質分を除去し、つい
で60〜250℃の範囲の温度にて活性白土と接触処
理した後さらにボトム温度300℃以下にて減圧蒸
留して常圧下の沸点が280〜350℃の範囲にある留
分を得ることを特徴とする電気絶縁油の製造方法
である。 本発明において電気絶縁油を製造する減圧下で
ボトム温度300℃以下で蒸留するのは加熱により
エチルベンゼンヘビーエンドの分解、劣化及び重
合等を防止する為である。又少くとも常圧下の沸
点が350℃以上の重質分を除去するのは蒸留に引
続いて行われる活性白土処理を効果的ならしめる
為である。なお、本発明の必須要件ではないが、
上記の減圧蒸留の際280℃以下の留分も同時に除
去しておくと、活性白土処理にかける油の量を減
少することが出来るので有利である。少く共350
℃以上の重い留分(タール分)を除去されたエチ
ルベンゼンヘビーエンドは活性白土処理によつて
安定性、電気特性等を悪化する原因となる不飽和
化合物やカルボニル化合物等の不純物が除去され
る。 白土処理は回分式でも連続式でも可能である
が、回分式では活性白土の添加量を1〜15重量%
とし、かつ処理温度を60〜250℃とするのが好ま
しく、更に好ましい処理温度は120〜200℃であ
る。連続式では、空間速度は0.1〜5(1/hr)が
好ましく、更に好ましい空間速度は0.3〜3(1/
hr)である。処理温度は60〜250℃が好ましく、
更に好ましくは120〜200℃である。活性白土の量
が少なすぎたり、処理温度が低すぎたりすると不
純物の除去が十分でなく、また活性白土の量が多
すぎたり処理温度が高すぎると好ましくない副反
応が増加する。 この活性白土処理の工程で不飽和化合物の重合
等により重質分が、又分解により軽質分が生成す
るのでこれらを蒸留により除去する必要がある。 本発明による電気絶縁油は常圧の沸点が280〜
350℃の範囲の留分から得る。沸点が280℃未満の
留分は引火点が低いこと及び電気特性が劣ること
により、又沸点が350℃を越えるものは不純物が
多く安定性電気特性の面より除去する必要があ
る。 本発明者等は以前よりエチルベンゼンヘビーエ
ンドの利用に関する研究にたずさわり、本発明と
同じようにエチルベンゼンヘビーエンドを、ボト
ム温度300℃以下にて減圧蒸留して、常圧下の沸
点が350℃以上の重質分を除去し、ついで150〜
250℃で活性白土と接触させた後、さらにボトム
温度300℃以下にて減圧蒸留して得られる265〜
350℃の範囲にある留分が優れた感圧複写紙染料
用溶剤であることを見出した。この発明は特願昭
53−144307(昭和53年11月24日出願、昭和53年11
月30日補正、昭和55年2月23日補正)として出願
されている。本発明者等は同出願の明細書に上記
感圧複写紙染料用溶剤に使用される留分が感圧複
写紙染料用溶剤以外にも各種の用途特に電気絶縁
油に有用であることを開示している。本発明は上
記の発明を更に展開したものである。 次に実施例をあげ本発明を更に具体的に説明す
る。これらの実施例に記載されている通り本発明
により得られる電気絶縁油は合成品と考えられる
市販品と同等の品質のものでエチルベンゼンヘビ
ーエンドから得られた品とは信んじ難い程優れた
ものである。 実施例 1 ベンゼンとエチレンを原料とし、塩化アルミニ
ウムを触媒としてエチルベンゼンを製造する工程
において生成する粗アルキル化生成物からベンゼ
ン、エチルベンゼン、ジエチルベンゼン、トリエ
チルベンゼン等の軽沸分を蒸留により留去した、
エチルベンゼンヘビーエンドを圧力20mmHgにて
バツチ減圧蒸留を行ない塔頂より留出温度160℃
から200℃(常圧下に換算すると約280〜330℃)
までの留分を得た。この蒸留時のボトム最高温度
は245℃であつた。使用した蒸留塔は理論段数約
7段の充填精留塔で、還流比を1とした。この留
分のブロミンインデクスは720カルボニル価は
140ppmであつた。この留分に10重量%に相当す
る活性白土を添加し160℃にて2時間処理を行な
つた。処理後白土を過して、生成オイルを更に
初めの蒸留と同じ装置を用いて、圧力20mmHg、
還流比2で蒸留し、製品として塔頂から留出温度
170℃から193℃(常圧下に換算すると約295〜320
℃)までの留分を得た。この蒸留時のボトム最高
温度は215℃であつた。このオイルの不飽和分、
カルボニル分の含量を測定したところ、ブロミン
インデクス40、カルボニル価25ppmに低下してい
た。また誘電率、体積固有抵抗、誘電正接、絶縁
破壊電圧等をJIS―C2101に示される方法で測定
した。結果を市販の合成アルキルジフエニルエタ
ンと比較して表1に示す。本実施例の電気絶縁油
が合成アルキルジフエニルエタンと同等の電気特
性を持つことはこの表より明らかである。 なお、この実施例の電気絶縁油につき熱劣化テ
ストを行なつた。テスト条件は120℃にて空気を
5時間バブリング(吹込み)するものである。結
果は表2の通りである。本実施例の電気絶縁油は
安定性が非常にすぐれていることがこの表から明
らかである。
The present invention relates to electrical insulating oil. More specifically, the present invention relates to a method for producing electrical insulating oil by refining ethylbenzene heavy end. The above-mentioned ethylbenzene heavy end means ethylbenzene heavy end obtained in the ethylbenzene production process in which benzene is alkylated with ethylene. Same below. It is known that this ethylbenzene heavy end contains alkyl diphenyl alkanes and the like. However, ethylbenzene heavy end contains extremely large amounts of components, including unsaturated compounds and carbonyl compounds, which cannot be separated by simple distillation. Therefore, in the past, it was difficult to believe that products requiring high quality, such as electrical insulating oil, could be produced from ethylbenzene heavy end, and most of it was essentially consumed as fuel. Conventionally, mineral oils or diphenyl chloride have been used as electrical insulating oils, but the use of diphenyl chloride has been regulated in recent years due to its toxicity, and currently the main oils used are mineral oils, alkylbenzenes, and polybutenes. , alkylnaphthalene, alkyl diphenylethane, silicone oil, etc. In recent years, alkyl diphenylethane has many features such as high hydrogen gas absorption, high voltage resistance, low viscosity despite its high flash point, and excellent corona properties. The demand for it is increasing significantly. However, conventional alkyl diphenylethanes have been produced mainly by adding styrene to alkylbenzenes, and have the drawback of high production costs. JP-A-54-23088 discloses a liquid dielectric composition obtained by distillation from ethylbenzene heavy end. However, since this composition has not undergone any purification other than distillation, it contains carbonyl compounds, unsaturated compounds, etc., and its electrical properties not only exhibit particularly inferior values compared to commercially available alkyl diphenylethanes, but also It suffers from a significant lack of thermal and oxidative stability, which are important factors. An object of the present invention is to solve these problems and provide an electrical insulating oil that is economically inexpensive and of excellent quality. Ethylbenzene heavy end, which is a raw material of the present invention, is a crude alkylated product produced in the process of alkylating benzene with ethylene to produce ethylbenzene, as described above.
It is a heavy end (residue) obtained by distilling off light boiling components such as ethylbenzene, diethylbenzene, and triethylbenzene. The alkylation may be carried out by either the aluminum chloride method or the solid acid method. The main component of such ethylbenzene heavy end is a compound represented by the following formula. (R 1 , R 3 , R 4 , R 5 , R 7 , R 9 are hydrogen, straight-chain or branched alkyl groups, or straight-chain or branched alkenyl groups, R 2 , R 6 , R 8 are straight-chain or branched alkenyl groups, Branched alkylene group or linear or branched alkenylene group, p is an integer of 1 to 6, q, r, s, u are 1 to 5, t is an integer of 1 to 4) Ethylbenzene heavy end is simply distilled to remove tar and light components. However, if only the removal of 1 is carried out, the desired product cannot be obtained due to the presence of many impurities with unsaturated bonds and carbonyl groups, resulting in poor hue and thermal stability. Conventionally, purification methods such as hydrogenation purification and adsorption removal have been used to remove such impurities, but although these operations can remove carbonyl components, they are insufficient in removing unsaturated compounds. In the present invention, ethylbenzene heavy end is distilled under reduced pressure at a bottom temperature of 300°C or lower to remove at least the heavy components with a boiling point of 350°C or higher under normal pressure, and then activated clay is distilled at a temperature in the range of 60 to 250°C. This is a method for producing an electrical insulating oil, which is characterized in that after contacting with the oil, the oil is further distilled under reduced pressure at a bottom temperature of 300°C or lower to obtain a fraction having a boiling point in the range of 280 to 350°C under normal pressure. In the present invention, the electrical insulating oil is produced under reduced pressure and distilled at a bottom temperature of 300° C. or less in order to prevent decomposition, deterioration, polymerization, etc. of ethylbenzene heavy end due to heating. Furthermore, the purpose of removing at least heavy components having a boiling point of 350° C. or higher under normal pressure is to make the activated clay treatment performed subsequent to distillation effective. Although not an essential requirement of the present invention,
It is advantageous to simultaneously remove the fraction below 280°C during the above-mentioned vacuum distillation, since the amount of oil to be subjected to the activated clay treatment can be reduced. At least 350
The ethylbenzene heavy end from which heavy fractions (tar content) of temperatures above 0.9°C have been removed is treated with activated clay to remove impurities such as unsaturated compounds and carbonyl compounds that cause deterioration of stability, electrical properties, etc. White clay treatment can be done either batchwise or continuously, but in the batchwise method, the amount of activated clay added is 1 to 15% by weight.
and the treatment temperature is preferably 60 to 250°C, more preferably 120 to 200°C. In the continuous system, the space velocity is preferably 0.1 to 5 (1/hr), and more preferably 0.3 to 3 (1/hr).
hr). The treatment temperature is preferably 60 to 250℃,
More preferably it is 120-200°C. If the amount of activated clay is too small or the treatment temperature is too low, impurities will not be removed sufficiently, and if the amount of activated clay is too large or the treatment temperature is too high, undesirable side reactions will increase. In this activated clay treatment process, heavy components are generated due to polymerization of unsaturated compounds, and light components are generated due to decomposition, and these must be removed by distillation. The electrical insulating oil according to the present invention has a boiling point of 280~280 at normal pressure.
Obtained from fractions in the range of 350°C. Fractions with boiling points below 280°C have low flash points and poor electrical properties, while those with boiling points above 350°C contain many impurities and must be removed from the standpoint of stability and electrical properties. The present inventors have been involved in research on the use of ethylbenzene heavy end for some time, and as in the present invention, ethylbenzene heavy end is distilled under reduced pressure at a bottom temperature of 300°C or less, and is a heavy end with a boiling point of 350°C or higher under normal pressure. Remove the mass, then 150 ~
265 ~ obtained by contacting with activated clay at 250℃ and then distilling under reduced pressure at a bottom temperature of 300℃ or less
It has been found that fractions in the 350°C range are excellent solvents for pressure sensitive copying paper dyes. This invention was patented by Akira
53-144307 (filed on November 24, 1978, November 1978)
The application was filed as (amended on February 30, 1980; amended on February 23, 1982). The present inventors disclosed in the specification of the same application that the distillate used in the above-mentioned solvent for pressure-sensitive copying paper dyes is useful for various purposes other than as a solvent for pressure-sensitive copying paper dyes, especially electrical insulating oil. are doing. The present invention is a further development of the above invention. Next, the present invention will be explained in more detail with reference to Examples. As described in these examples, the electrical insulating oil obtained by the present invention has the same quality as a commercially available product that is considered to be a synthetic product, and is so superior that it is hard to believe that it is a product obtained from ethylbenzene heavy end. It is something. Example 1 Light boiling components such as benzene, ethylbenzene, diethylbenzene, and triethylbenzene were distilled off from the crude alkylated product produced in the process of producing ethylbenzene using benzene and ethylene as raw materials and aluminum chloride as a catalyst.
Ethylbenzene heavy end is subjected to batch vacuum distillation at a pressure of 20 mmHg and distilled from the top of the column at a temperature of 160°C.
to 200℃ (approximately 280 to 330℃ when converted to normal pressure)
A fraction of up to 100% was obtained. The maximum bottom temperature during this distillation was 245°C. The distillation column used was a packed rectification column with about 7 theoretical plates, and the reflux ratio was set to 1. The bromine index of this fraction is 720, and the carbonyl value is
It was 140ppm. Activated clay corresponding to 10% by weight was added to this fraction and treated at 160°C for 2 hours. After the treatment, the resulting oil was filtered through white clay and further distilled using the same equipment as the first distillation, at a pressure of 20 mmHg.
Distilled at a reflux ratio of 2, and the distillation temperature from the top of the column as a product
170℃ to 193℃ (approximately 295 to 320 when converted to normal pressure)
℃) were obtained. The maximum bottom temperature during this distillation was 215°C. The unsaturated content of this oil,
When the carbonyl content was measured, it was found that the bromine index was 40 and the carbonyl value was 25 ppm. In addition, dielectric constant, volume resistivity, dielectric loss tangent, dielectric breakdown voltage, etc. were measured using the methods specified in JIS-C2101. The results are shown in Table 1 in comparison with commercially available synthetic alkyl diphenylethanes. It is clear from this table that the electrical insulating oil of this example has electrical properties equivalent to those of synthetic alkyl diphenylethane. Note that a thermal deterioration test was conducted on the electrical insulating oil of this example. The test conditions were to bubble air at 120°C for 5 hours. The results are shown in Table 2. It is clear from this table that the electrical insulating oil of this example has very good stability.

【表】 注 市販合成品はフエニルキシリルエタン
[Table] Note: The commercially available synthetic product is phenylxylylethane.

【表】 比較例 1 実施例1で用いたものと同じエチルベンゼンヘ
ビーエンドを実施例1と同じ蒸留塔を使用して圧
力20mmHg、還流比2で減圧バツチ蒸留し塔頂か
ら留出温度170℃から193℃までの留分を得た。こ
の留分のブロミンインデクス、カルボニル価およ
び電気特性を測定した。結果を実施例1の結果と
比較して表3に示す。 この比較例1で得たオイルルを実施例1で行つ
たと同じ方法で安定性テストを行なつた。結果を
表3に示す。本発明により得られる絶縁油と比較
して格段に品質の劣ることはこの表から明らかで
ある。
[Table] Comparative Example 1 The same ethylbenzene heavy end used in Example 1 was batch distilled under reduced pressure using the same distillation column as in Example 1 at a pressure of 20 mmHg and a reflux ratio of 2, and the distillation temperature was 170°C from the top of the column. Fractions up to 193°C were obtained. The bromine index, carbonyl value and electrical properties of this fraction were measured. The results are shown in Table 3 in comparison with the results of Example 1. The oil obtained in Comparative Example 1 was tested for stability in the same manner as in Example 1. The results are shown in Table 3. It is clear from this table that the quality is significantly inferior to that of the insulating oil obtained by the present invention.

【表】 比較例 2 実施例1と同様にして得たエチルベンゼンヘビ
ーエンドの蒸留留出液を白土処理を行なうかわり
に、ケイソウ土にニツケルを担持した触媒により
90℃、水素圧力20Kg/cm2Gの条件で水添精製した
他は実施例1と同様にして電気絶縁油を製造し
た。このもののブロミンインデクスは520、カル
ボニル価は14ppmであつた。これを実施例1の場
合と同様な安定性テストを行なつた。結果を表2
に示めす。
[Table] Comparative Example 2 Instead of treating the distillate of ethylbenzene heavy end obtained in the same manner as in Example 1 with clay treatment, it was treated with a catalyst of nickel supported on diatomaceous earth.
An electrical insulating oil was produced in the same manner as in Example 1, except that it was hydrogenated and refined at 90° C. and a hydrogen pressure of 20 Kg/cm 2 G. This product had a bromine index of 520 and a carbonyl value of 14 ppm. This was subjected to the same stability test as in Example 1. Table 2 shows the results.
Shown here.

Claims (1)

【特許請求の範囲】 1 ベンゼンをエチレンにてアルキル化するエチ
ルベンゼン製造工程で得られるエチルベンゼンへ
ビーエンドをボトム温度300℃以下にて減圧蒸留
して少なくとも常圧下の沸点が350℃以上の重質
分を除去しついで60〜250℃の範囲の温度にて活
性白土と接触処理した後さらにボトム温度300℃
以下にて減圧蒸留して常圧下の沸点が280〜350℃
の範囲にある留分を得ることを特徴とする電気絶
縁油の製造方法。 2 活性白土との接触処理に回分方式を用い活性
白土の量を処理油に対し1〜15重量%としかつ処
理温度を60〜250℃の範囲とする特許請求の範囲
第1項記載の電気絶縁油の製造方法。 3 活性白土との接触処理に連続方式を用い処理
温度が60〜250℃の範囲空間速度を0.1〜5(1/
hr)とする特許請求の範囲第1項記載の電気絶縁
油の製造方法。
[Claims] 1. Ethylbenzene be-end obtained in the ethylbenzene manufacturing process of alkylating benzene with ethylene is distilled under reduced pressure at a bottom temperature of 300°C or lower to remove at least the heavy components with a boiling point of 350°C or higher under normal pressure. After removal and contact treatment with activated clay at a temperature in the range of 60 to 250℃, the bottom temperature is further increased to 300℃.
The boiling point under normal pressure is 280 to 350℃ after vacuum distillation at the following conditions.
A method for producing electrical insulating oil, characterized by obtaining a fraction in the range of . 2. The electrical insulation according to claim 1, wherein the contact treatment with activated clay is carried out in a batch manner, the amount of activated clay is 1 to 15% by weight based on the treated oil, and the treatment temperature is in the range of 60 to 250°C. Method of producing oil. 3 A continuous method is used for contact treatment with activated clay, and the treatment temperature ranges from 60 to 250℃.The space velocity is set to 0.1 to 5 (1/
hr) The method for producing electrical insulating oil according to claim 1.
JP6803580A 1980-05-22 1980-05-22 Electrically insulating oil Granted JPS56165205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6803580A JPS56165205A (en) 1980-05-22 1980-05-22 Electrically insulating oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6803580A JPS56165205A (en) 1980-05-22 1980-05-22 Electrically insulating oil

Publications (2)

Publication Number Publication Date
JPS56165205A JPS56165205A (en) 1981-12-18
JPS6346926B2 true JPS6346926B2 (en) 1988-09-19

Family

ID=13362133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6803580A Granted JPS56165205A (en) 1980-05-22 1980-05-22 Electrically insulating oil

Country Status (1)

Country Link
JP (1) JPS56165205A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2509722B2 (en) * 1988-08-24 1996-06-26 触媒化成工業株式会社 Coating liquid for forming transparent conductive ceramics film, substrate with transparent conductive ceramics film and method for producing the same, and use of substrate with transparent conductive ceramics film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127700A (en) * 1977-04-13 1978-11-08 Nippon Petrochemicals Co Ltd Composition for electric insulating oil
JPS5423087A (en) * 1977-07-21 1979-02-21 Gulf Research Development Co Liquid dielectric composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127700A (en) * 1977-04-13 1978-11-08 Nippon Petrochemicals Co Ltd Composition for electric insulating oil
JPS5423087A (en) * 1977-07-21 1979-02-21 Gulf Research Development Co Liquid dielectric composition

Also Published As

Publication number Publication date
JPS56165205A (en) 1981-12-18

Similar Documents

Publication Publication Date Title
EP0047998B1 (en) Electrically insulating oil composition
CA1082908A (en) Liquid dielectric composition
JPS5931560B2 (en) Synthesis of low viscosity, low pour point hydrocarbon lubricating oil
WO2007081088A1 (en) Heavy aromatic electrical insulation oil with high breakdown voltage
JPS6015086B2 (en) Method for producing electrical insulating oil
JPS6346926B2 (en)
CA1110666A (en) Process for producing high purity benzene
JPH0778228B2 (en) Dielectrics based on benzyltoluene and benzylxylene
US4755275A (en) Electrical insulating oil
JPS6242938A (en) Production of high-boiling hydrocarbon oil
EP0102912B1 (en) A process for the purification of diisopropenylbenzene
US4735703A (en) Method of increasing the concentration of straight chain paraffin material
JPH0552351B2 (en)
US2388506A (en) Purification of nitriles
JPH032128B2 (en)
JPH05213788A (en) Production of high-boiling aromatic solvent
JP2649412B2 (en) Method for producing 2,6-dimethylnaphthalene
RU2231537C1 (en) Method of producing base for lubricants and heat carriers
JPH0444362B2 (en)
SU1759858A1 (en) Fuel blend
JPS60167205A (en) Electrically insulating oil
JPH0235407B2 (en)
JPS6143129A (en) Treatment of by-product oil
JPS6120527B2 (en)
JPS5820081B2 (en) Denkizetsuenyu