JPS6346822A - Distribution line carrier equipment - Google Patents

Distribution line carrier equipment

Info

Publication number
JPS6346822A
JPS6346822A JP18966986A JP18966986A JPS6346822A JP S6346822 A JPS6346822 A JP S6346822A JP 18966986 A JP18966986 A JP 18966986A JP 18966986 A JP18966986 A JP 18966986A JP S6346822 A JPS6346822 A JP S6346822A
Authority
JP
Japan
Prior art keywords
signal
distribution line
current
load
branch point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18966986A
Other languages
Japanese (ja)
Other versions
JPH0787409B2 (en
Inventor
Makoto Terada
寺田 眞
Hiroshi Suzuki
浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61189669A priority Critical patent/JPH0787409B2/en
Publication of JPS6346822A publication Critical patent/JPS6346822A/en
Publication of JPH0787409B2 publication Critical patent/JPH0787409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To locate a part of a distribution line causing the deterioration ratio of signal by measuring a voltage and a current on a branch point along the distribution line so as to discriminate contents of the defect of the distribution line of the carrier system accurately. CONSTITUTION:The distribution line 3 connected to a distribution transformer 2 of the system is branched and transmitters-receivers 41, 51 connected to loads 4, 5 are arranged at its branch point. Current transformers CT54-1-54-6 and a discriminating means 53 are arranged near the branch point to the load 5 in this system and a transmission means 55 connected to the line 3 is connected to the means 53. The means 53 of the system measures a voltage and a current on the branch point along the line 3 so as to discriminate the state of the defect of the distribution line due to a noise against a sent signal accurately while they are recorded in a memory means thereby locating the part of the distribution line carrier communication causing the deterioration in the signal ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は配電系統上の主要点と末端各点との間で、系
統状態の情報交換・指令の伝達を配電線路を利用して行
う配電線搬送装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a power distribution system that uses distribution lines to exchange information on system status and transmit commands between main points and terminal points on a power distribution system. The present invention relates to a wire conveying device.

〔従来の技術〕[Conventional technology]

配電系統が発達し多数の需要家へ向って電力を安全、確
実に供給する要求が強まるにつれ、大規模な配電系統網
を遠隔集中運転する需要が高まり、所謂配電自動化シス
テムが普及の機運にある。
As power distribution systems develop and the demand for safely and reliably supplying electricity to a large number of consumers increases, the demand for remote centralized operation of large-scale power distribution networks increases, and so-called power distribution automation systems are gaining momentum. .

この自動化システムにおいて、配電系統上の主要点(親
局側)と末端(子局側)各点との遠隔地点間で情報交換
を行う、所謂伝送手段として、対象とする配電系統(線
路)を伝送路として使用する6己電線搬送方式が注[1
されつつある。
In this automated system, the target power distribution system (line) is used as a so-called transmission means to exchange information between remote points between the main point (master station side) and each terminal point (slave station side) on the distribution system. Note [1]
It is being done.

一般に配電線搬送方式においては、配電線路が伝送路を
兼ねるため、配電線路で発生する系統現象は信号として
送受される搬送波を中心として考えると、全て雑音と見
做さなければならない。
Generally, in the distribution line carrier system, the distribution line also serves as a transmission path, so all system phenomena that occur on the distribution line must be regarded as noise when considering the carrier waves that are transmitted and received as signals.

この・雑音の中には、系統における商用周波数の電力の
ように、大きさ、周波数が比較的はっきりしているもの
もあるが、サージ、ノイズ、高調波など大きさ、周波数
、位相、タイミングなどがはっきりしないものもあり、
その取扱は単一ではない。
Some of this noise is relatively clear in size and frequency, such as the power of commercial frequency in the grid, but other noises include surges, noise, harmonics, etc. in size, frequency, phase, timing, etc. There are some things that are not clear,
The treatment is not uniform.

特に持続性をもつ高調波などは、系統に接続される負荷
機器の運・耘により生じるものが多く、その発生時刻、
継続時間も一定せず1把握することは極めて困難である
In particular, persistent harmonics are often caused by the operation and operation of load equipment connected to the grid, and the time of occurrence,
The duration is also not constant and it is extremely difficult to grasp it.

最近、普及が著しいと云われるインバータ等パワーエレ
クトロニクスを応用した電気製品からは、高次高調波が
発生していると云われ、これが配電線搬送方式に使用さ
れる搬送波信号と近接した周波数である場合には、不確
定な異常現象を発生させ、上記配tr1.線搬送方式の
正常な動作を妨げる恐れがある。
It is said that high-order harmonics are generated from electrical products that apply power electronics, such as inverters, which are said to be becoming increasingly popular recently, and these harmonics have frequencies close to the carrier wave signals used in the distribution line carrier system. If the above arrangement tr1. This may interfere with the normal operation of the line conveyance system.

これに対する方策は幾つか考えられるが、主として搬送
装置の仕様、性能を変更して、上記電気製品が発生する
高次高調波による影響を軽減する種類のものが多く、決
定的な対策として位置づけするには、今暫くの時日を要
する。
There are several possible countermeasures to this problem, but most of them involve changing the specifications and performance of the transport equipment to reduce the effects of high-order harmonics generated by the above-mentioned electrical products, and this is positioned as a definitive countermeasure. This will take some time.

第11図は従来の配電線搬送方式を適用する低圧配電系
統のブロック図であり、図において、2は配電系統の電
源側と線路負荷を連係する所謂配電用変圧器、3は配電
線路、4,5は負荷、6は上記配電用変圧器2に連結さ
れる下位系の情報を更に上位の電気所乃至は事業所へ中
継するための別途の伝送路である。
FIG. 11 is a block diagram of a low-voltage power distribution system to which a conventional power distribution line conveyance system is applied. , 5 is a load, and 6 is a separate transmission path for relaying information of a lower system connected to the distribution transformer 2 to a higher-order electric station or office.

上記負荷4には送受信装置41とこの送受信装置41へ
電流を計測・入力する変流器(以下、CTと略称する)
42−1.42−2がある。また、送受信装置41へは
電圧も供給されるが、これは送受信装置41と分岐線路
34との間に3線を接続して行う。この送受信装置41
からはCT42−1,2等を介して収集した負荷4に関
する電気物理量についての情報を周波数変調などして、
分岐線路34、配電線vt3を経由して、受信器23へ
向けて送信する。
The load 4 includes a transmitting/receiving device 41 and a current transformer (hereinafter abbreviated as CT) that measures and inputs current to the transmitting/receiving device 41.
There are 42-1 and 42-2. Further, voltage is also supplied to the transmitting/receiving device 41, and this is done by connecting three wires between the transmitting/receiving device 41 and the branch line 34. This transmitting/receiving device 41
Then, the information about the electrical physical quantities related to the load 4 collected via CT42-1, 2, etc. is frequency modulated, etc.
The signal is transmitted to the receiver 23 via the branch line 34 and the distribution line VT3.

上記と同様に負荷5の送受信装置51からはCT52−
4.2等を介して収集した負荷5についての情報を、分
岐線路35、配電線路3を経由して、受信器23へ向け
て送信する。また、負荷5にはサイリスタ等を用いたイ
ンバータなどのパワーエレクトロニクス応用回路50が
接続されており、負荷5へ供給する電力の調整を行うよ
うになっている。
Similarly to the above, from the transmitting/receiving device 51 of load 5, CT52-
4.2, etc., is transmitted to the receiver 23 via the branch line 35 and the distribution line 3. Further, a power electronics application circuit 50 such as an inverter using a thyristor or the like is connected to the load 5, and adjusts the power supplied to the load 5.

上記送受信装置41.51と情報交換を行うため、配電
用変圧器2の近傍に親局として受信器23、送信器25
が接続され、受信器23には配電線路の″セ流信号を検
出するためのCT24−1.24−2が接続されている
In order to exchange information with the above-mentioned transmitting/receiving devices 41 and 51, a receiver 23 and a transmitter 25 are installed as master stations near the distribution transformer 2.
is connected to the receiver 23, and a CT 24-1.24-2 is connected to the receiver 23 for detecting a current signal of the power distribution line.

つぎに上記の構成においての概略動作を説明する。上位
の電気所乃至は事業所から伝送路6を経由して与えられ
た指令に基き、受信器23から送信器25、配電線路3
を経由して、負荷側に計測操作等の信号が発せられると
、この信号が送受信装置41又は51により受信される
Next, the general operation in the above configuration will be explained. Based on a command given via the transmission line 6 from a higher-level electrical station or business office, the signal is transmitted from the receiver 23 to the transmitter 25 to the distribution line 3.
When a signal such as a measurement operation is sent to the load side via the load side, this signal is received by the transmitting/receiving device 41 or 51.

そして、必要は情報を収集・生成すると、上記と同様に
送受信装置41または51から送信され、分岐線路34
.35乃至配電線路3を経由して、CT24−1.2を
介し受信器23へ信号を伝送する。
Then, when necessary information is collected and generated, it is transmitted from the transmitting/receiving device 41 or 51 in the same manner as above, and is sent to the branch line 34.
.. 35 and the distribution line 3, the signal is transmitted to the receiver 23 via the CT 24-1.2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

こtLら一連の送受信動作は、系統に特別な負荷が接続
、切離しされなければ、当初予定した動作を示しつづけ
るが、特別な負荷例えばインバータ等の半導体スイッチ
回路5oを内蔵する機器が接続されると、この機器の発
生する高調波により影響を受は信号送受信がμml害さ
れる。
These series of transmission and reception operations will continue to show the originally planned operation unless a special load is connected or disconnected from the grid, but if a special load such as a device with a built-in semiconductor switch circuit 5o such as an inverter is connected. As a result, signal transmission and reception are affected by the harmonics generated by this equipment.

特にスイッチングにより生ずる高調波は、比較的低次の
ものが存在し1発生源のフィーダー分岐から電源側(親
局側)へ向って流れるので、親局側において、信号送受
信が阻害される他、親局側からこの発生源フィーダーを
簡単に特定することができない。
In particular, the harmonics generated by switching include relatively low-order harmonics, which flow from the feeder branch of one source toward the power supply side (main station side), which impedes signal transmission and reception on the main station side. The source feeder cannot be easily identified from the master station side.

放射状系統ではフィーダーが分岐を生ずる毎に、このよ
うな、特別な負荷が接続されているか否かを一々弁別し
てゆくと、負荷の位置次第では極めて多くの手間と時間
を要することになり、障害の状況によっては長時間対策
を施せないままに推移することになるという問題点があ
った。
In a radial system, determining whether or not a special load is connected each time a feeder branches causes an extremely large amount of time and effort depending on the location of the load, which can lead to failures. The problem was that depending on the situation, countermeasures could remain unaddressed for a long time.

この発明は上記のような問題点を解消するためになされ
たもので、パワーエレクトロニクス応用の電気製品が運
転時に発生する持続性の高次高調波による障害を特定す
ること、および系統を構成する線路、負荷の特性により
、搬送波信号が吸収されているかいないかを判別するこ
とを、配電系統の特定単位毎に行い、よって、配電線搬
送における信号伝送比低下をきたす部分を特定する配電
線搬送装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is possible to identify disturbances caused by persistent high-order harmonics that occur during operation of power electronics-applied electrical products, and to , a distribution line carrier device that determines whether a carrier signal is absorbed or not based on load characteristics for each specific unit of a distribution system, and thereby identifies a portion that causes a reduction in signal transmission ratio in the distribution line carrier. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る配電線搬送装置は、配電系統内の電源と
負荷との中間に点在する1つ以上の分岐点に流れる電流
と該分岐点付近の電圧とをH目III L該電流と電圧
の波形を分析して、搬送周波数に近い高調波成分が存在
するとき、前記各分岐点t、の搬送波信号の分流か高調
波発生電流源からの雑音発生かを判別する判別手段を具
備したものである。
The distribution line carrier device according to the present invention transfers the current flowing through one or more branch points scattered between the power source and the load in the distribution system and the voltage near the branch point to the current and voltage. comprises discriminating means for analyzing the waveform of and determining, when a harmonic component close to the carrier frequency is present, whether it is a shunt of the carrier signal at each branch point t or noise generation from the harmonic generation current source. It is.

〔作用〕[Effect]

この発明における判別手段は、配電系統内の電源と負荷
との中間に点在する分岐点への搬送波信号の分流か高調
波発生電流源からの雑音発生かを判別することにより、
電力線搬送システムの伝送路不良の内容を適確に弁別す
ることができ、信号伝送比低下をきたす部分を特定する
The determining means in this invention determines whether the carrier signal is shunted to branch points located between the power source and the load in the distribution system, or whether noise is generated from a harmonic generating current source.
It is possible to accurately distinguish the details of a transmission path defect in a power line transport system, and to identify the portion that causes a decrease in signal transmission ratio.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の詳細な説明図であり、図において、負荷
5へ配電線路3から分岐している分岐点に注目し、この
分岐点におけるある次数の高調波分電流1.、I、、I
、の向きおよび大きさを図示のように定める。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a detailed explanatory diagram of the present invention. In the figure, attention is paid to the branch point where the distribution line 3 branches to the load 5, and the harmonic component current of a certain order at this branch point is 1. ,I,,I
, determine the direction and size as shown.

一般に子局側(負荷側)から信号を親局側(系統側)上
り送信している場合には、第2図示の向きに流れる特質
がある。すなわち、配電用変圧器2から系統側を眺めた
インピーダンスが、負荷インピーダンスに比して低いの
で上述の通りとなる。
Generally, when a signal is transmitted upstream from the slave station (load side) to the master station (grid side), there is a characteristic that the signal flows in the direction shown in the second diagram. That is, since the impedance viewed from the distribution transformer 2 toward the grid side is lower than the load impedance, this is as described above.

(i)まず、高調波′iYi流源が存在する場合には、
負荷5を自端と見立てた場合、電流■。は系統側と負荷
側へ向けて第2図(a)のように分流し、ある次数の成
分について I nn= I 、、+ I 2n         
  (2,1)となる。
(i) First, if there is a harmonic ′iYi source,
If load 5 is considered as its own end, the current is ■. is divided toward the grid side and the load side as shown in Figure 2 (a), and for a certain order component I nn = I , , + I 2n
(2, 1).

(H)つぎに、高調波を流源が稼動していなくて、負荷
側のあるフィーダーから送イiされている場合は、もし
、負荷5へ信号を吸収するような例えばコンデンサ負荷
が存在する場合は、第2図(b)のような分布となり、
同様に電流は I lIn”I?n  Il。          (
2,2)となる。
(H) Next, if the harmonic source is not operating and the harmonic is being sent from a feeder on the load side, if there is a capacitor load, for example, that absorbs the signal to load 5. In this case, the distribution will be as shown in Figure 2 (b),
Similarly, the current is I lIn"I?n Il. (
2,2).

(iii)更に、系統側から負荷側へ向けて下り信号送
信中に、負荷5で上記と同様な信号吸収が発生する時は
、第2図(c)のような分布となり、同様に電流は I on=I 、n  I 2n          
 (2,3)となる。
(iii) Furthermore, when a signal absorption similar to the above occurs in the load 5 while transmitting a downlink signal from the grid side to the load side, the distribution as shown in Fig. 2 (c) will occur, and the current will similarly be I on=I , n I 2n
(2, 3).

(iv )信号送信端が負荷5の分岐点を境に系統側に
ある場合は、同様な信号吸収があった場合、第211d
 (c)と同じとなるが、自端のみの吸収であれば ■2゜中0                  (2
、,1)となる。
(iv) If the signal transmission end is on the grid side with the branch point of load 5 as the border, if there is similar signal absorption, the 211d
It is the same as (c), but if only the own end is absorbed, ■ 0 in 2° (2
,,1).

(V)信号送信端が負荷5の分岐点を境に系統側にあり
、かつ、負荷5以外の負41j4にも信号の吸収がある
場合には I2n≠0 となるが、この場合には、 I In≧k     (k許容値) であるか、否かで、信号送受信上支障があるがないかを
判定する。
(V) If the signal transmission end is on the grid side with the branch point of load 5 as the border, and if the negative 41j4 other than load 5 also absorbs the signal, I2n≠0, but in this case, It is determined whether there is any problem in signal transmission and reception depending on whether I In≧k (k tolerance).

以上、要するに負荷分岐を生ずる点での電流11.。In short, the current 11. at the point where load branching occurs. .

I、、I、を検出し、その大きさおよび相カニ関係を判
別すれば、強制′?11流源による上り方向の雑音電流
の発生か、コンデンサ等信号に対する低インピーダンス
負荷による上下方向信号電流の吸収かが判定可能である
。つまり、上記諸関係を利用して、信号分布の異常(吸
収)と雑音分布の異常(発生)とを弁別するものである
If we detect I,,I, and determine its size and phase relationship, we can force '? It is possible to determine whether the noise current in the upward direction is generated by the No. 11 current source or if the signal current in the vertical direction is absorbed by a low impedance load for the signal such as a capacitor. In other words, the above-mentioned relationships are used to discriminate between an abnormality (absorption) in the signal distribution and an abnormality (occurrence) in the noise distribution.

第3図はこの発明の第1実施例を示すブロック図であり
、第3図において、53は判別手段、54−1〜54−
6は配電線路3の負荷5へ分岐する分岐点付近に設けた
CT、55は伝送手段であり。
FIG. 3 is a block diagram showing a first embodiment of the present invention. In FIG.
6 is a CT provided near a branch point of the distribution line 3 to the load 5, and 55 is a transmission means.

他は前記第11図と同一であるから同一符号を付して説
明を省略する。
Since the other parts are the same as those in FIG. 11, the same reference numerals are given and the explanation will be omitted.

上記判別手段53はCT54−1〜6から電流を、配I
ff線路3から直接電圧を導入し、内部で計1iI11
、演算、判定等の処理を行う機能を有する。
The discriminating means 53 receives current from the CTs 54-1 to 54-6, and
A voltage is introduced directly from the ff line 3, and a total of 1iI11 is applied internally.
It has functions to perform processing such as , calculation, and judgment.

すなわち、配電線路3には、搬送信号成分が印加されて
分布するから、これを検出し、信号波成分について検出
し、その大きさ、方向、(位相)を調波分析等により求
める。また、その際、この点を通過する上り電流信号、
下り電圧信号を弁別し、予め定められたプロトニルに則
るかどうが判定し、上、下信号を傍受する。
That is, since a carrier signal component is applied to the power distribution line 3 and distributed, it is detected, the signal wave component is detected, and its magnitude, direction, and (phase) are determined by harmonic analysis or the like. Also, at that time, the upstream current signal passing through this point,
It discriminates the down voltage signal, determines whether it complies with a predetermined protonyl, and intercepts the up and down signals.

つぎに、この判定内容は、適切なタイミングによって上
位親局へ送信できるよう送信機能を有する。
Next, this judgment content has a transmission function so that it can be transmitted to the upper master station at an appropriate timing.

以上の組合せにより、判別手段53は前記原理の項で述
べた工。l r、+ IQの間の諸関係を満すか否かを
判定できる。判別手段53は、前述のように線路変圧、
電流を検出した後、内部で計測・演算・判定等の処理を
行うものであるが、これらは1通常、電力系統の高調波
計測器として市販されているもので、実用上十分な性能
のものが入手でき、この技術と計測データをディジタル
処理するマイクロコンピュータ技術とをもって、十分に
実施可能である。
With the above combination, the discriminating means 53 performs the method described in the above principle section. It can be determined whether various relationships between l r, + IQ are satisfied. As mentioned above, the determining means 53 is a track transformer,
After detecting the current, processing such as measurement, calculation, and judgment is performed internally. is available and can be fully implemented using this technology and microcomputer technology for digitally processing measurement data.

つぎに、第4図のフローチャートに基づいて、上記第1
実施例の動作を説明する。まず、起動直後、系統状態の
基本を計81すして、系統周波数における電圧、電流、
力率、位相などが異常でないか判別する(ステップ4−
1.4−2)。
Next, based on the flowchart in FIG.
The operation of the embodiment will be explained. First, immediately after startup, the basics of the system status are examined, and the voltage, current, and voltage at the system frequency are determined.
Determine whether the power factor, phase, etc. are abnormal (Step 4-
1.4-2).

この後、中間の判別手段53により分岐点を通過する系
統用搬送信号成分の有無を検出する(ステップ4−3)
。もし、系統中間点を通過する電流、中間点での電圧に
信号波成分があれば、別図の信号/雑音判別の処理を行
うが(ステップ4−4.4−5) 、信号波成分がなけ
れば当該時刻と周波数近辺の標遊雑音レベルの記録をT
i積し、古い記録は消去して記憶の更新を行い、再度検
出に備える(ステップ4−10)。
After this, the presence or absence of the system carrier signal component passing through the branch point is detected by the intermediate determination means 53 (step 4-3).
. If there is a signal wave component in the current passing through the system midpoint or the voltage at the midpoint, the signal/noise discrimination process shown in the separate diagram will be performed (step 4-4.4-5), but if the signal wave component is If not, record the standard noise level around the relevant time and frequency.
i, the old records are deleted, the memory is updated, and preparations are made for detection again (step 4-10).

つぎに、信号雑音判別処理を行った結果、ここで、信号
吸収現象が起っているか否かを判別して(ステップ4−
6)、信号吸収現象が起っている。
Next, as a result of signal noise discrimination processing, it is determined whether or not a signal absorption phenomenon has occurred (step 4-
6) A signal absorption phenomenon occurs.

ならば、その旨を伝送手段55により、上り情報として
親局側へ通報するため、状況送信するか信号吸収が著し
く当該時点における上り搬送信号の送4Bが不可能な場
合には、この状況を判別手段53のメモリーの中に蓄積
して、信号吸収が少くなる迄待機する。
If so, the transmission means 55 reports this to the master station as uplink information, so either the situation is sent or if the signal absorption is significant and it is impossible to send the uplink carrier signal 4B at that point in time, this situation is reported. The signal is stored in the memory of the discriminating means 53 and waits until the signal absorption decreases.

一般に信号吸収が著しい場合は、上り信号のみならず、
下り信号についても影響を受けるので、このような状況
が発生していることは、親局側でも検知可能である。従
って、中間の判別手段53としては、送(a不可能でも
差支えなく待機状況を継続すればよい(ステップ4−1
1)。
Generally, when signal absorption is significant, not only the upstream signal but also
Since downlink signals are also affected, the occurrence of such a situation can also be detected on the master station side. Therefore, as the intermediate determination means 53, it is sufficient to continue the standby state even if transport (a) is not possible (step 4-1).
1).

また、後述の信号/雑音判別処理において、雑音発生か
否かを判別して(ステップ4−7)、雑音発生と判別さ
れた場合は上記と同様に、上り情報として親局側へ通報
するため状況を送信する。
In addition, in the signal/noise discrimination process described below, it is determined whether or not noise has occurred (step 4-7), and if it is determined that noise has occurred, it is reported to the master station side as uplink information in the same way as above. Submit your status.

この場合、信号に比べて雑音が高いレベルにある時は、
親局側における信号と雑音との弁別は困難となるが、上
記信号吸収の場合と同様に、上り搬送信号の受信が不可
能となって、結局、親局側から受信のアンサーバックが
適切に行われなくなる。
In this case, when the noise is at a high level compared to the signal,
It becomes difficult for the master station to distinguish between signals and noise, but as in the case of signal absorption above, it becomes impossible to receive the upstream carrier signal, and in the end, the master station cannot properly answer back the reception. It will no longer be done.

従って、判別手段53から状況を上り送信しても無意味
なので、この状況を判別手段53のメモリーの中に蓄積
して、雑音レベルの低下するまで待機することになる(
ステップ4−12)。
Therefore, it is meaningless to transmit the situation upstream from the discriminating means 53, so this situation is stored in the memory of the discriminating means 53 and waits until the noise level decreases (
Step 4-12).

つぎに上述の説明の中で省略した信号/雑音判別の処理
を、第5図のフローチャートについて説明する。まず、
分岐点部分の高調波分電流工。。
Next, the signal/noise discrimination process omitted in the above explanation will be explained with reference to the flowchart of FIG. first,
Harmonic current construction at the branch point. .

1、、  I、のレベルを検出する(ステップ5−1)
1, Detect the level of I (step 5-1)
.

この検出値を、以下、大小およびレベル判定する。The detected value will be judged in size and level.

子局側へ過大電流が流才している場合は、明らかに搬送
装置より送信したものではないから、これはノイズとみ
てもよい(ステップ5−2)。
If an excessive current is flowing to the slave station side, it is clearly not transmitted from the carrier device, and this may be regarded as noise (step 5-2).

つぎに1分岐線電流が上述の子局側電流の上限値により
大きい時は、分岐線から負荷へ(または電源へ)電流を
流し込んでいる状態であるから、この時もノイズとみて
もよい(ステップ5−3)。
Next, when the 1-branch line current is larger than the upper limit of the slave station current mentioned above, current is flowing from the branch line to the load (or to the power supply), so this can also be considered as noise ( Step 5-3).

さらに、分岐線の電流が上記搬送信号電流上限値により
は小さいある値に’  (この値は電源インピーダンス
と負荷分岐インピーダンスとの比で定まる)より大きい
時は、上り信号が電源側へ流れず分岐線の方へ漏洩流出
している状態であるから。
Furthermore, when the current in the branch line is larger than a certain value that is smaller than the upper limit of the carrier signal current (this value is determined by the ratio of the power source impedance and the load branch impedance), the upstream signal does not flow to the power source and is branched off. This is because it is leaking towards the line.

信号吸収と見做し得る。この値に′については、運用状
態で若干の変動があるので、余り厳密に設定はできない
が、一応の判別を与える目安となる(ステップ5−4)
It can be considered as signal absorption. This value ' may vary slightly depending on the operating conditions, so it cannot be set very precisely, but it can be used as a rough guide for making a tentative determination (Step 5-4).
.

この後、電流工。、■□、工2の各瞬時値成分相互を比
較する(ステップ5−5)。
After this, electrician. , ■□, and Step 2 are compared with each other (step 5-5).

分岐線35の負荷5から信号発信していない限り、上記
fti流が電源負荷へ分流することはない。
Unless a signal is being transmitted from the load 5 of the branch line 35, the fti current will not be shunted to the power supply load.

従って、この時、■。=I、+1.なる関係式が成立す
れば、これはノイズと見做してよい(ステップ5−6)
Therefore, at this time,■. =I, +1. If the relational expression holds true, this can be regarded as noise (step 5-6)
.

また、他端送信中に分岐線35への電流があり、かつ、
これ等が工。= 12− I、なる関係を満足するなら
ば、この分岐線35からみて自端へ信号を吸収している
ことになる(ステップ5−7)。
In addition, there is current flowing to the branch line 35 during transmission at the other end, and
These are engineering. If the following relationship is satisfied: = 12-I, then the signal is being absorbed to its own end as seen from this branch line 35 (step 5-7).

さらに、他端が受信中、すなわち、下り信号伝送時にこ
れ等がIII=I、−I2なる関係を満足するならば、
上記同様自端へ信号を吸収していることになる(ステッ
プ5−8)。
Furthermore, if the other end is receiving, that is, transmitting a downlink signal, if these satisfy the relationship III=I, -I2,
As above, the signal is absorbed to its own end (step 5-8).

このような状態は分岐線35より系統側に設置された端
末から信号送信中にも分岐線35に容量性インピーダン
スが存在すれば起り得るので、この場合も信号吸収と見
做してよい。
Such a state can occur even during signal transmission from a terminal installed on the system side of the branch line 35 if capacitive impedance exists in the branch line 35, so this case may also be regarded as signal absorption.

第6図はこの発明の第2実施例の原理説明図であり、負
荷5へ配電線路3から分岐している分岐点に注目すると
、第7図(a)〜(c)に示す以下の関係を得る。
FIG. 6 is an explanatory diagram of the principle of the second embodiment of the present invention, and when paying attention to the branch point where the distribution line 3 branches to the load 5, the following relationships shown in FIGS. 7(a) to (c) are shown. get.

(i)高調波電流源が存在する場合 工。。=1.。十Ln (it)上り信号を負荷5へ吸収する場合Ion”Ii
n  Ln (iii)下り信号を負荷5へ吸収する場合(−都電源
側にある別の発信端からの信号を吸収する場合も含む) ■。。=I 1n−I 2n 上記は前記第1実施例と全く同じである。
(i) When a harmonic current source is present. . =1. . 10Ln (it) When absorbing the upstream signal to load 5, Ion”Ii
n Ln (iii) In the case of absorbing the downlink signal to the load 5 (including the case of absorbing the signal from another transmitting end on the metropolitan power supply side) ■. . =I 1n - I 2n The above is exactly the same as the first embodiment.

いま、負荷側の送信器から信号を送信させると、工。S
”I25 1.S これが重畳されると、 Inn’ =Io5  Inn I 1t、’ =’!、n  LS I 2n’ =fin  I25 となる。
Now, when a signal is transmitted from the transmitter on the load side, the process occurs. S
"I25 1.S When this is superimposed, Inn' = Io5 Inn I 1t, ' = '!, n LS I 2n' = fin I25.

以下、上記(i)〜(■)に対応させて、電流工。 l
 Il’ l  I2′ を吟味すると、次のようにな
る。
Hereinafter, in correspondence with the above (i) to (■), electrical work will be explained. l
Examining Il' l I2', we get the following.

(i)雑音が発生している時 強制電流発生源であれば、殆ど系統側2へ流れるので、 115  =I25 、°・工。。’=I。。(i) When noise is occurring If it is a forced current source, most of it will flow to the grid side 2, so 115 = I25 , °・Eng. . ’=I. .

(if)上り信号を吸収している時 I on’ ” I ns + I an+ かつ、I
 OA’ =I2n’−■□。′ 一般に、■。5は既知周波数であるから、電流合成した
工。。′も分析可能である6 (iii)下り信号を吸収している時 I on’ ” I n5+ I。。
(if) When absorbing the upstream signal, I on' ” I ns + I an+ and I
OA'=I2n'-■□. ′ Generally,■. 5 is a known frequency, so the current is synthesized. . ' can also be analyzed.6 (iii) When absorbing the downstream signal, I on' ” I n5+ I.

かつ I 1lfi’  ”Iln’   I2n’  l 
 Iln’  ==Itn  l151Ln’ =Ln
  L5 となり、工。。′が分析可能であることは上記と同じで
ある。
and I 1lfi'``Iln'I2n' l
Iln' ==Itn l151Ln' =Ln
It becomes L5, and the work. . It is the same as above that ′ can be analyzed.

すなわち、上記3ケースについて見れば、別端(または
自端)から信号を別途印加させても、(i) 、  (
ii) 、  (iii)の関係は不変であるから、電
流工。l  Ill I2を計測している場合よりもよ
り明確に信号・XI音の区別が可能となる。
In other words, looking at the three cases above, even if a signal is applied separately from another end (or the own end), (i), (
Since the relationship between ii) and (iii) is unchanged, it is an electrician. It is possible to distinguish between the signal and the XI sound more clearly than when measuring l Ill I2.

さらに信号送信端が分岐線35の引出口より。Furthermore, the signal transmission end is from the outlet of the branch line 35.

系統側にあるか負荷側にあるかは、電流工、。′。Electrician, whether it is on the grid side or the load side. '.

I 2n′ と電流I 1n+  I2゜とを比較し、
その増減を見れば判別可能であることは云う迄もない。
Compare I 2n′ and current I 1n+ I2°,
Needless to say, it can be determined by looking at the increase and decrease.

第8図は第2実施例の構成を示すもので、第8図におい
て、56は可変周波数イ=号発生源であり。
FIG. 8 shows the configuration of the second embodiment. In FIG. 8, 56 is a variable frequency I= signal generation source.

同じ変調原理による信号発信であっても基本周波数、変
調周波数を変更しつるようにしたものである。  ゛ 軸って、判別手段53、CT54を用いて求めた系統上
の48号周波数、電圧、−電流の分布から系統および負
荷の状態を推定し、さらに他の負荷分岐の末端に存在す
る端末送受Ill器の割当て周波数を、経済的な妥当性
を損わない範囲でカバーできろようにした汎用送受信装
置と定義してもよい。
Even though the signal is transmitted based on the same modulation principle, the fundamental frequency and modulation frequency are changed. The ``axis'' estimates the system and load status from the No. 48 frequency, voltage, and -current distribution on the system obtained using the discriminator 53 and CT 54, and further estimates the status of the system and load, and further estimates the transmission/reception terminals existing at the ends of other load branches. It may be defined as a general-purpose transmitting/receiving device that can cover the frequency assigned to the Ill device within a range that does not impair economic validity.

従って、ここで用いられる可変周波数信号発生ぶ(56
は同時に用いる判別手段53、CT 5−1と共に系統
上の他の必要な地点でも使用可能にしであることがこの
発明の趣意を実現するのにはより適当である。
Therefore, the variable frequency signal generator used here (56
In order to realize the spirit of the present invention, it is more appropriate to make it possible to use the discrimination means 53 and CT 5-1 at other necessary points on the system together with the discrimination means 53 and CT 5-1.

第9図は上記第2実施例の動作を説明するフローチャー
トで、その内容は以下の通りである。
FIG. 9 is a flowchart explaining the operation of the second embodiment, the contents of which are as follows.

装置が起動する時刻になれば、まず、系統諸兄を分岐点
において計測する(ステップ9−1)。
When the time comes for the device to start up, first, the system components are measured at the branch point (step 9-1).

ここで、異常があるか否かを判別しくステップ9−2)
、異常がなければ一旦親局側へ向けて、上りの送信要求
信号を送信し、異常があればアラーム発生および待機す
る(スタップ9−10)。親局側から下り方向に基準信
号の送信があれば、これを検出し信号成分の電流工。T
  Ill  IZを計?I+qする(ステップ9−3
〜9−5)、この場合には、信号成分の他に雑音ではあ
るが、信号と極めて近接した周波数も含めて計測するこ
とになる。ここで、■。。l  II。+I211が求
めら九たわけである。
Here, it is necessary to determine whether there is an abnormality or not (step 9-2).
If there is no abnormality, an uplink transmission request signal is sent to the master station, and if there is an abnormality, an alarm is generated and standby (steps 9-10). If a reference signal is transmitted in the downstream direction from the master station side, this is detected and the current control of the signal component is performed. T
Ill IZ? Do I+q (step 9-3
~9-5) In this case, in addition to the signal component, a frequency extremely close to the signal is also included in the measurement, although it is noise. Here, ■. . l II. +I211 was required.

つぎに、親局側へ向けて前述の判別手段53と可変周波
数信号発生源56により、負荷5の割当て周波数と同じ
上り信号を送信する。
Next, the above-mentioned discriminating means 53 and the variable frequency signal generation source 56 transmit an upstream signal having the same frequency as that assigned to the load 5 toward the master station.

この場合、信号として1゜5+  L5+  IzSな
る電流分布が生じ、前述の工。。r Lnl ■2nに
重畳される。すなわち、 T on’  ”■。7.+1゜5 I +n’  = I xn+I 、sl 、f1’ 
= I 2゜+I2S なる関係があるが、検出は上記の変化後の分布を検出す
ることになる。
In this case, a current distribution of 1°5+L5+IzS occurs as a signal, resulting in the above-mentioned process. . r Lnl ■Superimposed on 2n. That is, T on' ”■.7.+1゜5 I +n' = I xn+I, sl, f1'
= I2°+I2S There is a relationship, and the detection involves detecting the distribution after the above change.

つぎに信号/雑音判別処理に入るが、その詳細は別に述
べることとし、ここで、信号吸収が発生していれば、吸
収している旨を上り信号として親局側へ報告用の送信を
行い(ステップ9−8.9−13) 、 ’AtEf発
生の状況であれば同様に報告送イ、!を行う(9−9,
9−14)。また、吸収5発生が激しい場合は、この端
で状況を記憶M積し、09局側が交信可能と判断するま
で待機することとする。
Next, signal/noise discrimination processing begins, the details of which will be discussed separately.At this point, if signal absorption has occurred, an uplink signal indicating that signal absorption has occurred is transmitted to the master station for reporting. (Step 9-8.9-13) 'If AtEf occurs, send a report in the same way! (9-9,
9-14). If absorption 5 occurs frequently, the situation is stored at this end and the terminal waits until the 09 station determines that communication is possible.

つぎに上述のフローチャートの中で詳細な説明を省いた
信号/雑音判別処理の具体内容を、第10図のフローチ
ャートについて説明する。第10図において、゛正流1
11111+I2の検出からI +1かに′より大きい
か否かの判定まで(ステップ10−1〜1O−4)は、
前記第1実施例における(1号/雑音判別処理の場合と
同じであるので説明を省略する。
Next, the detailed contents of the signal/noise discrimination process will be explained with reference to the flowchart of FIG. 10, with detailed explanation omitted in the above flowchart. In Fig. 10, “normal flow 1
From the detection of 11111+I2 to the determination of whether I+1 is greater than '' (steps 10-1 to 10-4),
Since this is the same as the case of No. 1/noise discrimination processing in the first embodiment, the explanation will be omitted.

つぎに、上記雑音レベルの判定が終了した後、分岐点か
らの信号送信が行われたかを確認し、しかる後、3つの
分岐点の電流工。+ rj+ Lf!:1llQ定して
工。 +1’lL′とする(ステップ]O■ −−5,1O−6)。
Next, after the above-mentioned noise level determination is completed, it is confirmed whether the signal transmission from the branch points has been performed, and then, the electric currents at the three branch points are checked. +rj+Lf! :1llQ set. +1'lL' (step) O - -5, 1O-6).

また、I、’ 、I□I 、  Mの計測値と、以前の
計測慎重。t 111  ■、とを比較し、その差分を
ΔIOI ΔI 1. T ΔI2とする(ステップ1
O−7) 。
Also, the measured values of I,', I□I, and M, and the previous measurements carefully. t 111 ■, and the difference is ΔIOI ΔI 1. Set T ΔI2 (Step 1
O-7).

いま、雑音として分岐点がら強制電流が流入しで来たと
すると、この電流慎重。は分岐点より負荷側では不変で
あり一1u5は殆ど存在しえないがら。
Now, if a forced current is flowing in from the branch point as noise, this current should be used carefully. is unchanged on the load side from the branch point, and -1u5 hardly exists.

ΔI、=Δ12 となる(ステップ1O−8)。ΔI, = Δ12 (Step 1O-8).

つぎに分岐点に信号を吸収する回路があり、信号吸収の
発生があったとすれば、−1ニリイ11号が存在してい
る時と、今回印加信号を与えた時とでは。
Next, there is a circuit that absorbs signals at the branch point, and if signal absorption occurs, it will be different when -1 Nirii No. 11 is present and when the applied signal is applied this time.

信号分が増加し Δ工、□〉O 轟然Δ工、。〉0 ΔIs2>0 となる。The signal increases □〉O Roaring delta engineering. 〉0 ΔIs2>0 becomes.

この時は信号吸収とわかる(ステップ10−9゜1O−
10)。更に信号源が電源側にあってこの信号を受信し
た」二で自端(分岐端)から上り信号を発信する場合、
吸収があれば Δ工。〉0 Δ■、〈0 ΔI 2 < 0 となり同じく判別可能である(ステップ1.0−11)
At this time, it can be seen that the signal is absorbed (step 10-9゜1O-
10). Furthermore, when the signal source is on the power supply side and receives this signal, the upstream signal is sent from the own end (branch end).
If there is absorption, Δwork. 〉0 Δ■,〈0 ΔI 2 < 0, and the same can be determined (step 1.0-11)
.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、配電線路に沿った分
岐点上で電流、電圧を計111!Iすることにより、分
岐点より支線側にパワーエレク1〜ロニクス機器による
高調波発生電流源があって、送信信号に対して雑音とな
っている状態および上記支線側にコンデンサ等の(! 
、rF吸収回路があって、送信信号を分Jεさせている
状態を判別するように構成したので、電力線搬送システ
ムの伝送路不良の内容を適確に弁別することができ、配
電線搬送における信号伝送比低下をきたす部分を特定す
ることができるなどの効果が得られろ。
As described above, according to the present invention, a total of 111 currents and voltages can be measured at branch points along the distribution line! By doing so, there is a harmonic generation current source from the power electronics equipment on the branch line side from the branch point, causing noise to the transmitted signal, and a capacitor (!) on the branch line side.
, rF absorption circuit, and is configured to determine the state in which the transmitted signal is reduced by Jε, so it is possible to accurately identify the nature of the transmission path failure in the power line transmission system, and the signal in the distribution line transmission can be accurately identified. Effects such as being able to identify parts that cause transmission ratio reduction can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例による配電線搬送装置の
原理説明図、第2図は搬送状態にIa、した分岐点の電
流方向を示す図、第33図はこの発明の第1実施例を示
すブロック図5第4図は動作を説明するフローチャート
図、第5図は信号/雑音判別処理の動作を説明するフロ
ーチャート図、第6図はこの発明の第2実施例による配
電vA搬送装j、Yfの原理説明図、第7図は搬送状態
に応じた分岐点のi!電流方向示す図、第8図はこの発
明の実施例を示すブロック図、第9図はその動作を説明
するフローチャート図、第10図は信号/雑音判別処理
の動作を説明するフローチャート図、第1.114は従
来の配電線搬送装置のブロック図である。 ;3は配電線路、4,5は負荷、53は判別手段、55
は伝送手段、56は可変周波数信号発生源。 なお、図中、同一符号は同一または相当部分を示す。 特許出願人  三菱電機株式会社 −1□1 ぴ口 9−8へ
FIG. 1 is an explanatory diagram of the principle of a distribution line conveying device according to a first embodiment of the present invention, FIG. 2 is a diagram showing the current direction at a branch point in a conveying state Ia, and FIG. Block diagram 5 showing an example FIG. 4 is a flowchart explaining the operation, FIG. 5 is a flowchart explaining the operation of signal/noise discrimination processing, and FIG. 6 is the power distribution vA conveyance system according to the second embodiment of the present invention. Fig. 7 is an explanatory diagram of the principle of j, Yf, i! of the branch point according to the conveyance state. 8 is a block diagram showing an embodiment of the present invention; FIG. 9 is a flowchart explaining its operation; FIG. 10 is a flowchart explaining the operation of signal/noise discrimination processing; .114 is a block diagram of a conventional power distribution line conveyance device. 3 is a distribution line, 4 and 5 are loads, 53 is a discrimination means, 55
56 is a transmission means, and 56 is a variable frequency signal generation source. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Patent applicant Mitsubishi Electric Corporation-1□1 To Piguchi 9-8

Claims (4)

【特許請求の範囲】[Claims] (1)配電系統上の主要点と末端各点との間で、系統状
態の情報交換・指令の伝達を配電線を利用して行う配電
線搬送装置において、前記配電系統内の電源と負荷との
中間に点在する1つ以上の分岐点に流れる電流と該分岐
点付近の電圧とを計測し該電流と電圧の波形を分析して
、搬送周波数に近い高調波成分が存在するとき、前記各
分岐点への搬送波信号の分流か高調波発生電流源からの
雑音発生かを判別する判別手段を具備したことを特徴と
する配電線搬送装置。
(1) In a distribution line transport device that uses distribution lines to exchange information on the system status and transmit commands between main points on the distribution system and terminal points, the power supply and load in the distribution system are The current flowing through one or more branch points scattered in the middle of 1. A power distribution line carrying device comprising a discriminating means for discriminating whether a carrier signal is shunted to each branch point or noise is generated from a harmonic generating current source.
(2)判別手段に判別結果をメモリするメモリ手段を設
けたことを特徴とする特許請求の範囲第(1)項記載の
配電線搬送装置。
(2) The power distribution line conveying device according to claim (1), wherein the discriminating means is provided with a memory means for storing the discrimination result.
(3)判別結果を主要点に伝達する伝送手段を備えたこ
とを特徴とする特許請求の範囲第(1)項記載の配電線
搬送装置。
(3) The power distribution line conveying device according to claim (1), further comprising a transmission means for transmitting the determination result to the main point.
(4)搬送周波数に近い高調波成分が存在するとき、可
変周波数信号発生源から分岐点に前記搬送周波数の搬送
波信号を印加し、以後の分岐点の電流変化を計測して、
前記搬送波信号の分流か高調波発生電流源からの雑音発
生かを判別することを特徴とする特許請求の範囲第(1
)項記載の配電線搬送装置。
(4) When there is a harmonic component close to the carrier frequency, applying a carrier wave signal of the carrier frequency from the variable frequency signal generation source to the branch point, and measuring the subsequent current change at the branch point,
Claim 1 is characterized in that it is determined whether noise is generated from a shunt of the carrier signal or a harmonic generation current source.
) The distribution line conveyance device described in item 2.
JP61189669A 1986-08-14 1986-08-14 Distribution line transportation method Expired - Fee Related JPH0787409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189669A JPH0787409B2 (en) 1986-08-14 1986-08-14 Distribution line transportation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189669A JPH0787409B2 (en) 1986-08-14 1986-08-14 Distribution line transportation method

Publications (2)

Publication Number Publication Date
JPS6346822A true JPS6346822A (en) 1988-02-27
JPH0787409B2 JPH0787409B2 (en) 1995-09-20

Family

ID=16245190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189669A Expired - Fee Related JPH0787409B2 (en) 1986-08-14 1986-08-14 Distribution line transportation method

Country Status (1)

Country Link
JP (1) JPH0787409B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132626A (en) * 1984-07-24 1986-02-15 Mitsubishi Electric Corp Transmission device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132626A (en) * 1984-07-24 1986-02-15 Mitsubishi Electric Corp Transmission device

Also Published As

Publication number Publication date
JPH0787409B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US10739414B2 (en) Determining status of electric power transmission lines in an electric power transmission system
Farughian et al. Review of methodologies for earth fault indication and location in compensated and unearthed MV distribution networks
US8315827B2 (en) Fault region location system
CN101340078B (en) Improvements in or relating to current differential protection relays
US7808128B1 (en) Remote monitoring of control decisions for network protectors
AU2014277951B2 (en) Inferring feeder and phase powering a transmitter
CN110601363B (en) Station area branch identification method and system based on sinusoidal current disturbance
CN111108399A (en) High fidelity voltage measurement using resistive divider in capacitively coupled voltage transformer
WO1999063641A1 (en) Detection of faults on transmission lines in a bipolar high-voltage direct current system
JPS6346822A (en) Distribution line carrier equipment
US11056877B2 (en) Method and system for feeder protection in electrical power network
CN109254205A (en) The on-line monitoring method and monitoring device of dry-type air-core reactor active power loss
CN213043678U (en) Electric energy meter carrier communication module testing arrangement
CN111337782A (en) Main transformer bias live monitoring system
US10158400B2 (en) Frequency selective power monitor
KR20140012300A (en) System for discriminating underground service conductor using harnonics and method thereof
US10871512B2 (en) Method and system for detecting noise in an electrical grid
Kitagawa et al. Newly Developed FM Current-Differential Carrier Relaying System and its Field Experiences
Arduini et al. Vulnerability of Smart Grid-based Protection Systems to Ultra-Wide Band IEMI Sources
JPH1080052A (en) High-voltage insulation continuous monitoring device
CN106771844A (en) A kind of power network multipoint line Fault Locating Method and system
Marques et al. E-redes adopt new monometallic technology and predictive algorithm to minimize and predict LV neutral loss failures detection
JPS6142218A (en) Directivity ground-fault indicator
Derham Electromagnetic compatibility in ships
JPS637033A (en) Distribution line carrier system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees