JPH0787409B2 - Distribution line transportation method - Google Patents

Distribution line transportation method

Info

Publication number
JPH0787409B2
JPH0787409B2 JP61189669A JP18966986A JPH0787409B2 JP H0787409 B2 JPH0787409 B2 JP H0787409B2 JP 61189669 A JP61189669 A JP 61189669A JP 18966986 A JP18966986 A JP 18966986A JP H0787409 B2 JPH0787409 B2 JP H0787409B2
Authority
JP
Japan
Prior art keywords
signal
distribution line
current
load
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61189669A
Other languages
Japanese (ja)
Other versions
JPS6346822A (en
Inventor
眞 寺田
浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61189669A priority Critical patent/JPH0787409B2/en
Publication of JPS6346822A publication Critical patent/JPS6346822A/en
Publication of JPH0787409B2 publication Critical patent/JPH0787409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は配電系統上の主要点と末端各点との間で、系
統状態の情報交換・指令の伝達を配電線路を利用して行
う配電線搬送方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a distribution system for exchanging information on system status and transmitting commands between main points and end points on a distribution system using a distribution line. The present invention relates to an electric wire transportation method.

〔従来の技術〕[Conventional technology]

配電系統が発達し多数の需要家へ向って電力を安全、確
実に供給する要求が強まるにつれ、大規模な配電系統網
を遠隔集中運転する需要が高まり、所謂配電自動化シス
テムが普及の機運にある。
As the demand for safe and reliable power supply to a large number of customers has grown due to the development of distribution systems, the demand for remote centralized operation of large-scale distribution networks has increased, and so-called distribution automation systems have become a popular opportunity. .

この自動化システムにおいて、配電系統上の主要点(親
局側)と末端(子局側)各点との遠隔地点間で情報交換
を行う。所謂伝送手段として、対象とする配電系統(線
路)を伝送路として使用する配電線搬送方法が注目され
つつある。
In this automated system, information is exchanged between remote points at the main points (master station side) and end points (slave station side) on the distribution system. As a so-called transmission means, a distribution line transportation method using a target distribution system (line) as a transmission line is attracting attention.

一般に配電線搬送方法においては、配電線路が伝送路を
兼ねるため、配電線路で発生する系統現象は信号として
送受される搬送液を中心として考えると、全て雑音と見
做さなければならない。
Generally, in the distribution line transportation method, since the distribution line also serves as a transmission line, all systematic phenomena occurring in the distribution line must be regarded as noises when considering the carrier liquid transmitted and received as a signal.

この雑音の中には、系統における商用周波数の電力のよ
うに、大きさ、周波数が比較的はっきりしているものも
あるが、サージ、ノイズ、高調波など大きさ、周波数、
位相、タイミングなどがはっきりしないものもあり、そ
の取扱は単一ではない。
Some of this noise is relatively clear in magnitude and frequency, such as power at commercial frequencies in the grid, but surge, noise, harmonics, etc.
There are some cases where the phase, timing, etc. are not clear, and the handling is not unique.

特に持続性をもつ高調波などは、系統に持続される負荷
機器の運転により生じるものが多く、その発生時刻、継
続時間も一定せず、把握することは極めて困難である。
In particular, many sustaining harmonics are generated by the operation of load equipment that is sustained in the system, and the generation time and duration are not constant, and it is extremely difficult to understand.

最近、普及が著しいと云われるインバータ等パワーエレ
クトロニクスを応用した電気製品からは、高次高調波が
発生していると云われ、これが配電線搬送方式に使用さ
れる搬送波信号と近接した周波数である場合には、不確
定な異常現象を発生させ、上記配電線搬送方法の正常な
動作を妨げる恐れがある。
It is said that high-order harmonics are generated from electric products to which power electronics are applied, such as inverters, which have been widely spread recently, and this is a frequency close to the carrier signal used in the distribution line carrier system. In this case, an uncertain abnormal phenomenon may occur, and the normal operation of the above distribution line transportation method may be hindered.

これに対する方策は幾つか考えられるが、主として搬送
装置の仕様、性能を変更して、上記電気製品が発生する
高次高調波による影響を軽減する種類のものが多く、決
定的な対策として位置づけするには、今暫くの時日を要
する。
There are several possible measures against this, but most of them are types that reduce the influence of high-order harmonics generated by the above electrical products, mainly by changing the specifications and performance of the carrier, and position them as definitive measures. Will take some time now.

第11図は従来の配電線搬送方法を適用する低圧配電系統
のブロック図であり、図において、2は配電系統の電源
側と線路負荷を連係する所謂配電用変圧器、3は配電線
路、4,5は負荷、6は上記配電用変圧器2に連結される
下位系の情報を更に上位の電気所乃至は事業所へ中継す
るための別途の伝送路である。
FIG. 11 is a block diagram of a low-voltage distribution system to which a conventional distribution line transportation method is applied. In the figure, 2 is a so-called distribution transformer that links the power supply side of the distribution system and the line load, 3 is a distribution line, and 4 is a distribution line. 5, 5 are loads, and 6 is a separate transmission line for relaying the information of the lower system connected to the distribution transformer 2 to a higher-order electric station or business place.

上記負荷4には送受信装置41とこの送受信装置41へ電流
を計測・入力する変流器(以下、CTと略称する)42−1,
42−2がある。また、送受信装置41へは電圧も供給され
るが、これは送受信装置41と分岐線路34との間に3線を
接続して行う。この送受信装置41からはCT42−1,2等を
介して収集した負荷4に関する電気物理量についての情
報を周波数変調などして、分岐線路34、配電線路3を経
由して、受信器23へ向けて送信する。
The load 4 includes a transmitter / receiver 41 and a current transformer (hereinafter abbreviated as CT) 42-1, which measures and inputs a current to the transmitter / receiver 41.
There is 42-2. Further, a voltage is also supplied to the transmission / reception device 41, which is performed by connecting three wires between the transmission / reception device 41 and the branch line 34. From the transmitter / receiver 41, the information about the electrophysical quantity regarding the load 4 collected via CTs 42-1, 2 and the like is frequency-modulated and the like, and is sent to the receiver 23 via the branch line 34 and the distribution line 3. Send.

上記と同様に負荷5の送受信装置51からはCT52−1,2等
を介して収集した負荷5についての情報を、分岐線路3
5、配電線路3を経由して、受信器23へ向けて送信す
る。また、負荷5にはサイリスタ等を用いたインバータ
などのパワーエレクトロニクス応用回路50が接続されて
おり、負荷5へ供給する電力の調整を行うようになって
いる。
Similar to the above, information about the load 5 collected from the transmitter / receiver 51 of the load 5 via CTs 52-1, 2 and the like is provided to the branch line 3
5. Send to the receiver 23 via the power distribution line 3. Further, a power electronics application circuit 50 such as an inverter using a thyristor or the like is connected to the load 5, and the power supplied to the load 5 is adjusted.

上記送受信装置41,51と情報交換を行うため、配電用変
圧器2の近傍に親局として受信器23、送信器25が接続さ
れ、受信器23には配電線路の電流信号を検出するための
CT24−1,24−2が接続されている。
In order to exchange information with the transmission / reception devices 41 and 51, a receiver 23 and a transmitter 25 are connected as a master station in the vicinity of the distribution transformer 2, and the receiver 23 is for detecting a current signal of a distribution line.
CT24-1, 24-2 are connected.

つぎに上記の構成においての概略動作を説明する。上位
の電気所乃至は事業所から伝送路6を経由して与えられ
た指令に基き、受信器23から送信器25、配電線路3を経
由して、負荷側に計測操作等の信号が発せられると、こ
の信号が送受信装置41又は51により受信される。
Next, a schematic operation in the above configuration will be described. Based on a command given from a higher-level electric station or business office via the transmission line 6, a signal such as a measurement operation is issued from the receiver 23 to the load via the transmitter 25 and the distribution line 3. Then, this signal is received by the transmission / reception device 41 or 51.

そして、必要な情報を収集・生成すると、上記と同様に
送受信装置41または51から送信され、分岐線路34,35乃
至配電線路3を経由して、CT24−1,2を介し受信器23へ
信号を伝送する。
Then, when necessary information is collected and generated, it is transmitted from the transmission / reception device 41 or 51 in the same manner as described above, and the signal is sent to the receiver 23 via the CTs 24-1, 2 via the branch lines 34, 35 to the distribution line 3. To transmit.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

これら一連の送受信動作は、系統に特別な負荷が接続、
切離しされなければ、当初予定した動作を示しつづける
が、特別な負荷例えばインバータ等の半導体スイッチ回
路50を内蔵する機器が接続されると、この機器の発生す
る高調波により影響を受け信号送受信が阻害される。
In this series of transmission / reception operations, a special load is connected to the grid,
If it is not disconnected, it will continue to show the originally planned operation, but if a special load such as an inverter or other device containing the semiconductor switch circuit 50 is connected, it will be affected by the harmonics generated by this device and signal transmission and reception will be hindered. To be done.

特にスイッチングにより生ずる高調波は、比較的低次の
ものが存在し、発生源のフィーダー分岐から電源側(親
局側)へ向って流れるので、親局側において、信号送受
信が阻害される他、親局側からこの発生源フィーダーを
簡単に特定することができない。
In particular, harmonics generated by switching have relatively low harmonics and flow from the feeder branch of the generation source toward the power supply side (master station side), so that signal transmission / reception is hindered on the master station side. This source feeder cannot be easily identified from the parent station side.

放射状系統ではフィーダーが分岐を生ずる毎に、このよ
うな、特別な負荷が接続されているか否かを一々弁別し
てゆくと、負荷の位置次第では極めて多くの手間と時間
を要することになり、障害の状況によっては長時間対策
を施さないままに推移することになるという問題点があ
った。
In the radial system, if each time the feeder branches, it is necessary to discriminate whether or not such a special load is connected, and it will take an extremely large amount of time and labor depending on the position of the load. Depending on the situation, there was a problem that the situation would change without taking measures for a long time.

この発明は上記のような問題点を解消するためになされ
たもので、パワーエレクトロニクス応用の電気製品が運
転時に発生する持続性の高次高調波による障害を特定す
ること、および系統を構成する線路、負荷の特性によ
り、搬送波信号が吸収されているかいないかを判別する
ことを、配電系統の特定単位毎に行い、よって、配電線
搬送における信号伝送比低下をきたす部分を特定する配
電線搬送方法を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is possible to identify a fault due to a persistent high-order harmonic generated during operation of an electric appliance for power electronics application, and a line constituting a system. , It is determined whether the carrier signal is absorbed or not according to the characteristics of the load, for each specific unit of the distribution system, and thus, the distribution line transportation method for identifying the part that causes the signal transmission ratio reduction in the distribution line transportation. Aim to get.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る配電線搬送方法は、配電系統内の電源と
負荷との中間に点在する1つ以上の分岐点に流れる電流
と該分岐点付近の電圧とを計測し該電流と電圧の波形を
分析して、搬送周波数に近い高調波成分が存在すると
き、前記各分岐点への搬送波信号の分流か高調波発生電
流源からの雑音発生かを判別するものである。
A distribution line conveying method according to the present invention measures a current flowing at one or more branch points scattered in the middle of a power source and a load in a distribution system and a voltage near the branch point, and waveforms of the current and the voltage. When a harmonic component close to the carrier frequency exists, it is determined whether the shunt of the carrier signal to each branch point or the noise generation from the harmonic generating current source is analyzed.

〔作用〕[Action]

この発明における配電線搬送方法は、配電系統内の電源
と負荷との中間に点在する分岐点への搬送波信号の分流
か高調波発生電流源からの雑音発生かを判別することに
より、電力線搬送システムの伝送路不良の内容を適確に
弁別することができ、信号伝送比低下をきたす部分を特
定する。
The distribution line conveying method in the present invention conveys a power line by determining whether a carrier signal is shunted to branch points scattered between power sources and loads in a distribution system or noise is generated from a harmonic generation current source. The contents of the system transmission path failure can be accurately discriminated, and the part that causes the deterioration of the signal transmission ratio is specified.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の原理説明図であり、図において、負荷5
へ配電線路3から分岐している分岐点に注目し、この分
岐点におけるある次数の高調波分電流I0,I1,I2の向きお
よび大きさを図示のように定める。
An embodiment of the present invention will be described below with reference to the drawings. First
The figure is a diagram for explaining the principle of the present invention.
Attention is paid to a branch point branching from the power distribution line 3 to the direction and magnitude of harmonic currents I 0 , I 1 , and I 2 of a certain order at this branch point, as shown in the figure.

一般に子局側(負荷側)から信号を親局側(系統側)上
り送信している場合には、第2図示の向きに流れる特質
がある。すなわち、配電用変圧器2から系統側を眺めた
インピーダンスが、負荷インピーダンスに比して低いの
で上述の通りとなる。
Generally, when a signal is transmitted from the slave station side (load side) to the master station side (system side) upstream, there is a characteristic that the signal flows in the direction shown in FIG. In other words, the impedance as viewed from the distribution transformer 2 on the system side is lower than the load impedance, and therefore, the above is the case.

(i)まず、高調波電流源が存在する場合には、負荷5
を自端と見立てた場合、電流I0は系統側と負荷側へ向け
て第2図(a)のように分流し、ある次数の成分につい
て I0n=I1n+I2n (2.1) となる。
(I) First, if a harmonic current source is present, load 5
Assuming that the current is the self-end, the current I 0 is divided toward the system side and the load side as shown in Fig. 2 (a), and I 0n = I 1n + I 2n (2.1) for a certain order component.

(ii)つぎに、高調波電流源が稼動していなくて、負荷
側のあるフィーダーから送信されている場合は、もし、
負荷5へ信号を吸収するような例えばコンデンサ負荷が
存在する場合は、第2図(b)のような分布となり、同
様に電流は I0n=I2n−I1n (2.2) となる。
(Ii) Next, if the harmonic current source is not operating and is being sent from a feeder on the load side,
When there is, for example, a capacitor load that absorbs a signal to the load 5, the distribution is as shown in FIG. 2 (b), and similarly, the current becomes I 0n = I 2n −I 1n (2.2).

(iii)更に、系統側から負荷側へ向けて下り信号送信
中に、負荷5で上記と同様な信号吸収が発生する時は、
第2図(c)のような分布となり、同様に電流は I0n=I1n−I2n (2.3) となる。
(Iii) Furthermore, when the signal absorption similar to the above occurs in the load 5 during the downlink signal transmission from the system side to the load side,
The distribution is as shown in Fig. 2 (c), and similarly the current is I 0n = I 1n −I 2n (2.3).

(iv)信号送信端が負荷5の分岐点を境に系統側にある
場合は、同様な信号吸収があった場合、第2図(c)と
同じとなるが、自端のみの吸収であれば I2n≒0 (2.4) となる。
(Iv) When the signal transmission end is on the system side with the branch point of the load 5 as a boundary, if there is similar signal absorption, it is the same as in FIG. 2 (c), but only for the self end. For example, I 2n ≈ 0 (2.4).

(v)信号送信端が負荷5の分岐点を境に系統側にあ
り、かつ、負荷5以外の負荷4にも信号の吸収がある場
合には、 I2n≠0 となるが、この場合には、 I1n≧k (k許容値) であるか、否かで、信号送受信上支障があるかないかを
判定する。
(V) If the signal transmitting end is on the system side with the branch point of the load 5 as a boundary and the load 4 other than the load 5 also absorbs the signal, I 2n ≠ 0, but in this case Determines whether I 1n ≧ k (k allowable value) or not and whether or not there is a problem in signal transmission / reception.

以上、要するに負荷分岐を生ずる点での電流I0,I1,I2
検出し、その大きさおよび相互間系を判別すれば、強制
電流源による上り方向の雑音電流の発生か、コンデンサ
等信号に対する低インピーダンス負荷による上下方向信
号電流の吸収かが判定可能である。つまり、上記諸関係
を利用して、信号分布の異常(吸収)と雑音分布の異常
(発生)とを弁別するものである。
In summary, if the currents I 0 , I 1 , and I 2 at the point where the load branch occurs are detected, and their magnitude and the mutual system are discriminated, the generation of the noise current in the upward direction by the forced current source, the capacitor, etc. It is possible to judge whether the vertical signal current is absorbed by the low impedance load for the signal. That is, the above relationships are used to discriminate between abnormalities in signal distribution (absorption) and abnormalities in noise distribution (occurrence).

第3図はこの発明の第1実施例を示すブロック図であ
り、第3図において、53は判別手段、54−1〜54−6は
配電線路3の負荷5へ分岐する分岐点付近に設けたCT、
55は伝送手段であり、他は前記第11図と同一であるから
同一符号を付して説明を省略する。
FIG. 3 is a block diagram showing a first embodiment of the present invention. In FIG. 3, reference numeral 53 is a discriminating means, and 54-1 to 54-6 are provided in the vicinity of a branch point of the distribution line 3 branching to the load 5. CT,
Reference numeral 55 is a transmission means, and the other parts are the same as those in FIG. 11, so the same reference numerals are given and description thereof is omitted.

上記判別手段53はCT54−1〜6から電流を、配電線路3
から直接電圧を導入し、内部で計測、演算,判定等の処
理を行う機能を有する。
The discrimination means 53 outputs the current from the CTs 54-1 to 5-6 to the distribution line 3
It has a function of directly introducing a voltage from the inside and performing processing such as measurement, calculation and judgment internally.

すなわち、配電線路3には、搬送信号成分が印加されて
分布するから、これを検出し、信号波成分について検出
し、その大きさ、方向、(位相)を調波分布等により求
める。また、その際、この点を通過する上り電流信号、
下り電圧信号を弁別し、予め定められたプロトコルに則
るかどうが判定し、上、下信号を傍受する。
That is, since the carrier signal component is applied and distributed to the power distribution line 3, this is detected, the signal wave component is detected, and the magnitude, direction, and (phase) thereof are obtained by the harmonic distribution or the like. At that time, the upstream current signal passing through this point,
The downstream voltage signal is discriminated, it is judged whether or not it complies with a predetermined protocol, and the upper and lower signals are intercepted.

つぎに、この判定内容は、適切なタイミングによって上
位親局へ送信できるよう送信機能を有する。
Next, this determination content has a transmission function so that it can be transmitted to the upper master station at an appropriate timing.

以上の組合せにより、判別手段53は前記原理の項で述べ
たI0,I1,I2の間の諸関係を満すか否かを判定できる。判
別手段53は、前述のように線路電圧、電流を検出した
後、内部で計測・演算・判定等の処理を行うものである
が、これらは、通常、電力系統の高調波計測器として市
販されているもので、実用上十分な性能のものが入手で
き、この技術と計測データをディジタル処理するマイク
ロコンピュータ技術とをもつて、十分に実施可能であ
る。
With the above combination, the determining means 53 can determine whether or not the various relationships among I 0 , I 1 , and I 2 described in the section of the principle are satisfied. As described above, the determining means 53 internally performs processing such as measurement, calculation and determination after detecting the line voltage and current, but these are usually commercially available as harmonic measuring instruments of the power system. However, it is possible to obtain the one having sufficient performance in practical use, and it is possible to sufficiently implement this technology and the microcomputer technology for digitally processing the measurement data.

つぎに、第4図のフローチャートに基づいて、上記第1
実施例の動作を説明する。まず、起動直後、系統状態の
基本を計測して、系統周波数における電圧、電流、力
率、位相などが異常でないか判別する(ステップ4−1,
4−2)。
Next, based on the flowchart of FIG.
The operation of the embodiment will be described. First, immediately after start-up, the basics of the system state are measured to determine whether the voltage, current, power factor, phase, etc. at the system frequency are abnormal (step 4-1).
4-2).

この後、中間の判別手段53により分岐点を通過する系統
用搬送信号成分の有無を検出する(ステップ4−3)。
もし、系統中間点を通過する電流、中間点での電圧に信
号波成分があれば、別図の信号/雑音判別の処理を行う
が(ステップ4−4,4−5)、信号波成分がなければ当
該時刻と周波数付近の標遊雑音レベルの記録を蓄積し、
古い記録は消去して記載の更新を行い、再度検出に備え
る(ステップ4−10)。
After that, the presence or absence of the system carrier signal component passing through the branch point is detected by the intermediate discriminating means 53 (step 4-3).
If there is a signal wave component in the current passing through the system intermediate point and the voltage at the intermediate point, the signal / noise discrimination processing of another figure is performed (steps 4-4, 4-5), but the signal wave component is If not, accumulate a record of the noise level around the time and frequency,
The old record is erased and the description is updated to prepare for detection again (step 4-10).

つぎに、信号雑音判別処理を行った結果、ここで、信号
吸収現象が起っているか否かを判別して(ステップ4−
6)、信号吸収現象が起っているならば、その旨を伝送
手段55により、上り情報として親局側へ通報するため、
状況送信するか信号吸収が著しく当該時点における上り
搬送信号の送信が不可能な場合には、この状況を判別手
段53のメモリーの中に蓄積して、信号吸収が少くなる迄
待機する。
Next, as a result of the signal noise discrimination processing, it is discriminated here whether or not the signal absorption phenomenon has occurred (step 4-
6) If the signal absorption phenomenon has occurred, the transmission means 55 notifies the master station side as upstream information by the transmission means 55.
If the situation is transmitted or the signal absorption is so great that the upstream carrier signal cannot be transmitted at that time, this situation is stored in the memory of the discriminating means 53, and the process waits until the signal absorption becomes small.

一般に信号吸収が著しい場合は、上り信号のみならず、
下り信号についても影響を受けるので、このような状況
が発生していることは、親局側でも検知可能である。従
って、中間の判別手段53としては、送信不可能でも差支
えなく待機状況を継続すればよい(ステップ4−11)。
Generally, when signal absorption is significant, not only the upstream signal,
Since the downlink signal is also affected, the occurrence of such a situation can be detected by the master station side. Therefore, as the intermediate determining means 53, it is sufficient to continue the standby state even if transmission is impossible (step 4-11).

また、後述の信号/雑音判別処理において、雑音発生か
否かを判別して(ステップ4−7)、雑音発生と判別さ
れた場合は上記と同様に、上り情報として親局側へ通報
するため状況を送信する。この場合、信号に比べて雑音
が高いレベルにある時は、親局側における信号と雑音と
の弁別は困難となるが、上記信号吸収の場合と同様に、
上り搬送信号の受信が不可能となって、結局、親局側か
ら受信のアンサーバックが適切に行われなくなる。
Further, in the signal / noise discrimination processing described later, it is discriminated whether or not noise is generated (step 4-7), and when it is discriminated that noise is generated, in the same manner as above, in order to notify the parent station side as uplink information. Send status. In this case, when the noise is at a higher level than the signal, it is difficult to distinguish the signal from the noise on the master station side, but like the case of the above signal absorption,
Since it becomes impossible to receive the upstream carrier signal, the answerback of the reception cannot be properly performed from the master station side.

従って、判別手段53から状況を上り送信しても無意味な
ので、この状況を判別手段53のメモリーの中に蓄積し
て、雑音レベルの低下するまで待機することになる(ス
テップ4−12)。
Therefore, since it is meaningless to send the situation upward from the discriminating means 53, this situation is stored in the memory of the discriminating means 53 and waits until the noise level decreases (step 4-12).

つぎに上述の説明の中で省略した信号/雑音判別の処理
を、第5図のフローチャートについて説明する。まず、
分岐点部分の高調波分電流I0,I1,I2のレベルを検出する
(ステップ5−1)。この検出値を、以下、大小および
レベル判定する。子局側へ過大電流が流れている場合
は、明らかに搬送装置より送信したものではないから、
これはノイズとみてもよい(ステップ5−2)。
Next, the signal / noise discrimination processing omitted in the above description will be described with reference to the flowchart of FIG. First,
The levels of the harmonic component currents I 0 , I 1 , and I 2 at the branch point are detected (step 5-1). The detected value is subsequently judged to be large or small and the level. If an excessive current is flowing to the slave station, it is obviously not transmitted from the carrier device,
This may be regarded as noise (step 5-2).

つぎに、分岐線電流が上述の子局側電流の上限値kより
大きい時は、分岐線から負荷へ(または電源へ)電流を
流し込んでいる状態であるから、この時もノイズとみて
もよい(ステップ5−3)。
Next, when the branch line current is larger than the upper limit value k of the slave station side current, it means that the current is flowing from the branch line to the load (or to the power supply), so that it may be considered as noise at this time as well. (Step 5-3).

さらに、分岐線の電流が上記搬送信号電流上限値kより
は小さいある値k′(この値は電源インピーダンスと負
荷分岐インピーダンスとの比で定まる)より大きい時
は、上り信号が電源側へ流れず分岐線の方へ漏洩流出し
ている状態であるから、信号吸収と見做し得る。この値
k′については、運用状態で若干の変動があるので、余
り厳密に設定はできないが、一応の判別を与える目安と
なる(ステップ5−4)。
Further, when the current of the branch line is larger than a certain value k'which is smaller than the carrier signal current upper limit value k (this value is determined by the ratio of the power source impedance and the load branch impedance), the upstream signal does not flow to the power source side. Since it is leaking and flowing toward the branch line, it can be regarded as signal absorption. This value k ′ cannot be set very strictly because there is a slight change in the operating state, but it serves as a guide for making a tentative decision (step 5-4).

この後、電流I0,I1,I2の各瞬時値成分相互を比較する
(ステップ5−5)。
Then, the instantaneous value components of the currents I 0 , I 1 , and I 2 are compared with each other (step 5-5).

分岐線35の負荷5から信号発信していない限り、上記電
流が電源負荷へ分流することはない。従って、この時、
I0=I1+I2なる関係式が成立すれば、これはノイズと見
做してよい(ステップ5−6)。
Unless the signal is transmitted from the load 5 of the branch line 35, the above current will not be shunted to the power source load. Therefore, at this time,
If the relational expression of I 0 = I 1 + I 2 is established, this may be regarded as noise (step 5-6).

また、他端送信中に分岐線35への電流があり、かつ、こ
れ等がI0=I2−I1なる関係を満足するならば、この分岐
線35からみて自端へ信号を吸収していることになる(ス
テップ5−7)。
Also, if there is a current to the branch line 35 during transmission at the other end, and if these satisfy the relationship of I 0 = I 2 −I 1 , the signal is absorbed from the branch line 35 to its own end. (Step 5-7).

さらに、他端が受信中、すなわち、下り信号伝送時にこ
れ等がI0=I1−I2なる関係を満足するならば、上記同様
自端へ信号を吸収していることになる(ステップ5−
8)。
Further, if the other end is receiving, that is, if they satisfy the relationship of I 0 = I 1 −I 2 during downlink signal transmission, it means that the signal is absorbed to its own end similarly to the above (step 5). −
8).

このような状態は分岐線35より系統側に設置された端末
から信号送信中にも分岐線35に容量性インピーダンスが
存在すれば起り得るので、この場合も信号吸収と見做し
てよい。
Such a state can occur if capacitive impedance is present in the branch line 35 even during signal transmission from a terminal installed on the system side of the branch line 35, and thus may be regarded as signal absorption in this case as well.

第6図はこの発明の第2実施例の原理説明図であり、負
荷5へ配電線路3から分岐している分岐点に注目する
と、第7図(a)〜(c)に示す以下の関係を得る。
FIG. 6 is a diagram for explaining the principle of the second embodiment of the present invention. Focusing on the branch point branching from the distribution line 3 to the load 5, the following relationships shown in FIGS. To get

(i)高調波電流源が存在する場合 I0n=I1n+I2n (ii)上り信号を負荷5へ吸収する場合 I0n=I2n−I1n (iii)下り信号を負荷5へ吸収する場合(一部電源側
にある別の発信端からの信号を吸収する場合も含む) I0n=I1n−I2n 上記は前記第1実施例と全く同じである。いま、負荷側
の送信器から信号を送信させると、 I0S=I2S−I1S これが重畳されると、 I0n′=I0S−I0n I1n′=I1n−I1S I2n′=I2n−I2S となる。
(I) When a harmonic current source is present I 0n = I 1n + I 2n (ii) When an upstream signal is absorbed by load 5 I 0n = I 2n −I 1n (iii) When a downstream signal is absorbed by load 5 (Including a case where a signal from another transmitting end on the power supply side is partially absorbed) I 0n = I 1n −I 2n The above is exactly the same as the first embodiment. Now, when a signal is transmitted from the transmitter on the load side, I 0S = I 2S −I 1S When this is superimposed, I 0n ′ = I 0S −I 0n I 1n ′ = I 1n −I 1S I 2n ′ = It becomes I 2n −I 2S .

以下、上記(i)〜(iii)に対応させて、電流I0′,
I1′,I2′を吟味すると、次のようになる。
Hereinafter, in correspondence with the above (i) to (iii), the current I 0 ′,
Examining I 1 ′ and I 2 ′ gives the following.

(i)雑音が発生している時 強制電流発生源であれば、殆ど系統側2へ流れるので、 I1S=I2S ∴I0n′=I0n (ii)上り信号を吸収している時 I0n′=I0S+I0n,かつ、I0n′=I2n′−I1n′ 一般に、I0Sは既知周波数であるから、電流合成した
I0n′も分析可能である。
(I) When noise is generated If the source is a forced current source, most of it flows to the system side 2, so I 1S = I 2S ∴I 0n ′ = I 0n (ii) When absorbing the upstream signal I 0n '= I 0S + I 0n , and, I 0n' in = I 2n '-I 1n' general, because I 0S are known frequency, and current combining
I 0n ′ can also be analyzed.

(iii)下り信号を吸収している時 I0n′=I0S+I0n かつ I0n′=I1n′−I2n′,I1n′=I1n−I1S,I2n′=I2n−I
2S となり、I0n′が分析可能であることは上記と同じであ
る。
(Iii) When absorbing a downstream signal I 0n ′ = I 0S + I 0n and I 0n ′ = I 1n ′ −I 2n ′, I 1n ′ = I 1n −I 1S , I 2n ′ = I 2n −I
It is 2S , and I 0n ′ can be analyzed, as above.

すなわち、上記3ケースについて見れば、別端(または
自端)から信号を別途印加させても、(i),(ii),
(iii)の関係は不変であるから、電流I0,I1,I2を計測
している場合よりもより明確に信号・雑音の区別が可能
となる。
That is, regarding the above three cases, even if a signal is separately applied from another end (or its own end), (i), (ii),
Since the relationship of (iii) is invariable, it becomes possible to more clearly discriminate the signal / noise from the case where the currents I 0 , I 1 , and I 2 are measured.

さらに信号送信端が分岐線35の引出口より、系統側にあ
るか負荷側にあるかは、電流I1n′,I2n′と電流I1n,I2n
とを比較し、その増減を見れば判別可能であることは云
う迄もない。
Further, whether the signal transmitting end is on the system side or the load side from the outlet of the branch line 35 depends on the currents I 1n ′, I 2n ′ and the currents I 1n , I 2n.
It goes without saying that it is possible to determine by comparing and and seeing the increase and decrease.

第8図は第2実施例の構成を示すもので、第8図におい
て、56は可変周波数信号発生源であり、同じ変調原理に
よる信号発信であっても基本周波数、変調周波数を変更
しうるようにしたものである。
FIG. 8 shows the configuration of the second embodiment. In FIG. 8, reference numeral 56 is a variable frequency signal generation source, so that the fundamental frequency and the modulation frequency can be changed even if the signal transmission is based on the same modulation principle. It is the one.

従って、判別手段53、CT54を用いて求めた系統上の信号
周波数、電圧、電流の分布から系統および負荷の状態を
推定し、さらに他の負荷分岐の末端に存在する端末送受
信器の割当て周波数を、経済的な妥当性を損わない範囲
でカバーできるようにした汎用送受信装置と定義しても
よい。
Therefore, the state of the system and the load is estimated from the distribution of the signal frequency, voltage, and current on the system obtained using the discrimination means 53 and CT54, and the assigned frequency of the terminal transceiver existing at the end of another load branch is determined. It may be defined as a general-purpose transceiver that can cover the economical validity.

従って、ここで用いられる可変周波数信号発生源56は同
時に用いる判別手段53、CT54と共に系統上の他の必要な
地点でも使用可能にしてあることがこの発明の趣意を実
現するのにはより適当である。
Therefore, it is more appropriate to realize the purpose of the present invention that the variable frequency signal generation source 56 used here can be used at other necessary points on the system together with the discrimination means 53 and CT54 used at the same time. is there.

第9図は上記第2実施例の動作を説明するフローチャー
トで、その内容は以下の通りである。
FIG. 9 is a flow chart for explaining the operation of the second embodiment, the contents of which are as follows.

装置が起動する時刻になれば、まず、系統諸量を分岐点
において計測する(ステップ9−1)。ここで、異常が
あるか否かを判別し(ステップ9−2)、異常がなけれ
ば一旦親局側へ向けて、上りの送信要求信号を送信し、
異常があればアラーム発生および待機する(ステップ9
−10)。親局側から下り方向に基準信号の送信があれ
ば、これを検出し信号成分の電流I0,I1,I2を計測する
(ステップ9−3〜9−5)。この場合には、信号成分
の他に雑音ではあるが、信号と極めて近接した周波数も
含めて計測することになる。ここで、I0n,I1n,I2nが求
められたわけである。
At the time when the device is activated, first, various system quantities are measured at the branch point (step 9-1). Here, it is determined whether or not there is an abnormality (step 9-2), and if there is no abnormality, an upstream transmission request signal is once transmitted to the master station side,
If there is an abnormality, an alarm is generated and the system stands by (step 9).
-10). If a reference signal is transmitted in the downstream direction from the master station side, it is detected and the currents I 0 , I 1 , and I 2 of the signal components are measured (steps 9-3 to 9-5). In this case, in addition to the signal component, although it is noise, the frequency that is extremely close to the signal is also measured. Here, I 0n , I 1n , and I 2n are obtained.

つぎに、親局側へ向けて前述の判別手段53と可変周波数
信号発生源56により、負荷5の割当て周波数と同じ上り
信号を送信する。
Next, the determination unit 53 and the variable frequency signal generation source 56 described above transmit the upstream signal having the same frequency as the load 5 to the master station.

この場合、信号としてI0S,I1S,I2Sなる電流分布が生
じ、前述のI0n,I1n,I2nに重畳される。すなわち、 I0n′=I0n+I0S I1n′=I1n+I1S I2n′=I2n+I2S なる関係があるが、検出は上記の変化後の分布を検出す
ることになる。
In this case, current distributions I 0S , I 1S , and I 2S are generated as signals, and are superimposed on the above-mentioned I 0n , I 1n , and I 2n . That is, there is a relation of I 0n ′ = I 0n + I 0S I 1n ′ = I 1n + I 1S I 2n ′ = I 2n + I 2S, but the detection is to detect the distribution after the change.

つぎに信号/雑音判別処理に入るが、その詳細は別に述
べることとし、ここで、信号吸収が発生していれば、吸
収している旨を上り信号として親局側へ報告用の送信を
行い(ステップ9−8,9−13)、雑音発生の状況であれ
ば同様に報告送信を行う(9−9,9−14)。また、吸
収、発生が激しい場合は、この端で状況を記憶蓄積し、
親局側が交信可能と判断するまで待機することとする。
Next, the signal / noise discrimination processing is entered, but the details will be described separately here. If signal absorption has occurred, it is transmitted to the master station side as an upstream signal indicating that absorption has occurred. (Steps 9-8, 9-13), if noise is generated, report transmission is similarly performed (9-9, 9-14). Also, when absorption and occurrence are severe, the situation is memorized and accumulated at this end,
Wait until the master station determines that communication is possible.

つぎに上述のフローチャートの中で詳細な説明を省いた
信号/雑音判別処理の具体内容を、第10図のフローチャ
ートについて説明する。第10図において、電流I0,I1,I2
の検出からI0がk′より大きいか否かの判定まで(ステ
ップ10−1〜10−4)は、前記第1実施例における信号
/雑音判別処理の場合と同じであるので説明を省略す
る。
Next, the specific contents of the signal / noise discrimination processing, which has not been described in detail in the above-mentioned flowchart, will be described with reference to the flowchart in FIG. In FIG. 10, the currents I 0 , I 1 , I 2
From detection to decision I 0 is k 'of greater than or not (step 10-1 to 10-4) will be omitted because it is same as that of the signal / noise determining process in the first embodiment .

つぎに、上記雑音レベルの判定が終了した後、分岐点か
らの信号送信が行われたかを確認し、しかる後、3つの
分岐点の電流I0,I1,I2を測定してI0′,I1′,I2′とする
(ステップ10−5,10−6)。
Next, after the noise level determination is completed, it is confirmed whether or not a signal is transmitted from the branch point, and thereafter, the currents I 0 , I 1 , and I 2 at the three branch points are measured to obtain I 0. ′, I 1 ′, I 2 ′ (steps 10-5, 10-6).

また、I0′,I1′,I2′の計測値と、以前の計測値I0,I1,
I2とを比較し、その差分をΔI0,ΔI1,ΔI2とする(ステ
ップ10−7)。
In addition, the measured values of I 0 ′, I 1 ′, I 2 ′ and the previous measured values I 0 , I 1 ,
I 2 is compared, and the differences are set as ΔI 0 , ΔI 1 , and ΔI 2 (step 10-7).

いま、雑音として分岐点から強制電流が流入して来たと
すると、この電流値I0は分岐点より負荷側では不変であ
り、I0Sは殆ど存在しえないから、 ΔI1=ΔI2 となる(ステップ10−8)。
Now, if a forced current flows in from the branch point as noise, this current value I 0 is invariable on the load side from the branch point, and I 0S can hardly exist, so ΔI 1 = ΔI 2 (Step 10-8).

つぎに分岐点に信号を吸収する回路があり、信号吸収の
発生があったとすれば、上り信号が存在している時と、
今回印加信号を与えた時とでは、信号分が増加し ΔIS1>0 当然ΔIS0>0 ΔIS2>0 となる。
Next, there is a circuit that absorbs a signal at the branch point, and if signal absorption occurs, when there is an upstream signal,
When the applied signal is applied this time, the signal component increases and ΔI S1 > 0 naturally ΔI S0 > 0 ΔI S2 > 0.

この時は信号吸収とわかる(ステップ10−9,10−10)。
更に信号源が電源側にあってこの信号を受信した上で自
端(分岐端)から上り信号を発信する場合、吸収があれ
ば ΔI0>0 ΔI1<0 ΔI2<0 となり同じく判別可能である(ステップ10−11)。
At this time, it can be seen that the signal is absorbed (steps 10-9, 10-10).
Furthermore, when the signal source is on the power supply side and this signal is received and then an upstream signal is transmitted from its own end (branch end), if there is absorption, ΔI 0 > 0 ΔI 1 <0 ΔI 2 <0, and the same determination is possible. (Step 10-11).

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、配電線路に沿った分
岐点上で電流、電圧を計測することにより、分岐点より
支線側にパワーエレクトロニクス機器による高調波発生
電流源があって、送信信号に対して雑音となっている状
態および上記支線側にコンデンサ等の信号吸収回路があ
って、送信信号を分流させている状態を判別するように
構成したので、送信信号周波数近傍の高調波電流源の特
定と送信信号漏洩の確認を行って伝送路不良の内容を適
確に弁別することができ、配電線搬送における信号伝送
比低下をきたす部分を特定することができるという顕著
な効果が得られる。
As described above, according to the present invention, by measuring the current and voltage at the branch point along the distribution line, there is a harmonic generation current source by the power electronic device on the branch line side from the branch point, and the transmission signal Since it is configured to determine the state of being a noise and the state in which there is a signal absorption circuit such as a capacitor on the branch line side and the transmission signal is shunted, the harmonic current source near the transmission signal frequency And the transmission signal leakage can be confirmed to accurately discriminate the contents of the transmission path failure, and the remarkable effect that the portion causing the signal transmission ratio reduction in the distribution line transportation can be specified can be obtained. .

また、前記判別効果の伝送時、伝送不可能な場合は、判
別結果をメモリに伝送可能になるまでメモリするので、
判別結果の伝送を確実に行うことができ、この伝送を主
要点に伝送することができる。
Further, at the time of transmission of the discrimination effect, if transmission is not possible, the discrimination result is stored in the memory until it can be transmitted.
The determination result can be reliably transmitted, and this transmission can be transmitted to the main points.

しかも、前記搬送波周波数に近い高調波成分が存在する
ときは、可変周波数信号発生源から分岐点に前記搬送周
波数の搬送波信号を印加し、この搬送波信号の印加後の
分岐点における電流変化を計測して、前記搬送波信号の
分流か高調波電流源からの雑音発生かを判別するもの
で、前記の高調波電流源の特定と送信信号漏洩の確認を
より確実に行うことができるという効果がある。
Moreover, when there is a harmonic component close to the carrier frequency, the carrier signal of the carrier frequency is applied from the variable frequency signal generation source to the branch point, and the current change at the branch point after the application of the carrier signal is measured. Then, it is determined whether the shunting of the carrier signal or the noise generation from the harmonic current source is performed, and it is possible to more reliably identify the harmonic current source and confirm the transmission signal leakage.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の第1実施例による配電線搬送方法の
原理説明図、第2図は搬送状態に応じた分岐点の電流方
向を示す図、第3図はこの発明の第1実施例を示すブロ
ック図、第4図は動作を説明するフローチャート図、第
5図は信号/雑音判別処理の動作を説明するフローチャ
ート図、第6図はこの発明の第2実施例による配電線搬
送方法の原理説明図、第7図は搬送状態に応じた分岐点
の電流方向を示す図、第8図はこの発明の実施例を示す
ブロック図、第9図はその動作を説明するフローチャー
ト図、第10図は信号/雑音判別処理の動作を説明するフ
ローチャート図、第11図は従来の配電線搬送方法を説明
するブロック図である。 3は配電線路、4,5は負荷、53は判別手段、55は伝送手
段、56は可変周波数信号発生源。 なお、図中、同一符号は同一または相当部分を示す。
1 is an explanatory view of the principle of a distribution line carrying method according to a first embodiment of the present invention, FIG. 2 is a view showing a current direction at a branch point according to a carrying state, and FIG. 3 is a first embodiment of the present invention. 4 is a block diagram showing the operation, FIG. 4 is a flow chart for explaining the operation, FIG. 5 is a flow chart for explaining the operation of the signal / noise discrimination processing, and FIG. 6 is a distribution line conveying method according to the second embodiment of the present invention. FIG. 7 is a diagram for explaining the principle, FIG. 7 is a diagram showing a current direction of a branch point according to a carrying state, FIG. 8 is a block diagram showing an embodiment of the present invention, FIG. 9 is a flow chart diagram for explaining the operation, and FIG. FIG. 11 is a flow chart for explaining the operation of the signal / noise discrimination processing, and FIG. 11 is a block diagram for explaining a conventional distribution line conveying method. 3 is a distribution line, 4 and 5 are loads, 53 is a discrimination means, 55 is a transmission means, and 56 is a variable frequency signal generation source. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】配電系統上の主要点と末端各点との間で、
系統状態の情報交換・指令の伝達を配電線を利用して行
う配電線搬送方法において、前記配電系統内の電源と負
荷との中間に点在する1つ以上の分岐点に流れる電流と
該分岐点付近の電圧とを計測し、この電流と電圧の波形
を分析して、搬送周波数に近い高調波成分の有無を検出
し、高調波成分が存在するときは、前記各分岐点への搬
送波信号の分流か高調波発生電流源からの雑音発生かを
判別することを特徴とする配電線搬送方法。
1. A main point and a terminal point on a distribution system,
In a distribution line carrying method for exchanging information on a system state and transmitting a command using a distribution line, a current flowing at one or more branch points scattered between a power source and a load in the distribution system and the branch Measure the voltage near the point and analyze the waveform of this current and voltage to detect the presence or absence of harmonic components close to the carrier frequency.If there are harmonic components, the carrier signal to each branch point is detected. A distribution line carrying method, characterized in that it is discriminated whether the shunt current is generated or noise is generated from a harmonic generation current source.
【請求項2】前記判別結果の伝送時、伝送不可能な場合
は、前記判別結果をメモリにメモリすることを特徴とす
る特許請求の範囲第(1)項記載の配電線搬送方法。
2. The distribution line carrying method according to claim 1, wherein when the determination result is transmitted, if the determination result cannot be transmitted, the determination result is stored in a memory.
【請求項3】前記判別結果を前記主要点に伝達すること
を特徴とする特許請求の範囲第(1)項記載の配電線搬
送方法。
3. The distribution line carrying method according to claim 1, wherein the determination result is transmitted to the main point.
【請求項4】前記搬送周波数に近い高調波成分が存在す
るときは、可変周波数信号発生源から分岐点に前記搬送
周波数の搬送波信号を印加し、この搬送波信号の印加後
の分岐点における電流変化を計測して、前記搬送波信号
の分流が高調波発生電流源からの雑音発生かを判別する
ことを特徴とする特許請求の範囲第(1)項記載の配電
線搬送方法。
4. When a harmonic component close to the carrier frequency exists, a carrier signal of the carrier frequency is applied from a variable frequency signal source to a branch point, and a current change at the branch point after the carrier signal is applied. The distribution line conveying method according to claim (1), characterized in that the shunt of the carrier wave signal is measured to determine whether noise is generated from a harmonic generation current source.
JP61189669A 1986-08-14 1986-08-14 Distribution line transportation method Expired - Fee Related JPH0787409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189669A JPH0787409B2 (en) 1986-08-14 1986-08-14 Distribution line transportation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189669A JPH0787409B2 (en) 1986-08-14 1986-08-14 Distribution line transportation method

Publications (2)

Publication Number Publication Date
JPS6346822A JPS6346822A (en) 1988-02-27
JPH0787409B2 true JPH0787409B2 (en) 1995-09-20

Family

ID=16245190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189669A Expired - Fee Related JPH0787409B2 (en) 1986-08-14 1986-08-14 Distribution line transportation method

Country Status (1)

Country Link
JP (1) JPH0787409B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740682B2 (en) * 1984-07-24 1995-05-01 三菱電機株式会社 Transmission equipment

Also Published As

Publication number Publication date
JPS6346822A (en) 1988-02-27

Similar Documents

Publication Publication Date Title
Ropp et al. Using power line carrier communications to prevent islanding [of PV power systems]
US7969159B2 (en) Method and apparatus for an electrical conductor monitoring system
CA2517013C (en) Non-intrusive cable connection monitoring for use in hfc networks
US7808128B1 (en) Remote monitoring of control decisions for network protectors
US7304403B2 (en) Power signaling based technique for detecting islanding conditions in electric power distribution systems
AU2014277951B2 (en) Inferring feeder and phase powering a transmitter
US9952271B2 (en) Insulation monitoring system for secured electric power system
CN110601363B (en) Station area branch identification method and system based on sinusoidal current disturbance
AU4358299A (en) Method and device for monitoring an electrode line of a bipolar high voltage direct current (hvdc) transmission system
US6430210B1 (en) Receiver for detecting an amplitude modulated signal insinuated on an GHM signal
WO1999063641A1 (en) Detection of faults on transmission lines in a bipolar high-voltage direct current system
JPH0787409B2 (en) Distribution line transportation method
US10158400B2 (en) Frequency selective power monitor
WO2009015200A1 (en) Method and apparatus for an electrical conductor monitoring system
KR102540979B1 (en) Multi-channel arc detection cutoff device using HF sensor and carrier frequency and method thereof
JPS60176415A (en) Alarm signal transmitting method
CN218524855U (en) Secondary multipoint grounding detection information collection system for voltage transformer
US10871512B2 (en) Method and system for detecting noise in an electrical grid
JPS61170224A (en) Method and device for detecting trouble point of aerial transmission line
JPH098711A (en) Ground return carrier system
Higinbotham et al. On-line Partial Discharge Assessment and Monitoring of MV to EHV Cables
JPS6014546B2 (en) Fault monitoring method for cable relay communication system
JPS6149889B2 (en)
Dashti et al. Fault section estimation in power distribution network only with special cutout fuse links setting
JPS637033A (en) Distribution line carrier system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees