JPH0740682B2 - Transmission equipment - Google Patents

Transmission equipment

Info

Publication number
JPH0740682B2
JPH0740682B2 JP59156025A JP15602584A JPH0740682B2 JP H0740682 B2 JPH0740682 B2 JP H0740682B2 JP 59156025 A JP59156025 A JP 59156025A JP 15602584 A JP15602584 A JP 15602584A JP H0740682 B2 JPH0740682 B2 JP H0740682B2
Authority
JP
Japan
Prior art keywords
voltage
transmission
frequency signal
signal
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59156025A
Other languages
Japanese (ja)
Other versions
JPS6132626A (en
Inventor
眞 寺田
浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59156025A priority Critical patent/JPH0740682B2/en
Publication of JPS6132626A publication Critical patent/JPS6132626A/en
Publication of JPH0740682B2 publication Critical patent/JPH0740682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5433Remote metering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5466Systems for power line communications using three phases conductors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5483Systems for power line communications using coupling circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5495Systems for power line communications having measurements and testing channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、配電系統を利用して情報伝送を行なう伝送
装置に関する。
Description: [Industrial field of use] The present invention relates to a transmission device for transmitting information using a distribution system.

〔従来の技術〕[Conventional technology]

配電系統の発達は、電力エネルギーとしての利用が高度
化する一方、情報伝達の媒体のしてその有用性が認識さ
れて益々その度合を高めている。
The development of power distribution systems is becoming more and more popular, as their utility as an information transmission medium is recognized while their utilization as electric power energy is becoming more sophisticated.

配電系統は、その構成が多岐に及び形状は単純でも分枝
の多い事が特徴である。
Power distribution systems are characterized by a wide variety of configurations and simple shapes, but with many branches.

このような系統の運用を自動化するため所謂配電自動化
方式が実用化されつつあるが、この中で、配電線搬送を
利用する方式はその構成が、主回路系統の変更に応じて
対処しやすく、余分の専用伝送路を必要としないという
理由で研究されて来ている。然し乍ら本方式は配電線路
の複雑な構成の中ではその動作に確実性を欠く面があり
種々の原理が考案されて来ている。
In order to automate the operation of such a system, a so-called distribution automation method is being put to practical use, but in this, the method of using distribution line transportation has a configuration that is easy to deal with when the main circuit system is changed, It has been studied because it does not require an extra dedicated transmission line. However, in this method, there is a lack of certainty in its operation in the complicated configuration of the distribution line, and various principles have been devised.

その中で低圧配電線では位相パルス信号方式が負荷機器
制御システム、自動検針並びに諸情報収集システムとし
て注目されている。
Among them, the phase pulse signal method has been attracting attention as a load device control system, automatic meter reading and various information collecting system for low voltage distribution lines.

この従来の方式は配電線の商用周波電圧を直接利用し任
意の位相に過渡的高周波振動を発生させこれを信号波と
して伝播させる方式であり、その詳細は以下に示す通り
である。
This conventional method is a method in which a commercial high frequency voltage of a distribution line is directly used to generate a transient high frequency vibration in an arbitrary phase and propagates it as a signal wave, the details of which are as follows.

第1図に於て(1)は高圧配電線、(2)は柱上変圧
器、(3)は低圧配電線、(4)は送受信器(親側)、
(5)は送受信機(子側)である。
In FIG. 1, (1) is a high voltage distribution line, (2) is a pole transformer, (3) is a low voltage distribution line, (4) is a transceiver (parent side),
(5) is a transceiver (child side).

この方式では電源端又は負荷端の送受信機回路の中で高
周波共振回路を接続しその回路を所定の位相でON−OFF
する事により商用周波電源電圧波形に任意位相の過渡的
高周波振動を重畳発生するものである。
In this method, a high-frequency resonant circuit is connected in the transmitter / receiver circuit at the power source end or the load end, and that circuit is turned on and off at a specified
By doing so, transient high frequency vibration of arbitrary phase is superimposed and generated on the commercial frequency power supply voltage waveform.

その原理図を第2図に示す。The principle diagram is shown in FIG.

第2図において、(a)は位相パルス方式の等価回路図
を、(b)はその波形を示す。この方式の原理は、負荷
端(5)のコンデンサ(51)に蓄えられた電荷をスイツ
チ(53)により放電し、負荷(6)又は電源(0)へイ
ンピーダンス(1),(2),(3),(20)を通して
分流させるものである。
In FIG. 2, (a) shows an equivalent circuit diagram of the phase pulse method, and (b) shows its waveform. The principle of this method is that the charge stored in the capacitor (51) at the load end (5) is discharged by the switch (53), and the impedance (1), (2), () is supplied to the load (6) or the power supply (0). The flow is divided through 3) and (20).

負荷端でコンデンサCo(51)を放電した場合は電源端へ
至る途中柱上変圧器の低圧側を流れる電流i2を検出する
事になる。
When the capacitor Co (51) is discharged at the load end, the current i 2 flowing through the low voltage side of the pole transformer is detected on the way to the power supply end.

この時、信号として発せられる電圧の波形は例えば、
「電気共同研究」第36巻第5号P37〜38に示されるよう
に、 L=ZH+Zt+ZLのリアクタンス分と表現される。
At this time, the waveform of the voltage emitted as a signal is, for example,
As shown in "Electrical Collaborative Research" Vol. 36, No. 5, P37-38, It is expressed as the reactance component of L = Z H + Zt + Z L.

この方式に於ては発信周波数,位相,レベルが発信回路
定数,低圧配電線,柱上変圧器,需要家負荷などにより
変動を受ける。
In this method, the transmission frequency, phase, and level are affected by the transmission circuit constant, low-voltage distribution line, pole transformer, customer load, etc.

この変動は定量的に把握する事は困難で、本方式が比較
的雑音等に弱いと見られる動作を示す一因となつている
と考えられる。
It is difficult to quantitatively grasp this variation, and it is considered that this method is one of the causes of the behavior that is considered to be relatively weak against noise.

〔発明の目的〕[Object of the Invention]

本発明は、従来装置の上記欠点を解消し新たな方式を提
供せんとするものである。
The present invention solves the above-mentioned drawbacks of the conventional device and provides a new method.

〔発明の実施例〕Example of Invention

本発明の原理を第3図の等価回路図に示す。第3図
(a)に於て、(0)は商用周波電源、(1)は高圧側
インピーダンス、(2)は変圧器の等価インピーダン
ス、(3)は低圧側線路のインピーダンス、(4)は親
側受(送)信機、(40)は信号受信用CT、(5)は子側
送(受)信機、(51)は送信回路用コンデンサ、(52)
はリアクタ、(53)は送信用スイツチ、(6)は負荷で
あり、以上(1)〜(6)は第2図(a)の位相パルス
方式の等価回路図と本質的に同じである。
The principle of the present invention is shown in the equivalent circuit diagram of FIG. In FIG. 3 (a), (0) is a commercial frequency power source, (1) is a high-voltage side impedance, (2) is an equivalent impedance of a transformer, (3) is a low-voltage side impedance, and (4) is Master side receiver (sender), (40) CT for signal reception, (5) slave side (receiver) transmitter, (51) capacitor for transmission circuit, (52)
Is a reactor, (53) is a transmission switch, and (6) is a load. The above (1) to (6) are essentially the same as the equivalent circuit diagram of the phase pulse system of FIG. 2 (a).

本発明では子側送(受)信機(5)に変成器(50)を追
加したものである。
In the present invention, a transformer (50) is added to the slave side transmission (reception) receiver (5).

変成器(50)はコンデンサ(51)の電荷を放電する事に
より生じる負荷(6)への分流分を測定するもので、こ
の測定結果を送(受)信機(5)に加味し、親側への送
信信号を自端から発信する自端負荷の情報に追加する事
を特長とする。
The transformer (50) measures the shunt flow to the load (6) caused by discharging the electric charge of the capacitor (51). The measurement result is added to the transmitter (receiver) transmitter (5) and The feature is that the transmission signal to the side is added to the information of the own-end load transmitted from the own end.

この事により負荷側へ分流消失した分を正確に加味する
事により子側の情報信号に発信時の負荷側への流失分を
加味でき、線路伝播状態の変化があればその有無を考慮
した信号送信が可能となる。
As a result, by accurately adding the amount that has diverted to the load side, the loss to the load side at the time of transmission can be added to the information signal on the slave side, and if there is a change in the line propagation state, a signal that considers the presence or absence of that change. It becomes possible to send.

次に第3図(b)に、柱上変圧器側の接続を含む本発明
の原理図を示す。
Next, FIG. 3 (b) shows the principle of the present invention including the connection on the pole transformer side.

第3図(b)に於て、(0),(2),(6)は第2図
(a),第3図(a)のそれと同じである。(21),
(22)は高圧,低圧側に接続されたCTで、その接続は差
動的とする。この出力を電源側受(送)信機(4)に導
入する。
In FIG. 3 (b), (0), (2) and (6) are the same as those in FIGS. 2 (a) and 3 (a). (twenty one),
(22) is a CT connected to the high voltage side and the low voltage side, and the connection is differential. This output is introduced into the power receiving (transmitting) transmitter (4).

負荷側からの送信信号は信号受信用CT(40)を介して受
(送)信機(4)へ加えられるが柱上変圧器は飽和特性
をもつ非線型インピーダンスの為、高圧側でのキヤパシ
タ等の開閉による過渡現象により複雑な振舞いを示す。
従つてこの等価回路中の励磁を示す分路に流れる差電流
(代数和)を検出し、この波形が特定周波成分(たとえ
ば40,60,80 10)を含む信号受信用CT(40)
を介して得られる受(送)信機(4)の受信信号の受信
判定を一部中止もしくは変更する様な判断を加味する様
にするものである。
The transmission signal from the load side is applied to the receiving (transmitting) transmitter (4) via the signal receiving CT (40), but the pole transformer is a nonlinear impedance with saturation characteristics, so the capacitor on the high voltage side is It shows complicated behavior due to the transient phenomenon caused by opening and closing of etc.
Therefore, the differential current (algebraic sum) flowing in the shunt indicating the excitation in this equivalent circuit is detected, and this signal-receiving CT (including 40 0 , 60 0 , 80 10 0 ) contains a specific frequency component (for example, 4 0 , 60, 8 0 10 0 ). 40)
The decision to partially cancel or change the reception determination of the reception signal of the reception (transmission) transmitter (4) obtained via the above is taken into consideration.

特に高圧側に接続された力率改善コンデンサを投入する
際に発生する過渡現象はその波形は異なるが直列に接続
された短絡電流抑制用リアクトルとの共振により発生す
るもので、発生機構自体は同一であり高圧側より柱上変
圧器を介して低圧側へ侵入する際、位相如何では高磁束
密度レベルで動作中の上記変圧器を直流飽和させやす
く、その為にその偶数倍調波分をとることになる。この
ような現象を受信端近傍で直接検出する事により、異常
状態を監視でき、伝送不良を生じた際、受信波形の弁別
により確実性を付与する事ができる。
In particular, the transient phenomenon that occurs when the power factor correction capacitor connected to the high voltage side is turned on is caused by resonance with the short-circuit current suppressing reactor connected in series, although the waveforms are different, and the generation mechanism itself is the same. When entering the low voltage side from the high voltage side through the pole transformer, it is easy to saturate the above transformer operating at a high magnetic flux density level with direct current depending on the phase, and therefore take even harmonics. It will be. By directly detecting such a phenomenon in the vicinity of the receiving end, an abnormal state can be monitored, and when a transmission failure occurs, it is possible to give certainty by discriminating the received waveform.

又、高圧側の開閉等変圧器高圧側の電圧に瞬時変化を来
たした際、同じく柱上変圧来のもつ非線型励磁特性によ
り生ずる励磁インピーダンス分路への分流分により生ず
る過渡現象により生じる高調波波形により、同じく受信
波形が乱れ伝送不良を生じた際、受信波形の弁別により
確実性を付与する事ができる。
In addition, when there is an instantaneous change in the voltage on the high-voltage side of the transformer, such as switching on the high-voltage side, the harmonics caused by transient phenomena caused by the shunt current flow to the excitation impedance shunt caused by the non-linear excitation characteristics of the pole transformer as well. Similarly, when the received waveform is disturbed by the waveform and the transmission failure occurs, the certainty can be given by discriminating the received waveform.

以上要するに本方式では、送(受)信端に於て生じる側
路分を、電源/負荷両側で検出するようにした事、並び
に受信側に近接する柱上変圧器の非線型性に生じる異常
現象を検出し、それにより受信側弁別ロジツクに修正を
施す事を可能とするものであり、これにより信号送受信
の確実性を一段と向上するものである。
In short, in this method, the side path generated at the transmission (reception) end is detected on both sides of the power supply / load, and the abnormalities caused by the nonlinearity of the pole transformer close to the reception side. It is possible to detect a phenomenon and correct the discrimination logic on the receiving side by using the detected phenomenon, thereby further improving the certainty of signal transmission and reception.

本発明の一実施例の基本構成を第4図に示す。第4図に
於て、(1)〜(5)は第1図における(1)〜(5)
とほぼその機能は全じである。本実施例に於ては、高圧
側にCT(21a),(21b)、低圧側にCT(22a),(22
b)、低圧側にPT(31a),(31b)親側受(送)信器
(4)に近接してCT(40a),(40b)、子側送(受)信
器(51)に近接してCT(50a),(50b)を設け、かつ、
その2次に計測・処理機能回路(41)及び(54)を付加
した点が異なる。
The basic configuration of one embodiment of the present invention is shown in FIG. In FIG. 4, (1) to (5) are (1) to (5) in FIG.
And its function is almost the same. In this embodiment, CT (21a) and (21b) are on the high pressure side, and CT (22a) and (22 are on the low pressure side.
b), on the low voltage side, close to the PT (31a), (31b) parent side receiving (transmitting) receiver (4), and CT (40a), (40b), child side transmitting (receiver) receiver (51) CT (50a) and (50b) are installed in close proximity, and
The second difference is that measurement / processing function circuits (41) and (54) are added.

CT(50a)(50b)及び計測・処理機能回路(55)は前述
した原理第3図(a)を実現するためのものであり、CT
(21a)(21b),CT(22a)(22b),PT(31a)(31b)及
び計測・処理機能回路(41)は前述の原理第3図(b)
を実現するためのものである。
The CT (50a) (50b) and the measurement / processing function circuit (55) are for realizing the above-mentioned principle FIG. 3 (a).
(21a) (21b), CT (22a) (22b), PT (31a) (31b) and measurement / processing function circuit (41) are based on the above-mentioned principle FIG. 3 (b).
Is to realize.

次に回路の詳細な構成及び動作を以下に示す。第5図に
本発明の一実施例の子局側(送信端)の構成を示す。
Next, the detailed configuration and operation of the circuit will be described below. FIG. 5 shows the configuration of the slave station side (transmission end) of an embodiment of the present invention.

第5図に於て、(5),(50−a),(51),(52),
(53)は第3図,第4図のそれと同じである。(55a)
はレベルコンバータであり、CT(50−a)の2次側の瞬
時値波形を適当なレベルに変換する。(56a)は同じく
レベルコンバータで、低圧回路電圧を同じく瞬時値波形
の適当なレベルをもつものに変換するものである。(57
a)(57b)はサンプルホールドアンプでありレベルコン
バータの出力波形を記憶する。(58a)(58b)はサンプ
ルホールドの制御を司る制御回路で、系統電圧の適当な
位相(たとえば0)を検出し、この時の電流波形をサン
プルするようサンプルホールドアンプ(57a)(57b)に
サンプルパルスを発生する。これにより電源周波数と同
期した送信電流を検出できるようにする。
In Fig. 5, (5), (50-a), (51), (52),
(53) is the same as that of FIGS. 3 and 4. (55a)
Is a level converter that converts the instantaneous value waveform on the secondary side of CT (50-a) to an appropriate level. Reference numeral (56a) is also a level converter for converting the low voltage circuit voltage into one having an appropriate level of the instantaneous value waveform. (57
a) and (57b) are sample and hold amplifiers that store the output waveform of the level converter. Reference numerals (58a) and (58b) are control circuits for controlling the sample and hold. The sample and hold amplifiers (57a) and (57b) detect the appropriate phase (for example, 0) of the system voltage and sample the current waveform at this time. Generate a sample pulse. As a result, the transmission current synchronized with the power supply frequency can be detected.

(59)はマルチプレクサであり、サンプルホールドアン
プ(57a)(57b)のサンプルホールド値を切換え、次段
のA/Dコンバータ(60)へ入力として印加する。
(59) is a multiplexer, which switches the sample hold value of the sample hold amplifiers (57a) (57b) and applies it as an input to the A / D converter (60) in the next stage.

上記A/Dコンバータ(60)では、マルチプレクサ(59)
の出力アナログ電圧を入力とし、これをデイジタル値に
変換して後段のマイクロプロセツサ(61)へ印加する。
In the above A / D converter (60), multiplexer (59)
The output analog voltage of is input and converted into a digital value and applied to the subsequent microprocessor (61).

尚、説明は省略したが、3相回路のものb相−n相間に
ついても同様な回路構成で入力を系統側より取り、サン
プルホールドアンプ(57b)へ加え、制御回路(58b)に
より制御してA/Dコンバータ(60)へ取入れる。
Although not described, the three-phase circuit has a similar circuit configuration between the b-phase and the n-phase, the input is taken from the system side, added to the sample hold amplifier (57b), and controlled by the control circuit (58b). Take it into the A / D converter (60).

本回路に於てレベルコンバータ(56a)の入力側は必要
に応じPTを使用してもよい。本質的にレベルコンバレー
タの機能とPTの機能は仝一であるが説明を簡単にするた
めにPTを使用しないものとして説明した。
In this circuit, the input side of the level converter (56a) may use PT if necessary. Although the functions of the level converter and the PT are essentially the same, the PT is not used for the sake of simplicity.

次に本発明の実施例の子局側の動作を次に説明する。Next, the operation of the slave station side according to the embodiment of the present invention will be described.

まず子局側より親局側へデータを送信する場合、子局側
はデータの送り出し要求に応じ計量値をソリツドステー
トメータ(7)から受けて子側送(受)信機(5)の伝
送制御回路(TCC)でパルス列とし次段のサイリスタゲ
ート制御回路(GCC)へ印加する。サイリスタモジユー
ル(3)はこのゲート制御回路GCCの出力パルスを受け
点弧するが、この点弧回数に応じ自由振動パルス波形が
コンデンサ(51),リアクタ(52)がら外部回路へ送出
される。
First, when transmitting data from the slave station side to the master station side, the slave station side receives the measured value from the solid state meter (7) in response to the data transmission request, and then transmits to the slave side transmission (reception) receiver (5). The transmission control circuit (TCC) creates a pulse train and applies it to the thyristor gate control circuit (GCC) at the next stage. The thyristor module (3) fires upon receiving the output pulse of the gate control circuit GCC, and a free vibration pulse waveform is sent to the external circuit from the capacitor (51) and the reactor (52) according to the number of times of firing.

ここで、高周波のパルス信号は、負荷側インピーダンス
に比べ電源側インピーダンスが小さいことから、そのほ
とんどが電源側へながれるが、高周波に対して低インピ
ーダンスのコンデンサ等の負荷が負荷側に接続されて居
ると、コンデンサ(51)よりパルスは負荷側へも分流し
CT(50−a)の1次側にも電流が流れるから、その2次
側に電流が流れ、レベルコンバータ(55a)によりサン
プルホールドアンプ(57a)に保持される。但しこの
時、低圧線間電圧をレベル変換し、制御回路(58a)に
加えてあるのでこの極性及び間隔をマイクロプロセツサ
(61)からの指令に応じ設定してコンデンサ(51)の印
加電圧の放電のタイミング及びコンデンサ(51)の両端
電圧の極性と同一方向の時にホールドさせるようにする
と、線間電圧符号に同期した電流波形をサンプルし保持
する事ができる。
Here, since the high-frequency pulse signal has a smaller impedance on the power source side than the impedance on the load side, most of it flows to the power source side, but a load such as a capacitor having a low impedance with respect to high frequencies is connected to the load side. Then, the pulse is shunted to the load side from the capacitor (51).
Since a current also flows on the primary side of the CT (50-a), a current also flows on the secondary side of the CT (50-a) and is held in the sample hold amplifier (57a) by the level converter (55a). However, at this time, since the low-voltage line voltage is level-converted and added to the control circuit (58a), the polarity and the interval are set according to the command from the microprocessor (61) and the voltage applied to the capacitor (51) is changed. If the discharge timing and the voltage across the capacitor (51) are held in the same direction as the polarity, the current waveform synchronized with the sign of the line voltage can be sampled and held.

即ち送信用スイツチ(3)を閉とした時の位相パルスの
負荷流出分を計測できる。
That is, the load outflow amount of the phase pulse when the transmission switch (3) is closed can be measured.

次にこのようにして得たアナログ値はマルチプレクサ
(59)で切換えの後、A/Dコンバータ(60)によりデイ
ジタル値となり、マイクロプロセツサ(61)により取込
まれそのメモリー内に収納される。
Next, the analog value thus obtained is switched by the multiplexer (59), becomes a digital value by the A / D converter (60), is fetched by the microprocessor (61), and is stored in the memory.

このマイクロプロセツサ(61)が記憶した流出電流波形
の大きさ,周波数,位相をマイクロプロセツサ(61)に
より高速分析し、その値を子側送(受)信機(5)の信
号送出用の伝送制御回路TCCへ印加し、次の伝送サイク
ルに送出する情報に上記情報を重畳して伝送する。流出
電流の情報を入手した親側受(送)信機(4)は、その
情報を基に、先に受信した情報を採用するか否か、或は
再度の送信要求を行なうかの判断を行なう。
The size, frequency, and phase of the outflow current waveform stored by this microprocessor (61) are analyzed at high speed by the microprocessor (61), and the values are used for the signal transmission of the slave side transmission (reception) receiver (5). Is applied to the transmission control circuit TCC, and the above information is superimposed on the information to be transmitted in the next transmission cycle and transmitted. Upon receiving the information on the outflow current, the master side receiving (transmitting) transmitter (4) judges whether to adopt the previously received information or to make another transmission request based on the information. To do.

配電線路における負荷の状況は、商用周波数の10サイク
ル以内で変動するものではないから、上記流出分を検出
し、次又は至近のサイクルに印加しても、実用上大きな
相違を生じる事はない。
Since the load condition in the distribution line does not change within 10 cycles of the commercial frequency, even if the above-mentioned outflow is detected and applied to the next or the closest cycle, practically no great difference occurs.

又、伝送制御回路が適当なインテリジエント性を有して
いる時はこの制御回路の動作を変更し送信パルスのレベ
ルを変更するなども可能である。
Further, when the transmission control circuit has a proper intelligence, it is possible to change the operation of this control circuit to change the level of the transmission pulse.

第6図に本発明の一実施例の親局(受信端)の構成を示
す。
FIG. 6 shows the configuration of the master station (reception end) of an embodiment of the present invention.

第6図に於て、(1),(2),(3),(4),(40
a)(40b),(40n),(21a),(21b),(21n)は名
称,機能とも第4図のそれと同じである。
In FIG. 6, (1), (2), (3), (4), (40
a) (40b), (40n), (21a), (21b), (21n) have the same names and functions as those in FIG.

(41)は計測処理回路で、以下の構成部分を備える。即
ち、(42a),(42b)は夫々3層の電流変成器(CT),
(43a),(43b)はこの電流変成器(42a),(42b)の
出力を受けてレベル変換を行うレベルコンバータであ
る。又、(44a),(44b)はレベルコンバータ(43
a),(43b)の出力を受けて後述の位相ロツクループよ
りそのホールド,リセツトの制御を受けるサンプルホー
ルドアンプ、(45)はサンプルホールドアンプ(44
a),(44b)の出力を後段のA/Dコンバータ(46)に切
換えて印加するマルチプレクサ、(46)は前述のマルチ
プレクサ(45)を経由して加えられたサンプルホールド
アンプ(44a),(44b)のアナログ出力をA/D変換するA
/Dコンバータである。
(41) is a measurement processing circuit, which includes the following components. That is, (42a) and (42b) are three-layer current transformers (CT),
(43a) and (43b) are level converters that receive the outputs of the current transformers (42a) and (42b) and perform level conversion. Further, (44a) and (44b) are level converters (43
The sample-hold amplifier (45) receives the outputs of (a) and (43b) and is controlled by the phase lock loop, which will be described later, to hold and reset the sample-hold amplifier (44).
a) and (44b) are applied to the A / D converter (46) in the subsequent stage by switching the outputs, and (46) is a sample-hold amplifier (44a), (a) added via the multiplexer (45). 44b) A to A / D conversion of analog output
It is a / D converter.

(47)は上述のA/Dコンバータ(46)の出力のデイジタ
ル値を読み込み計測演算処理を行うマイクロプロセツサ
であり、適当なスピードとメモリー容量を有するものと
する。
(47) is a microprocessor which reads the digital value of the output of the A / D converter (46) and performs measurement calculation processing, and has an appropriate speed and memory capacity.

(48)は低圧系統の線間電圧(3)を受け適当な大きさ
の電圧に変換するレベルコンバータ、(49)はサンプル
ホールドアンプ(44a),(44b)を制御する制御回路
で、これら(49),(44a)(44b)は子局側の(58a)
(58b),(44a)(44b)の機能とほぼ同じであるので
詳細な説明を省略するが、系統の電圧に同期し電圧0か
ら次の0迄出力をサンプルホールドアンプに与え、電圧
と同相の電流入力を保持し読込み可能とする。
(48) is a level converter that receives the line voltage (3) of the low-voltage system and converts it into a voltage of appropriate magnitude, and (49) is a control circuit that controls the sample-hold amplifiers (44a) and (44b). 49), (44a) and (44b) are on the slave station side (58a)
Since the functions of (58b), (44a) and (44b) are almost the same, detailed description thereof will be omitted, but outputs from the voltage 0 to the next 0 are applied to the sample and hold amplifier in synchronization with the voltage of the system, and the same phase as the voltage is applied. Holds the current input of and enables reading.

図中明らかな様にCT(42a)はCT(40a)の2次電流を受
け親局の受信電流を入力とする。
As is clear in the figure, CT (42a) receives the secondary current of CT (40a) and uses the received current of the master station as input.

又CT(42b)はCT(40a)(40b)の電流とCT(21a)(21
b)(21n)の合成電流(即ち差動電流)を受け、変圧器
(2)を含む高低圧連系回路部分へ流入する電流の有無
を検出する。
CT (42b) is the current of CT (40a) (40b) and CT (21a) (21
b) The combined current (that is, the differential current) of (21n) is received, and the presence or absence of current flowing into the high and low voltage interconnection circuit portion including the transformer (2) is detected.

次にこの親局側計測処理回路の動作について説明する。Next, the operation of the master station side measurement processing circuit will be described.

前述のようにして子局側から発信された位相パルスを重
畳した電流はCT(40a)(40b)(40n)により検出さ
れ、CT(42a)(42b)を介してレベルコンバータ(43
a)(3相分)でレベル変換され、サンプルホールドア
ンプ(44a)でホールドされマルチプレクサ(45)を経
てA/Dコンバータ(46)によつてデイジタル値となつて
マイクロプロセツサ(47)に読込まれる。この時制御回
路(49)の出力により系統電圧変化に同期し所定の継続
時間中の幾つかの値をサンプル値として読む。
The current that superimposes the phase pulse transmitted from the slave station side as described above is detected by CT (40a) (40b) (40n) and is sent via CT (42a) (42b) to the level converter (43
a) Level conversion (for 3 phases), held by sample hold amplifier (44a), passed through multiplexer (45) and converted to digital value by A / D converter (46) and read by microprocessor (47). Get caught At this time, the output of the control circuit (49) is synchronized with the system voltage change and some values within a predetermined duration are read as sample values.

この値は幾つか読込まれ送信端から送信された直前のパ
ルス列のもつ発信信号の波形の特徴と照合され一致して
いれば正しいパルスとして受信する。
This value is read in several times and compared with the characteristics of the waveform of the oscillation signal of the immediately preceding pulse train transmitted from the transmission end, and if they match, the correct pulse is received.

この正しいパルスを複数個連ねたパルス列により、子側
の計測データ及び送信側パルスの分流状態,波形の特長
を表すデータを復号し計測値としてのチエツクを行い正
式のデータとする。
With this pulse train consisting of a plurality of correct pulses, the measurement data on the child side, the data indicating the shunt state of the pulse on the transmission side, and the data showing the characteristics of the waveform are decoded and checked as measurement values to make them official data.

即ち、位相パルスの振動波形としての特長をアナログ的
に検出し、送信側で検出した同波形としての特長を受信
データにより照合した値と比較してアナログ検定を行う
ものである。以上のようにして送出されたパルス信号列
は瞬時に受信端に表われ、商用周波に位相パルスが重畳
された波形として観測されるので、受信側では所望の計
量データに対応したパルス列と前述の負荷側へ流出漏洩
する電流に対応したパルス列とを受信する事となる。後
者のパルス列は同一送信端で観測した他の計量データに
も追加して送出される事になるから、受信符号を判別す
るロジツクを適当に定めれば送信信号の送出状況がどの
ような状態か、かつ変動しているか否かの判別が可能と
なる。
That is, the characteristic of the vibration waveform of the phase pulse is detected in an analog manner, and the characteristic of the same waveform detected on the transmitting side is compared with a value verified by the received data to perform an analog test. The pulse signal train sent out as described above appears instantly at the receiving end and is observed as a waveform in which a phase pulse is superimposed on the commercial frequency.Therefore, on the receiving side, the pulse train corresponding to the desired measurement data and the above-mentioned The pulse train corresponding to the current flowing out and leaking to the load side will be received. Since the latter pulse train will be sent in addition to other measurement data observed at the same transmitting end, if the logic for discriminating the received code is set appropriately, what is the state of transmission of the transmitted signal? Moreover, it is possible to determine whether or not there is a change.

又、受信パルスのアナログ波高値と、上記流出パルスの
アナログ値を計測した結果を追加した分のパルス列とを
アナログ復調する事により送信側の位相パルスの波形の
状態をアナログ的により忠実に再現する事が可能とな
る。
Also, by analog demodulating the analog peak value of the received pulse and the pulse train for which the result of measuring the analog value of the outflow pulse is added, the state of the waveform of the phase pulse on the transmission side is faithfully reproduced in an analog manner. Things are possible.

更に高圧側もしくは低圧側よりこの送信機,受信機を通
過するパルス状の電流が生じる事はあるが、これらは送
信端及び受信端で同一の波形として観測されるので受信
端で送信端からの信号とを上記再現の処理途中に相殺す
る事によりその影響を除去できる。即ち、送信端では、
送信信号と共に、雑音となるパルス状電流も検出できる
から、その雑音情報を次の伝送サイクルで送信できる。
受信端では、この雑音情報を基に先に受信しているデー
タから雑音情報を除去する。このとき、送信端と受信端
は同一の波形を観測しているので忠実な再現ができる。
Further, pulse-shaped currents that pass through this transmitter and receiver may occur from the high-voltage side or low-voltage side, but since these are observed as the same waveform at the transmission end and the reception end, the reception end The influence can be removed by canceling out the signal during the reproduction process. That is, at the transmitting end,
Since the pulsed current that becomes noise can be detected together with the transmission signal, the noise information can be transmitted in the next transmission cycle.
At the receiving end, the noise information is removed from the previously received data based on this noise information. At this time, since the transmitting end and the receiving end observe the same waveform, faithful reproduction can be performed.

次にレベルコンバータ回路(3相分)(43b)に加えら
れる波形は、柱上変圧器(2)に流入,出する電流の代
数和であるから常時は比較的小さい。原理のところで述
べた様に、この変圧器(2)の励磁状態が急激に変化す
る時は、励磁電流が大きく流れ流入,出電流の代数和は
一定以上の大きさをもちCT(42b)に加えられる入力は
大きくなる。
The waveform applied to the level converter circuit (three phases) (43b) is an algebraic sum of the currents flowing into and out of the pole transformer (2), and therefore is always relatively small. As described in the principle, when the excitation state of this transformer (2) changes rapidly, the exciting current flows largely and the algebraic sum of the inflow and outflow currents is larger than a certain value, and CT (42b) The input added will be large.

特に系統の電圧の急変を生じるような場合には、位相パ
ルス信号の送受信は不要であるから、この時の状況を検
出し送受信された信号を無効とする事がのぞましいがCT
(42b)には入力がありこれをレベルコンバータ(43
b)、サンプルホールドアンプ(44b)を経由し、マルチ
プレサ(45)により切換えた後、A/Dコンバータ(46)
により読込み処理する。
Especially when there is a sudden change in the voltage of the system, it is not necessary to send and receive the phase pulse signal, so it is desirable to detect the situation at this time and invalidate the sent and received signals.
(42b) has an input and this is a level converter (43
b), via the sample-hold amplifier (44b), after switching by the multiplexer (45), the A / D converter (46)
Read processing by.

一般に変圧器に印加される電圧の急変により変圧器が直
流飽和して生ずる高調波分は基本周波数に対し偶数次の
高調波分を多く含むのでこの時の調波分をマイクロプロ
セツサ(46)に予め記憶されたアルゴリズムに基くプロ
グラムを内蔵させて判別する。
Generally, the harmonic components generated by the DC saturation of the transformer due to the sudden change in the voltage applied to the transformer include many even-order harmonic components with respect to the fundamental frequency, so the harmonic components at this time are analyzed by the microprocessor (46). A program based on an algorithm stored in advance is incorporated to make a determination.

通常CT(40a)(40b)により検出する低圧系統側の位相
パルス信号の検出は系統周波数に比しその周波数が高く
系統開閉時に生じる変圧器の飽和により生じる高調波に
比しても充分高い。
The detection of the phase pulse signal on the low-voltage system side, which is usually detected by CT (40a) (40b), is higher than the system frequency and sufficiently higher than the harmonics generated by the saturation of the transformer that occurs when the system is opened and closed.

従つて、位相パルスをアナログ的に適当な精度で検出で
きるような速度をもつA/Dコンバータ(46)ないしマイ
クロプロセツサ(47)の動作周期を選べば、上記系統開
閉により生じる過渡高調波成分を検出処理するに必要な
動作周期は十分長くマイクロプロセツサ(47)の動作サ
イクル責務上負担を増大する事なく十分実現可能であ
る。
Therefore, if the operating cycle of the A / D converter (46) or microprocessor (47) that has a speed that can detect the phase pulse in an analog manner with appropriate accuracy is selected, the transient harmonic components generated by the above-mentioned system switching The operation cycle necessary for detecting the signal is sufficiently long and can be sufficiently realized without increasing the burden on the operation cycle of the microprocessor (47).

又、高圧側に設置された力率改善コンデンサにより内蔵
直列リアクタと共振した第4次高調波を生じこれが柱上
変圧器に侵入し直流飽和を生じ低圧系統側へ新たな高次
高調波を生じる可能性もありうるが、上述の差動電圧を
検出する回路によりアナログ的に検出しマイクロプロセ
ツサ(47)によりデイジタル的に波する事により弁別
して低圧側の位相パルス信号と分離する事が出来る。
In addition, the power factor correction capacitor installed on the high voltage side produces a fourth harmonic that resonates with the built-in series reactor, which penetrates into the pole transformer and causes DC saturation, resulting in a new higher harmonic on the low voltage system side. There is a possibility, but it can be discriminated and separated from the low-voltage side phase pulse signal by detecting it in an analog manner by the above-mentioned differential voltage detection circuit and making a digital wave by the microprocessor (47). .

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、負荷側へ流出する
洩れ信号による送受信誤まりを防止し伝送誤まりを低減
しうる他高圧側の系統又は機器操作により生じる高調波
雑音中変圧器の動作状態の変動による分を検出誤判定を
防止する等の効果を有する。
As described above, according to the present invention, it is possible to prevent transmission errors due to leakage signals flowing out to the load side and reduce transmission errors. This has an effect of preventing an erroneous determination by detecting a portion due to a change in the operating state.

以上本発明を一実施例により説明したが、本実施例に留
まらず、他に幾つかの変形例が考えられる。これらは本
案の趣意を曲げない範囲で本発明の範囲に含まれる事は
言う迄もない。
Although the present invention has been described above with reference to one embodiment, the present invention is not limited to this embodiment, and several other modifications are possible. It goes without saying that these are included in the scope of the present invention without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の装置の基本構成を示す構成図、第2図は
位相パルス方式の原理を示し、(a)は等価回路図、
(b)は説明用波形図、第3図(a),(b)はそれぞ
れ本発明の原理を示す等価回路図、第4図は本発明の一
実施例を示す構成図、第5図及び第6図はその一部分の
詳細構成図である。 (0)……商用周波電源、(4)……親側受(送)信
機、(5)……子側送(受)信機、(40)(40a)(40
b)(40c)……信号受信用CT、(50)(50a)(50b)…
…変成器、(51)……送信回路用コンデンサ、(52)…
…リアクタ、(53)……送信用スイツチ、(6)……負
荷、(55a)(56a)……レベルコンバータ、(57a)(5
7b)……サンプルホールドアンプ、(58a)(58b)……
制御回路、(59)……マルチプレクサ、(60)……A/D
コンバータ、(43a)(43b)……レベルコンバータ、
(44a)(44b)……サンプルホールドアンプ、(46)…
…A/Dコンバータ、(45)……マルチプレクサ、(47)
……マイクロプロセツサ、(48)……レベルコンバー
タ、(49)……制御回路。 尚、図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a configuration diagram showing a basic configuration of a conventional device, FIG. 2 shows a principle of a phase pulse system, (a) is an equivalent circuit diagram,
FIG. 3B is an explanatory waveform diagram, FIGS. 3A and 3B are equivalent circuit diagrams showing the principle of the present invention, and FIG. 4 is a configuration diagram showing one embodiment of the present invention, FIG. FIG. 6 is a detailed configuration diagram of a part thereof. (0) …… Commercial frequency power source, (4) …… Parent side receiving (sending) receiver, (5) …… Slave side sending (receiving) receiver, (40) (40a) (40
b) (40c) …… CT for signal reception, (50) (50a) (50b)…
… Transformers, (51)… Transmitting circuit capacitors, (52)…
… Reactor, (53) …… Switch for transmission, (6) …… Load, (55a) (56a) …… Level converter, (57a) (5
7b) …… Sample-hold amplifier, (58a) (58b) ……
Control circuit, (59) …… Multiplexer, (60) …… A / D
Converter, (43a) (43b) …… Level converter,
(44a) (44b) …… Sample-hold amplifier, (46)…
… A / D converter, (45) …… Multiplexer, (47)
…… Microprocessor, (48) …… Level converter, (49) …… Control circuit. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】配電系統の電圧に同期して高周波信号を該
配電系統に注入し、高周波信号を送受信するようにした
伝送装置において、負荷側に設置され、電源側の親側送
受信機へ高周波信号を送信する子側送受信機、この子側
送受信機から送信された高周波信号の内、負荷側へ流出
する流出分電流を検出する検出器、この検出器の検出し
た流出分電流の情報を至近の伝送サイクルで上記高周波
信号に重畳して上記親側送受信機へ伝送する手段を備え
たことを特徴とする伝送装置。
1. A transmission device for injecting a high-frequency signal into the distribution system in synchronization with the voltage of the distribution system to transmit and receive the high-frequency signal. The transmitter / receiver that transmits the signal, the detector that detects the outflow current that flows out to the load side in the high-frequency signal that is transmitted from this child transceiver, and the information on the outflow current that this detector detects is close to The transmission device comprising means for superimposing on the high frequency signal and transmitting the superposed signal to the master side transceiver in the transmission cycle.
【請求項2】配電系統の電圧に同期して高周波信号を該
配電系統に注入し、高周波信号を送受信するようにした
伝送装置において、高圧・低圧系統側を連系する柱上変
圧器近傍に設置され、上記高周波信号を送受信する送受
信機、上記柱上変圧器に流出入する電流を検出する検出
器、この検出器の検出する流出入電流に基づいて上記送
受信機の受信した受信結果を制御する処理手段を備えた
ことを特徴とする伝送装置。
2. A transmission device in which a high-frequency signal is injected into the distribution system in synchronization with the voltage of the distribution system to transmit and receive the high-frequency signal, in the vicinity of a pole transformer that interconnects the high-voltage and low-voltage systems. A transmitter / receiver installed to transmit / receive the high-frequency signal, a detector for detecting current flowing in / out of the pole transformer, and controls the reception result received by the transmitter / receiver based on the inflow / outflow current detected by the detector. A transmission device comprising:
JP59156025A 1984-07-24 1984-07-24 Transmission equipment Expired - Lifetime JPH0740682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59156025A JPH0740682B2 (en) 1984-07-24 1984-07-24 Transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59156025A JPH0740682B2 (en) 1984-07-24 1984-07-24 Transmission equipment

Publications (2)

Publication Number Publication Date
JPS6132626A JPS6132626A (en) 1986-02-15
JPH0740682B2 true JPH0740682B2 (en) 1995-05-01

Family

ID=15618664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59156025A Expired - Lifetime JPH0740682B2 (en) 1984-07-24 1984-07-24 Transmission equipment

Country Status (1)

Country Link
JP (1) JPH0740682B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787409B2 (en) * 1986-08-14 1995-09-20 三菱電機株式会社 Distribution line transportation method
JP3151765B2 (en) * 1992-07-14 2001-04-03 アイシン精機株式会社 Sewing position moving device for sewing machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972238A (en) * 1982-10-18 1984-04-24 Matsushita Electric Ind Co Ltd Signal control circuit

Also Published As

Publication number Publication date
JPS6132626A (en) 1986-02-15

Similar Documents

Publication Publication Date Title
JPH0740682B2 (en) Transmission equipment
EP1875252B1 (en) Method and apparatus for monitoring the earth loop impedance of an electrical installation
JP2002311061A (en) Processor for electric power
JPH09152462A (en) Partial discharge detection method for transformer
CN113009264A (en) High-speed railway traction substation pavilion direct-current magnetic bias monitoring system and method
CN108931754B (en) Current transformer secondary winding mixed use detection method
SU1287023A1 (en) D.c.instrument transducer
JPS6356118A (en) Method of monitoring digital protective relay
US6031404A (en) Analog-signal to square-wave-signal reshaping system with offset compensation
KR102540979B1 (en) Multi-channel arc detection cutoff device using HF sensor and carrier frequency and method thereof
KR102546243B1 (en) Arc detection cutoff device of photovoltaic module connector band using HF sensor and carrier frequency and method thereof
JPH07336277A (en) Method and equipment for testing phase of power line
SU1019349A1 (en) Direct current frequency-type pickup
JP2654792B2 (en) Partial discharge detection device
Pathirana et al. Implementation and Testing of a Hybrid Protection Scheme for Active Distribution Network
JP3478229B2 (en) Interference generator
JPH0614445A (en) Digital protective relay
Tholomier et al. Which one is better-line differential or directional comparison?
JP2903090B2 (en) Distribution line carrier signal receiver
SU1205081A1 (en) Apparatus for determining impedance up to shortcircuit point in three-phase mains with isolated neutral
SU1435499A1 (en) Apparatus for monitoring and measuring insulation of track circuit components
JPS5849086B2 (en) Transmission signal abnormality detection device
JPS5810895B2 (en) data acquisition circuit
SU1035543A1 (en) Method and device for three-component magnetometer remote checking
SU1663691A1 (en) Method for detection of a synchronous operation of electrical transmission