JPS6346766B2 - - Google Patents

Info

Publication number
JPS6346766B2
JPS6346766B2 JP58162338A JP16233883A JPS6346766B2 JP S6346766 B2 JPS6346766 B2 JP S6346766B2 JP 58162338 A JP58162338 A JP 58162338A JP 16233883 A JP16233883 A JP 16233883A JP S6346766 B2 JPS6346766 B2 JP S6346766B2
Authority
JP
Japan
Prior art keywords
polyol
polyurethane
component
aromatic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58162338A
Other languages
Japanese (ja)
Other versions
JPS6053520A (en
Inventor
Takashi Nishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP58162338A priority Critical patent/JPS6053520A/en
Publication of JPS6053520A publication Critical patent/JPS6053520A/en
Publication of JPS6346766B2 publication Critical patent/JPS6346766B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳现な説明】 本発明は新芏なポリりレタン組成物に関し、特
に高い熱倉圢枩床を有し、か぀耐摩擊、耐摩耗性
に優れた硬質ポリりレタン組成物に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel polyurethane composition, and particularly to a hard polyurethane composition having a high heat distortion temperature and excellent friction and abrasion resistance.

硬質ポリりレタンは無発泡成圢物ず発泡成圢物
に倧別され、発泡成圢物は曎に発泡率によ぀お高
発泡成圢物ず䜎発泡成圢物に区分されおいる。そ
しお、無発泡成圢物ず䜎発泡成圢物ぱンゞニア
リング暹脂ずしお各皮機噚郚品や自動車郚品等に
甚いられ、高発泡成圢物は䞻ずしお断熱材に䟛せ
られる等、極めお広範囲の甚途に有甚な暹脂ずし
お汎甚されおいる。
Rigid polyurethane is broadly classified into non-foamed molded products and foamed molded products, and foamed molded products are further classified into high-foamed molded products and low-foamed molded products depending on the foaming rate. Non-foamed molded products and low-foamed molded products are used as engineering resins in various equipment parts and automobile parts, while highly foamed molded products are used mainly as insulation materials, making them a versatile resin that is useful for an extremely wide range of applications. has been done.

埓来の硬質ポリりレタンは、倚官胜性の脂肪族
又は芳銙族のポリオヌル単量䜓やポリオキシアル
キレンポリオヌル、特にポリオキシプロピレンポ
リオヌル又は倚官胜性の脂肪族或は芳銙族ポリ゚
ステルポリオヌルの䞀皮又はそれ以䞊の混合物か
らなるポリオヌル成分ず、脂肪族又は芳銙族ポリ
む゜シアネヌト或はポリむ゜シアネヌトの䞀皮、
又はそれ以䞊の混合物からなるポリむ゜シアネヌ
ト成分ずを觊媒、発泡剀等の存圚䞋で硬化成圢さ
れおいる。
Conventional rigid polyurethanes contain one or more polyfunctional aliphatic or aromatic polyol monomers, polyoxyalkylene polyols, especially polyoxypropylene polyols, or polyfunctional aliphatic or aromatic polyester polyols. A polyol component consisting of a mixture, an aliphatic or aromatic polyisocyanate or a type of polyisocyanate,
or a polyisocyanate component consisting of a mixture thereof in the presence of a catalyst, a blowing agent, etc.

しかしながら、これらのポリりレタン成圢䜓は
䞀般に耐熱性に乏しく、耐熱性を評䟡する尺床ず
しお熱倉圢枩床ASTM ―648に準拠しお枬
定をず぀た堎合、埓来のポリりレタン成圢物は
せいぜい80〜100℃が限床であり、実甚匷床を有
しお100℃を越えるこずは困難であ぀た。䞀方む
゜シアネヌトの䞉量化によ぀お埗られるむ゜シア
ネヌト基の導入により耐熱性を向䞊させ埗るが、
同時に埗られる成圢䜓が極端にもろくなり実甚に
耐えないずいう欠点を生ずる。
However, these polyurethane molded products generally have poor heat resistance, and when heat distortion temperature (measured according to ASTM D-648) is used as a measure to evaluate heat resistance, conventional polyurethane molded products have a heat distortion temperature of 80 to 100 at most. ℃ was the limit, and it was difficult to exceed 100℃ with practical strength. On the other hand, heat resistance can be improved by introducing isocyanate groups obtained by trimerizing isocyanates;
At the same time, the resulting molded product becomes extremely brittle and cannot be put to practical use.

たた゚ンゞニアリング暹脂ずしおは荷重
Kgcm2ず速床minの積であるPV倀が
800以䞊であるこずが摺動郚材ずしお奜たしいず
されおいる。しかし珟状のポリオヌルずポリむ゜
シアネヌトからなる硬質ポリりレタンではPV倀
は400以䞋であり、䜎速か぀䜎荷重での条件でし
か䜿甚できない欠点を有しおいる。䞀般に耐摩
擊、耐摩耗性を向䞊させるには、二硫化モリブデ
ンや黒鉛が䜿甚されるが、これらの化合物は硬質
ポリりレタンには顕著な効果はなく、むしろ熱倉
圢枩床、匕匵り匷さ、曲げ匷さ及び耐衝撃性を䜎
䞋させる。そこで耐摩擊、耐摩耗性を向䞊させる
ため、各皮のシリコン暹脂、北玠オリゎマヌ、チ
タンカツプリング剀、シランカツプリング剀、カ
プセル化オむル等を添加しおみたが、䜕れも含
泡、耐衝撃性、匕匵り匷さ、曲げ匷さ等の特性に
おいお劣化するこずが刀明した。たた繊維補匷も
負の効果しかなか぀た。
Also, as an engineering resin, P (load
The PV value, which is the product of Kg/cm 2 ) and V (velocity m/min), is
It is said that a value of 800 or more is preferable for a sliding member. However, the current rigid polyurethane made of polyol and polyisocyanate has a PV value of 400 or less, and has the disadvantage that it can only be used under conditions of low speed and low load. Generally, molybdenum disulfide and graphite are used to improve friction and wear resistance, but these compounds have no significant effect on hard polyurethane, but rather improve heat distortion temperature, tensile strength, and bending strength. and reduce impact resistance. In order to improve friction and abrasion resistance, we tried adding various silicone resins, fluorine oligomers, titanium coupling agents, silane coupling agents, encapsulated oil, etc., but none of them had foam-containing, impact resistance, It was found that properties such as tensile strength and bending strength deteriorated. Furthermore, fiber reinforcement had only a negative effect.

本発明の目的は高い熱安定性を有するず共に、
耐摩擊、耐摩耗性に優れたポリりレタンを提䟛す
るこずにあり、特に埓来の硬質ポリりレタンでは
達成できなか぀た少なくずも100℃以䞊の高い熱
倉圢枩床を有し䞔぀実甚匷床、特に耐衝撃性を有
する新芏な硬質ポリりレタン組成物を提䟛するこ
ずにある。
The object of the present invention is to have high thermal stability and
Our objective is to provide polyurethane with excellent friction and abrasion resistance, and in particular, to provide a new polyurethane that has a high heat distortion temperature of at least 100°C, which could not be achieved with conventional hard polyurethane, and has practical strength, especially impact resistance. An object of the present invention is to provide a rigid polyurethane composition.

たた本発明の目的は䜎速・高荷重、高速・䜎荷
重及び高速・高荷重に斌おも䜿甚可胜な耐摩擊、
耐摩耗性の硬質ポリりレタン組成物を提䟛するこ
ずにある。
Furthermore, the object of the present invention is to provide a friction-resistant material that can be used at low speeds and high loads, high speeds and low loads, and high speeds and high loads.
An object of the present invention is to provide a hard, wear-resistant polyurethane composition.

本発明は少なくずも官胜性の氎酞基を有する
ポリオヌル成分ず少なくずも官胜性のポリむ゜
シアネヌト成分の反応により埗られるポリりレタ
ン組成物であ぀お、該ポリオヌル成分ずしお
―ビス―ヒドロキシプニルプロパンの
プロピレンオキシド付加䜓の40〜80重量郚及び氎
酞基䟡200〜700の芳銙族アミン基䜓ポリオキシア
ルキレンポリオヌルの20〜60重量郚からなる混合
ポリオヌルを䜿甚し、該ポリオヌル成分及び又
はポリむ゜シアネヌト成分に脂肪族もしくは芳銙
族の油成分を添加したこずを特城ずする耐摩擊、
耐摩耗性硬質ポリりレタン組成物に係る。
The present invention is a polyurethane composition obtained by the reaction of a polyol component having at least difunctional hydroxyl groups and an at least difunctional polyisocyanate component, wherein the polyol component includes 2,
A mixed polyol consisting of 40 to 80 parts by weight of a propylene oxide adduct of 2-bis(4-hydroxyphenyl)propane and 20 to 60 parts by weight of an aromatic amine-based polyoxyalkylene polyol having a hydroxyl value of 200 to 700 is used. , a friction resistant product characterized by adding an aliphatic or aromatic oil component to the polyol component and/or polyisocyanate component;
It relates to a wear-resistant hard polyurethane composition.

本発明の硬質ポリりレタンは各皮の分野に䜿甚
できるが、特に耐熱性ず耐摩擊、耐摩耗性を芁求
される各皮の工業甚郚品、䟋えば摺動材の郚品た
たその他被芆物等ずしお有甚である。
The hard polyurethane of the present invention can be used in various fields, but is particularly useful as various industrial parts that require heat resistance, friction resistance, and wear resistance, such as sliding material parts and other coatings.

本発明においおはポリオヌル成分の成分ずし
お䞋蚘構造を有する―ビス――ヒ
ドロキシプロポキシプニルプロパンを成
分ずする―ビス―ヒドロキシプニ
ルプロパン以䞋ビスプノヌルず称する
のプロピレンオキシド以䞋POず称する付加
䜓を䜿甚したこずにより、耐熱性に優れた硬質ポ
リりレタンを埗るこずに成功したものである。
In the present invention, 2,2-bis(4-hydroxyphenyl)propane (2,2-bis{4-(2-hydroxypropoxy)phenyl}propane) having the following structure as one component of the polyol component is used in the present invention. (hereinafter referred to as bisphenol A)
By using a propylene oxide (hereinafter referred to as PO) adduct, we succeeded in obtaining a rigid polyurethane with excellent heat resistance.

即ち本発明においおはポリオヌル成分の成分
ずしおビスプノヌルのPO付加䜓を甚いたた
め、ポリむ゜シアネヌトず反応しお埗られるポリ
りレタンは分子鎖䞭の芳銙環濃床が高く剛盎な分
子構造になるので高いガラス転移点を有する。埓
぀お熱安定性に優れ、熱倉圢枩床以䞋HDTず
蚘すにおいおも高いずいう特城を発揮する。
That is, in the present invention, since the PO adduct of bisphenol A was used as one component of the polyol component, the polyurethane obtained by reacting with polyisocyanate has a high concentration of aromatic rings in the molecular chain and has a rigid molecular structure, so it has a high glass content. Has a transition point. Therefore, it exhibits excellent thermal stability and a high heat distortion temperature (hereinafter referred to as HDT).

本発明の䞊蚘ビスプノヌル―PO付加䜓は
公知の方法によりビスプノヌル、モルに察
しPOをモル又はそれ以䞊反応させるこずによ
り埗られる。即ち䞊蚘付加䜓はビスプノヌル
のモルに察しおPOがプノヌル性氎酞基にそ
れぞれモル付加した―ビス――
ヒドロキシプロポキシプニルプロパンを
成分ずしお含有し、その含有量は通垞玄40重量
以䞊、奜たしくは玄80重量以䞊であるのが良
い。その他の成分ずしおビスプノヌルA1モル
に察しおPOがモル以䞊の付加䜓を通垞玄60重
量以䞋、奜たしくは玄20重量以䞋含むこずが
できる。又、その他の成分ずしお䞀玚の末端氎酞
基を又はケ有する、ビスプノヌルずPO
のモル又はモル以䞊の付加䜓は、付加反応時
の副生物ずしお生成し、任意の割合でポリオヌル
成分䞭に含むこずができる。しかし、未反応のフ
゚ノヌル性氎酞基を有するたずえばビスプノヌ
ル及びビスプノヌルのPO1モル付加䜓など
は重量以䞋でなければならない。
The bisphenol A-PO adduct of the present invention can be obtained by reacting 1 mole of bisphenol A with 2 or more moles of PO using a known method. That is, the above adduct is bisphenol A
2,2-bis{4-(2-
Hydroxypropoxy) phenyl}propane 1
Contained as an ingredient, its content is usually about 40% by weight
The content is preferably about 80% by weight or more. As another component, an adduct containing 3 moles or more of PO per mole of bisphenol A may be contained, usually at most about 60% by weight, preferably at most about 20% by weight. In addition, other components include bisphenol A and PO, which have one or two primary terminal hydroxyl groups.
The adduct of 2 or 3 moles or more is produced as a by-product during the addition reaction, and can be contained in the polyol component in any proportion. However, the amount of unreacted phenolic hydroxyl groups, such as bisphenol A and adducts of 1 mole of PO of bisphenol A, must be 1% by weight or less.

尚、ビスプノヌルA1モルに察しおPOがモ
ルの付加䜓が40重量未満の堎合にはポリオヌル
成分のビスプノヌルの骚栌の濃床が䜎䞋する
ので埗られるポリりレタンの耐熱性は䜎䞋する。
If the adduct containing 2 moles of PO to 1 mole of bisphenol A is less than 40% by weight, the concentration of the skeleton of bisphenol A as a polyol component decreases, resulting in a decrease in the heat resistance of the resulting polyurethane.

さらに本発明ではポリオヌル成分ずしお䞊蚘ポ
リオヌルに、少くずも官胜性の氎酞基䟡200〜
700、奜たしくは300〜500の芳銙族アミン基䜓ポ
リオキシアルキレンポリオヌルを䜵甚する。曎
に、䞊蚘混合ポリオヌル成分の平均の氎酞基䟡を
200〜700、奜たしくは300〜500ずする堎合には埗
られるポリりレタンの衝撃匷床は意倖にも予想に
反し、その高いHDTを殆ど䜎䞋させるこずなく
衝撃匷床を高めるずいう盞乗効果が埗られるこず
が刀぀た。即ち䞊蚘皮類のポリオヌル成分を単
独で甚いた堎合の各々のポリりレタンの衝撃匷床
よりも、䞊蚘皮類のポリオヌル成分を䜵甚した
ポリりレタンの衝撃匷床は優れる。この理由に぀
いおは未だ十分に理論解明できおいないが、埓来
の硬質ポリりレタンではHDTを高めるず衝撃匷
床が䜎䞋する傟向があり、HDTず衝撃匷床の䞡
者ずも高めるのは至難であ぀たこずを考えるず、
䞊蚘本発明の効果は驚くべきこずである。成圢性
及び物理特性よりみおビスプノヌル―PO付
加䜓からなるポリオヌル成分は40〜80重量郚が望
たしく、芳銙族アミン基䜓ポリオキシアルキルポ
リオヌルは20〜60重量郚が望たしい。
Furthermore, in the present invention, at least a bifunctional hydroxyl group with a hydroxyl value of 200 to 200 is added to the polyol as a polyol component.
700, preferably 300 to 500, is used in combination with an aromatic amine-based polyoxyalkylene polyol. Furthermore, the average hydroxyl value of the above mixed polyol component is
200 to 700, preferably 300 to 500, the impact strength of the polyurethane obtained was surprisingly contrary to expectations, and it was found that a synergistic effect of increasing impact strength was obtained without almost reducing the high HDT. Ivy. That is, the impact strength of the polyurethane using the above two types of polyol components in combination is superior to the impact strength of each polyurethane when the above two types of polyol components are used alone. The reason for this has not yet been fully elucidated, but considering that with conventional hard polyurethanes, impact strength tends to decrease when HDT is increased, and it is extremely difficult to increase both HDT and impact strength. ,
The above effects of the present invention are surprising. In view of moldability and physical properties, the polyol component consisting of the bisphenol A-PO adduct is preferably 40 to 80 parts by weight, and the aromatic amine-based polyoxyalkyl polyol is preferably 20 to 60 parts by weight.

又本発明においおビスプノヌルのPO付加
䜓ず芳銙族アミン基䜓ポリオヌルを䜵甚したこず
により高いHDTず衝撃匷床が埗られるばかりで
なく、加工性、成圢性等をも有効に向䞊させ埗る
こずも刀぀た。ここにいう加工性の向䞊ずは、芳
銙族アミン基䜓ポリオヌルを導入したこずにより
ポリオヌル液の粘床が䜎䞋し、又ポリオヌル液ず
ポリむ゜シアネヌト液が宀枩䞋でも良く混合する
いわゆる盞溶性の向䞊であり、又芳銙族第玚ア
ミンによる適床な自己觊媒䜜甚により化孊反応が
進行するので、觊媒をあえお必芁ずしない。埓぀
おポリオヌル液に觊媒を加える必芁がないので、
ポリオヌル液の保存安定性に優れるこずなどが挙
げられる。又成圢性の向䞊ずは少なくずも官胜
性の芳銙族アミン基䜓ポリオヌルによる䞀次網目
の導入により、ポリりレタン成圢品の脱型時の匷
床が高くなるこずなどが挙げられる。
It has also been found that in the present invention, by using the PO adduct of bisphenol A in combination with an aromatic amine-based polyol, not only high HDT and impact strength can be obtained, but also processability, moldability, etc. can be effectively improved. Ivy. The improvement in processability referred to here refers to the reduction in the viscosity of the polyol liquid due to the introduction of the aromatic amine-based polyol, and the improvement in so-called compatibility in which the polyol liquid and the polyisocyanate liquid mix well even at room temperature. Further, since the chemical reaction proceeds due to the moderate autocatalytic action of the aromatic tertiary amine, no catalyst is intentionally required. Therefore, there is no need to add a catalyst to the polyol liquid.
One example is that the polyol liquid has excellent storage stability. Furthermore, improvement in moldability includes increasing the strength of the polyurethane molded product upon demolding due to the introduction of a primary network using at least a bifunctional aromatic amine-based polyol.

䞊蚘の少くずも官胜性の氎酞基䟡200〜700、
奜たしくは300〜500の芳銙族アミン基䜓ポリオキ
シアルキレンポリオヌルは、公知の方法によりア
ニリンなどの芳銙族モノアミン又は―及び
―トリレンゞアミンTDA及びいわゆ
る粗補TDA、4′―ゞアミノゞプニルメタ
ン及びアニリンずホルマリンの瞮合により埗られ
るポリメチレンポリプニレンポリアミン、オル
ト又はメタ又はパラプニレンゞアミン、メタ又
はパラキシリレンゞアミンなどの芳銙族ゞアミン
及び芳銙族ポリアミンの皮又はそれ以䞊に、プ
ロピレンオキシド、゚チレンオキシドなどのアル
キレンオキシドの皮又は皮以䞊を付加しお埗
られ、遊離の玚又は玚アミンが実質的に残぀
おいないポリオヌルである。
At least the above bifunctional hydroxyl value 200 to 700,
Preferably 300 to 500 aromatic amine-based polyoxyalkylene polyols are prepared by known methods such as aromatic monoamines such as aniline or 2,4- and 2,6-tolylene diamines (TDA) and so-called crude TDA, 4,4 '-diaminodiphenylmethane and one type of aromatic diamine and aromatic polyamine such as polymethylene polyphenylene polyamine obtained by condensation of aniline and formalin, ortho-, meta- or para-phenylene diamine, meta- or para-xylylene diamine, or Moreover, it is a polyol obtained by adding one or more alkylene oxides such as propylene oxide and ethylene oxide, and substantially no free primary or secondary amine remains.

䞊蚘の芳銙族アミン基䜓ポリオヌルは、粘床を
䞋げ加工性を向䞊させるためその合成の段階で、
芳銙族アミン類を加えお以䞋の脂肪族グリコヌル
類等を共開始剀ずしお甚いるこずができる。たず
えば゚チレングリコヌル、ゞ゚チレングリコヌ
ル、プロピレングリコヌル、ゞプロピレングリコ
ヌル、グリセリン、トリメチロヌルプロパン、グ
ルコヌス、゜ルビトヌル、シナクロヌスなどの倚
官胜脂肪族グリコヌル、゚タノヌルアミン、ゞ゚
タノヌルアミン、トリ゚タノヌルアミン、゚チレ
ンゞアミンなどの脂肪族アミン及び脂肪族アルカ
ノヌルアミン類などがあげられ、これら共開始剀
は、芳銙族アミン類に察しお等モル以䞋で甚いる
のが奜たしい。
The above-mentioned aromatic amine-based polyols are synthesized at the stage of synthesis to reduce viscosity and improve processability
In addition to aromatic amines, the following aliphatic glycols and the like can be used as co-initiators. For example, polyfunctional aliphatic glycols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin, trimethylolpropane, glucose, sorbitol, sucrose; aliphatic amines and aliphatic glycols such as ethanolamine, diethanolamine, triethanolamine, ethylenediamine; Examples include alkanolamines, and these co-initiators are preferably used in an equimolar or less amount relative to the aromatic amine.

本発明はビスプノヌルのPO付加䜓ず芳銙
族アミン基䜓ポリオヌルをポリオヌル成分ずし、
ポリむ゜シアネヌトずの反応により埗られるポリ
りレタンが高いHDTを有するこずが特城であり、
又、優れた加工性、成圢性を有するが、これらポ
リオヌル成分に他の少なくずも官胜性の氎酞基
䟡50〜1830のポリオヌルを党ポリオヌル成分に察
しお、40重量を越えない範囲で䜵甚するこずが
でき、ポリオヌル成分の粘床䜎䞋などの加工性、
成圢性向䞊の効果がある。少なくずも官胜性の
氎酞基䟡50〜1830のポリオヌルずしおは具䜓的に
は次のようなポリオヌルを挙げるこずができる。
The present invention uses a PO adduct of bisphenol A and an aromatic amine-based polyol as polyol components,
It is characterized by the fact that the polyurethane obtained by reaction with polyisocyanate has a high HDT.
In addition, although it has excellent processability and moldability, in addition to these polyol components, at least another difunctional polyol with a hydroxyl value of 50 to 1830 must be used in an amount not exceeding 40% by weight based on the total polyol component. processability, such as reducing the viscosity of the polyol component,
It has the effect of improving moldability. Specific examples of the at least difunctional polyol having a hydroxyl value of 50 to 1830 include the following polyols.

(a) 少なくずも官胜性の氎酞基を有する氎酞基
䟡50〜850の芳銙族ポリオヌル。
(a) An aromatic polyol having a hydroxyl value of 50 to 850 and having at least difunctional hydroxyl groups.

(ã‚€) ハむドロキノン、ピロガロヌル、4′―
む゜プロピリデンゞプノヌルなどの少なく
ずも個の氎酞基を有する単環又は倚環芳銙
族化合物にプロピレンオキシド、゚チレンオ
キシドなどのアルキレンオキシドを付加しお
埗られる氎酞基䟡250〜600のポリオヌル (ロ) フタル酞、む゜フタル酞、テレフタル酞、
トリメリツト酞などの芳銙族倚塩基酞にプロ
ピレンオキシド、゚チレンオキシドなどのア
ルキレンオキシドを付加しお埗られる氎酞基
䟡300〜500のポリオヌル (ハ) メタキシリレングリコヌル、パラキシリレ
ングリコヌル (ニ) フタル酞、む゜フタル酞、テレフタル酞な
どの芳銙族ゞカルボン酞もしくはその無氎物
もしくはその䜎玚アルコヌル゚ステル、及
び又はアゞピン酞、コハク酞などの脂肪族
ゞカルボン酞などを成分ずし、゚チレングリ
コヌル、―ブチレングリコヌル、トリ
メチロヌルプロパンなどの脂肪族ポリオヌ
ル、―シクロヘキサンゞオヌル、
―シクロヘキサンゞメタノヌル、ββ
β′β′―テトラメチル―10―テ
トラオキサスピロ―りンデカン―
―ゞ゚タノヌルなどの脂環匏ポリオヌ
ル又は䞊蚘(ã‚€)、(ロ)、(ハ)のポリオヌルをポリオ
ヌル成分ずする氎酞基䟡50〜450のポリ゚ス
テルポリオヌル これら(a)の芳銙族ポリオヌルを䜵甚する堎
合、党ポリオヌルに察し50重量を越えないよ
うにし、䞔぀平均の氎酞基䟡を200〜500にする
のが奜たしい。
(a) Hydroquinone, pyrogallol, 4,4'-
Polyol with a hydroxyl value of 250 to 600 obtained by adding an alkylene oxide such as propylene oxide or ethylene oxide to a monocyclic or polycyclic aromatic compound having at least two hydroxyl groups such as isopropylidene diphenol (b) Phthalic acid, isophthalic acid acid, terephthalic acid,
Polyols with a hydroxyl value of 300 to 500 obtained by adding alkylene oxides such as propylene oxide and ethylene oxide to aromatic polybasic acids such as trimellitic acid (c) Metaxylylene glycol, paraxylylene glycol (d) Phthalic acid, isophthalic acid Acid, aromatic dicarboxylic acid such as terephthalic acid, its anhydride or its lower alcohol ester, and/or aliphatic dicarboxylic acid such as adipic acid, succinic acid, etc., and contains ethylene glycol, 1,4-butylene glycol, Aliphatic polyols such as methylolpropane, 1,4-cyclohexanediol, 1,
4-Cyclohexane dimethanol, β, β,
β',β'-tetramethyl-2,4,8,10-tetraoxaspiro(5,5)-undecane-
A polyester polyol with a hydroxyl value of 50 to 450 whose polyol component is an alicyclic polyol such as 3,9-diethanol or the polyols listed in (a), (b), and (c) above. These aromatic polyols in (a) are used in combination. In this case, it is preferable that the amount does not exceed 50% by weight based on the total polyol, and that the average hydroxyl value is 200 to 500.

(b) 氎酞基䟡800〜1830の倚官胜脂肪族グリコヌ
ル。
(b) Polyfunctional aliphatic glycol with a hydroxyl value of 800 to 1830.

䟋えば゚チレングリコヌル、ゞ゚チレングリ
コヌル、プロピレングリコヌル、ゞプロピレン
グリコヌル、グリセリン、トリ゚タノヌルアミ
ンなどが挙げられ、党ポリオヌルに察し10重量
以䞋の範囲で䜵甚できる。
Examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin, and triethanolamine, which can be used in combination in an amount of 10% by weight or less based on the total polyol.

(c) 氎酞基䟡300〜800の倚官胜脂肪族ポリオヌ
ル。
(c) A polyfunctional aliphatic polyol with a hydroxyl value of 300 to 800.

䟋えばシナクロヌス、゜ルビトヌル、グルコ
ヌス、ペンタ゚リスリトヌル、トリメチロヌル
プロパン、グリセリン、゚チレンゞアミン、ゞ
゚タノヌルアミン、氎などの皮又は皮以䞊
にプロピレンオキシド、゚チレンオキシドなど
のアルキレンオキシドの皮又は皮以䞊を付
加したポリオヌルで、党ポリオヌルに察し40重
量以䞋の範囲で䜵甚するのが奜たしい。
For example, a polyol in which one or more alkylene oxides such as propylene oxide and ethylene oxide are added to one or more of sucrose, sorbitol, glucose, pentaerythritol, trimethylolpropane, glycerin, ethylenediamine, diethanolamine, water, etc. , is preferably used in combination in an amount of 40% by weight or less based on the total polyol.

以䞊列挙したポリオヌル類は特に奜たしいもの
であり、これら以倖の少なくずも官胜性の氎酞
基䟡50〜1830のポリオヌルを党ポリオヌルに察し
40重量を越えない範囲で䜵甚するこずができ
る。
The polyols listed above are particularly preferred, and other polyols with at least bifunctional hydroxyl value of 50 to 1830 are used based on all polyols.
They can be used in combination within a range not exceeding 40% by weight.

これらポリオヌル類はむ゜シアネヌト類ずの反
応に先だち、氎分率を0.05以䞋、奜たしくは
0.02以䞋ずしおおく必芁がある。たたポリむ゜
シアネヌト類も予め脱ガスを十分にしおおく。こ
れらを怠るず硬化反応時に䞍必芁な発泡が起こ
る。䜆し発泡䜓を埗る堎合は勿論この限りではな
い。
Prior to the reaction with isocyanates, these polyols have a moisture content of 0.05% or less, preferably
It is necessary to keep it below 0.02%. Also, the polyisocyanates should be sufficiently degassed in advance. If these are neglected, unnecessary foaming will occur during the curing reaction. However, this is of course not the case when obtaining a foam.

本発明のポリむ゜シアネヌト成分ずしおはポリ
りレタン補造分野における各皮の少なくずも官
胜性の公知の脂肪族、脂環族及び芳銙族ポリむ゜
シアネヌトを䜿甚できるが、なかでも芳銙族ポリ
む゜シアネヌトが特に奜適に䜿甚される。䟋えば
4′―ゞプニルメタンゞむ゜シアネヌト
MDI及びカヌボゞむミド倉性MDI䟋えば日
本ポリりレタン瀟MTL、ポリメチレンポリプ
ニルむ゜シアネヌトPAPI、ポリメリツクポ
リむ゜シアネヌト䟋えば䜏友バむ゚ルりレタン
44V、―及び―トリレンゞむ゜シ
アネヌトTDI、オルトトルむゞンゞむ゜シア
ネヌトTODI、ナフチレンゞむ゜シアネヌト
NDI、キシリレンゞむ゜シアネヌトXDI等
が奜適に䜿甚される。
As the polyisocyanate component of the present invention, various at least difunctional aliphatic, alicyclic, and aromatic polyisocyanates known in the field of polyurethane production can be used, but aromatic polyisocyanates are particularly preferably used. . For example, 4,4'-diphenylmethane diisocyanate (MDI) and carbodiimide-modified MDI (e.g. Nippon Polyurethane Co., Ltd. MTL), polymethylene polyphenyl isocyanate (PAPI), polymeric polyisocyanate (e.g. Sumitomo Bayer Urethane)
44V), 2,4- and 2,6-tolylene diisocyanate (TDI), orthotoluidine diisocyanate (TODI), naphthylene diisocyanate (NDI), xylylene diisocyanate (XDI), and the like are preferably used.

ポリオヌル成分ずポリむ゜シアネヌト成分はワ
ンシペツト法でもプレポリマヌ法でも反応させる
こずができる。ポリオヌルずポリむ゜シアネヌト
ずの反応はむ゜シアネヌトむンデツクスずしお、
奜たしくは100〜180、特に奜たしくは105〜160の
範囲で行うのが適圓で、この範囲倖ではむ゜シア
ネヌトむンデツクスが小さくな぀おも倧きくな぀
おも耐熱性は䜎䞋しおくる。この原因は明らかで
ないが、実質的なポリマヌの分子量が䜎䞋するた
めず掚定される。摩擊係数を䞋げるためにはむ゜
シアネヌトむンデツクスは100〜115が望たしい。
The polyol component and the polyisocyanate component can be reacted by a one-shot method or a prepolymer method. The reaction between polyol and polyisocyanate is known as isocyanate index.
Preferably, the range is from 100 to 180, particularly preferably from 105 to 160. Outside this range, heat resistance decreases regardless of whether the isocyanate index becomes smaller or larger. Although the cause of this is not clear, it is presumed that it is due to a decrease in the substantial molecular weight of the polymer. In order to lower the coefficient of friction, the isocyanate index is preferably 100 to 115.

本発明においおは䞊蚘で埗られる硬質ポリりレ
タンの耐摩擊、耐摩耗性を改良するため、䞊蚘ポ
リオヌル成分及び又はポリむ゜シアネヌト成分
に脂肪族もしくは芳銙族の油成分を添加する。脂
肪族油ずしおは脂環族油も含む。䞊蚘脂肪族油ず
しおは、䟋えばJISに芏定されおいる最滑油が奜
たしく、具䜓的にはタヌビン油、ギア油、マシン
油、軞受油、冷凍機油、内燃機関甚最滑油等が䟋
瀺できる。たた芳銙族油ずしおは䟋えば゚クステ
ンダヌオむル又はプロセスオむルず呌ばれおいる
石油系軟化剀等が甚いられ、パラフむン系プロセ
スオむル、ナフテン系プロセスオむル、アロマチ
ツク系プロセスオむル等の各皮の軟化剀を䜿甚す
るこずができる。
In the present invention, an aliphatic or aromatic oil component is added to the polyol component and/or polyisocyanate component in order to improve the friction and abrasion resistance of the hard polyurethane obtained above. Aliphatic oils also include alicyclic oils. The above-mentioned aliphatic oil is preferably a lubricating oil specified by JIS, and specific examples thereof include turbine oil, gear oil, machine oil, bearing oil, refrigerating machine oil, and lubricating oil for internal combustion engines. Further, as the aromatic oil, for example, petroleum-based softeners called extender oils or process oils are used, and various softeners such as paraffin-based process oils, naphthenic process oils, aromatic process oils, etc. can be used. Can be done.

本発明においお䞊蚘脂肪族油もしくは芳銙族油
は単独又は混合物ずしお䜿甚され、そのISOVG
〔粘床グレヌド、cStmm2、40℃〕は68〜1000
が奜たしく、100〜680が特に奜たしい。この範囲
においおは油はポリりレタンの衚面ににじみ出る
移行珟象が生じ、この移行珟象がグリヌス効果を
生じ耐摩擊、耐摩耗性を向䞊させる。
In the present invention, the above aliphatic oils or aromatic oils are used alone or as a mixture, and their ISOVG
[Viscosity grade, cSt (mm 2 /s), 40℃] is 68 to 1000
is preferable, and 100 to 680 is particularly preferable. In this range, a migration phenomenon occurs in which the oil oozes onto the surface of the polyurethane, and this migration phenomenon produces a grease effect and improves the friction and wear resistance.

本発明においお䞊蚘油成分の添加量はポリりレ
タン100重量郚に察しお〜15重量郚が奜たしく、
〜10重量郚が特に奜たしい。この範囲では埗ら
れるポリりレタンの匕匵り匷さ、曲げ匷さ、衝撃
匷さ等を䜎䞋させるこずなく、耐摩擊、耐摩耗性
を向䞊させるこずができる。このようにしお油成
分を添加するこずにより、本発明の硬質ポリりレ
タンにポリアセタヌル暹脂、モノマヌキダストナ
むロン暹脂、高密床ポリ゚チレン暹脂よりも優れ
た耐摩擊、耐摩耗性を付䞎するこずができる。
In the present invention, the amount of the oil component added is preferably 1 to 15 parts by weight per 100 parts by weight of polyurethane.
Particularly preferred is 2 to 10 parts by weight. Within this range, friction resistance and abrasion resistance can be improved without reducing the tensile strength, bending strength, impact strength, etc. of the polyurethane obtained. By adding the oil component in this manner, the hard polyurethane of the present invention can be given superior friction and abrasion resistance to polyacetal resin, monomer cast nylon resin, and high-density polyethylene resin.

本発明の硬質ポリりレタンの補造に際しお觊媒
は特に必芁ずしないが、トリ゚チレンゞアミンな
どの玚アミン、ゞブチルチンゞラりレヌトなど
の有機金属化合物などの公知の觊媒を甚いるこず
もできる。しかしむ゜シアヌレヌト環を生成する
む゜シアネヌト䞉量化觊媒は奜たしくない。たた
無機質充填剀をポリオヌル又はポリむ゜シアネヌ
トに予め混合しおおくこずにより無機質充填剀含
有硬質ポリりレタンずするこずも可胜である。無
機質充填剀ずしおはグラフアむト、炭化珪玠、酞
化アルミニりム、二硫化モリブデンなどが挙げら
れ、硬床、成型収瞮率、摩擊係数、耐摩耗性など
の改良に効果がある。たた本発明では氎、トリフ
ルオロトリクロロ゚タンなどのハロゲン化炭化氎
玠、アゟビスむ゜ブチロニトリルなどの有機発泡
剀を甚いるこずにより発泡䜓ずするこずも可胜で
ある。
Although a catalyst is not particularly required for producing the rigid polyurethane of the present invention, known catalysts such as tertiary amines such as triethylene diamine and organometallic compounds such as dibutyltin dilaurate can also be used. However, isocyanate trimerization catalysts that produce isocyanurate rings are not preferred. It is also possible to obtain an inorganic filler-containing rigid polyurethane by preliminarily mixing the inorganic filler with polyol or polyisocyanate. Examples of inorganic fillers include graphite, silicon carbide, aluminum oxide, and molybdenum disulfide, which are effective in improving hardness, molding shrinkage, friction coefficient, wear resistance, and the like. In the present invention, it is also possible to form a foam by using water, a halogenated hydrocarbon such as trifluorotrichloroethane, or an organic blowing agent such as azobisisobutyronitrile.

本発明においお硬化反応は䟋えば次のように行
うこずができる。先ず配合物の液枩を宀枩〜120
℃ずし、泚型する型の枩床を50〜120℃ずしお泚
型、硬化しお脱型する。本発明の硬化成圢䜓はそ
のたたでも埓来のポリりレタン成圢䜓よりも高い
HDTを有しおいるが、曎に140〜180℃の枩床で
熱凊理を行うこずにより、衝撃匷床等の特性を向
䞊させるこずができる。熱凊理は空気又は窒玠な
どの䞍掻性ガス雰囲気䞭で行うこずができる。
In the present invention, the curing reaction can be carried out, for example, as follows. First, adjust the liquid temperature of the compound to room temperature to 120℃.
℃, and the temperature of the casting mold is set to 50 to 120℃, and the mold is poured, hardened, and demolded. The cured molded product of the present invention is higher than conventional polyurethane molded products even as it is.
Although it has HDT, properties such as impact strength can be improved by further performing heat treatment at a temperature of 140 to 180°C. The heat treatment can be performed in an inert gas atmosphere such as air or nitrogen.

以䞋に参考䟋及び実斜䟋を挙げお本発明を説明
する。
The present invention will be explained below with reference to reference examples and examples.

参考䟋  ビスプノヌルのプロピレンオキシド付加䜓
〔東邊千葉化孊工業補、「Bisol―2P」ガスクロ
マトグラフ分析によりPOのモル付加䜓玄93、
POのモル付加䜓玄を含む。OH䟡316〕
を100℃に加熱しお枛圧䞋に脱氎し氎分率を0.015
にした。このポリオヌル50ず―トリレ
ンゞアミンTDAモルに察しプロピレンオ
キシド5.6モル、゚チレンオキシド2.6モルを付加
反応しお埗られたOH䟡400のTDA基䜓ポリオヌ
ル50より成り混合ポリオヌル100及びカヌボ
ゞむミド倉性MDI日本ポリりレタン瀟、「ミリ
オネヌトMTL」NCO含有量28.898をビヌ
カヌ䞭で40秒間プロペラ型撹拌機で撹拌し、次い
で分間真空デシケヌタヌ䞭で脱泡した。この混
合液を盎ちに90℃に加熱した内寞130mm×130mm×
mmの組立お匏ガラスモヌルドに泚ぎこみ、100
℃の空気恒枩槜䞭で30分間反応させた埌、硬化物
を型より取り出した。この間気泡の発生はみられ
なか぀た。次いで160℃の空気恒枩槜䞭で時間
熱凊理を行い、無発泡の匷靭な硬質ポリりレタン
を埗た。
Reference Example 1 Propylene oxide adduct of bisphenol A [manufactured by Toho Chiba Chemical Industry Co., Ltd., "Bisol-2P" (approx. 93% of the 2-mole adduct of PO as determined by gas chromatography analysis,
Contains approximately 7% of the 3 molar adduct of PO. OH value 316)]
is heated to 100℃ and dehydrated under reduced pressure to reduce the moisture content to 0.015.
%. It consists of 50 g of a TDA-based polyol with an OH value of 400 obtained by addition-reacting 50 g of this polyol with 1 mole of 2,4-tolylene diamine (TDA), 5.6 moles of propylene oxide, and 2.6 moles of ethylene oxide, 100 g of a mixed polyol, and carbodiimide modification. 98 g of MDI (Nippon Polyurethane Co., Ltd., "Millionate MTL" NCO content 28.8%) was stirred in a beaker for 40 seconds with a propeller type stirrer, and then defoamed in a vacuum desiccator for 1 minute. This mixture was immediately heated to 90℃.Inner dimensions: 130mm x 130mm x
Pour into a 6mm prefabricated glass mold, 100
After reacting for 30 minutes in an air constant temperature bath at ℃, the cured product was taken out from the mold. During this time, no bubbles were observed. Next, heat treatment was performed for 2 hours in an air constant temperature bath at 160°C to obtain a non-foamed, tough polyurethane.

埗られたポリりレタンの熱倉圢枩床をASTM、
D648により荷重18.6Kgcm2の条件䞋で、曲げ匟
性率をASTM、D790により、アむゟツト衝撃倀
をASTM、D256により、ノツチ付の条件䞋で、
摩擊係数を東掋ボヌルドりむン瀟補の摩擊詊隓機
により、也燥状態、20min、50Kgcm2の条件
䞋で枬定した。
The heat distortion temperature of the obtained polyurethane is determined by ASTM,
The flexural modulus is determined by D648 under a load of 18.6 kg/cm 2 by ASTM, the Izot impact value by D790 is determined by ASTM, and the notched condition is determined by D256.
The coefficient of friction was measured using a friction tester manufactured by Toyo Baldwin under dry conditions at 20 m/min and 50 Kg/cm 2 .

熱倉圢枩床 118℃ 曲げ匟性率 27600Kgcm2 アむゟツト衝撃倀 4.0Kg・cmcm æ‘©æ“Šä¿‚æ•° Ό0.400 PV倀 200 実斜䟋  参考䟋で調補した混合ポリオヌル100を甚
意する。䞀方カヌボゞむミド倉性MDI日本ポリ
りレタン瀟「ミリオネヌトMTL」、NCO含有量
28.898に脂肪族油ずしお䞞善石油補RO―
320を10加え、80℃に加熱しお枛圧䞋に脱氎し
氎分率を0.014にした。この䞡者を䜿甚しお参
考䟋ず同様にしお無発泡の匷靭な硬質ポリりレ
タンを埗た。
Heat deformation temperature 118°C Flexural modulus 27600 Kg/cm 2 Izot impact value 4.0 Kg cm/cm Friction coefficient ÎŒ=0.400 PV value 200 Example 1 100 g of the mixed polyol prepared in Reference Example 1 is prepared. On the other hand, carbodiimide-modified MDI (Japan Polyurethane Co., Ltd. “Millionate MTL”, NCO content
28.8%) 98g of Maruzen Sekiyu RO as aliphatic oil.
10g of 320 was added, heated to 80°C, and dehydrated under reduced pressure to bring the moisture content to 0.014%. A non-foamed, tough, rigid polyurethane was obtained in the same manner as in Reference Example 1 using both of them.

熱倉圢枩床 113℃ 曲げ匟性率 22100Kgcm2 アむゟツト衝撃倀 2.4Kg・cmcm æ‘©æ“Šä¿‚æ•° Ό0.09 PV倀 1200 実斜䟋  ポリむ゜シアネヌトずしお䜿甚したカヌボゞむ
ミド倉性MDIミリオネヌトMTL98に脂肪
族油䞞善石油補RO―320及び芳銙族油
共同石油補―50Fを添加し80℃に加熱
しお枛圧䞋に脱氎し氎分率を0.015にした。こ
れに参考䟋の混合ポリオヌル成分100を添加
し他は参考䟋ず同様にしお、無発泡の匷靭な硬
質ポリりレタンを埗た。
Heat deformation temperature 113℃ Flexural modulus 22100Kg/cm 2 Izot impact value 2.4Kg・cm/cm Friction coefficient ÎŒ=0.09 PV value 1200 Example 2 Aliphatic oil ( 4 g of Maruzen Sekiyu RO-320) and 6 g of aromatic oil (Kyodo Sekiyu X-50F) were added, heated to 80°C, and dehydrated under reduced pressure to bring the moisture content to 0.015%. To this was added 100 g of the mixed polyol component of Reference Example 1, and in the same manner as in Reference Example 1, a non-foamed, tough, rigid polyurethane was obtained.

熱倉圢枩床 108℃ 曲げ匟性率 26000Kgcm2 アむゟツト衝撃倀 2.5Kg・cmcm æ‘©æ“Šä¿‚æ•° Ό0.090 PV倀 800 比范䟋  トリメチロヌルプロパン基䜓のポリオキシプロ
ピレングリコヌル「―400」アデカ瀟、OH䟡
3911000.697圓量ずスミゞナヌル44V―
20の1040.768圓量を参考䟋ず同様にしお
反応させただし熱凊理はしなか぀た、無発泡
の硬質ポリりレタンを埗た。
Heat deformation temperature 108℃ Flexural modulus 26000Kg/cm 2 Izot impact value 2.5Kg・cm/cm Friction coefficient ÎŒ=0.090 PV value 800 Comparative example 1 Trimethylolpropane-based polyoxypropylene glycol "T-400" (Adeka, OH value
391) 100g (0.697 equivalent) and Sumidyur 44V-
104 g (0.768 equivalent) of 20 was reacted in the same manner as in Reference Example 1 (but without heat treatment) to obtain a non-foamed rigid polyurethane.

熱倉圢枩床 76℃ 曲げ匟性率 23800Kgcm2 アむゟツト衝撃倀 3.0Kg・cmcm æ‘©æ“Šä¿‚æ•° Ό0.500 PV倀 150 比范䟋  参考䟋で甚いたTDA基䜓ポリオヌル100ず
コロネヌトMTL109を甚いお参考䟋ず同
様にしお反応させ無発泡の硬質ポリりレタンを埗
た。
Heat deformation temperature 76℃ Bending elastic modulus 23800Kg/cm 2 Izot impact value 3.0Kg・cm/cm Friction coefficient ÎŒ=0.500 PV value 150 Comparative example 2 Using 100g of TDA base polyol used in Reference example 1 and Coronate MTL (109g) Then, a reaction was carried out in the same manner as in Reference Example 1 to obtain a non-foamed rigid polyurethane.

熱倉圢枩床 102℃ 曲げ匟性率 25100Kgcm2 アむゟツト衝撃倀 3.2Kg・cmcm æ‘©æ“Šä¿‚æ•° Ό0.450 PV倀 150 比范䟋  参考䟋で甚いたTDA基䜓ポリオヌル100、
比范䟋で甚いたポリオヌル100、ゞブチルチ
ンゞラりレヌト0.04、モノクロルトリフルオロ
メタン20を混合したポリオヌル成分ず、スミゞ
ナヌル44V−20を220甚い参考䟋ず同様にし
おただし熱凊理はしなか぀た、比重0.50の硬
質ポリりレタン発泡䜓を埗た。
Heat deformation temperature 102℃ Flexural modulus 25100Kg/cm 2 Izot impact value 3.2Kg・cm/cm Friction coefficient ÎŒ=0.450 PV value 150 Comparative example 3 100g of TDA-based polyol used in Reference example 1,
A polyol component prepared by mixing 100 g of the polyol used in Comparative Example 1, 0.04 g of dibutyltin dilaurate, and 20 g of monochlorotrifluoromethane, and 220 g of Sumidyur 44V-20 were used in the same manner as in Reference Example 1 (but without heat treatment), and the specific gravity was determined. A rigid polyurethane foam of 0.50 was obtained.

熱倉圢枩床荷重4.6Kgcm2 83℃ 曲げ匟性率 6000Kgcm2 曲げ匷床 184Kgcm2 アむゟツト衝撃倀ノツチ無し
2.8Kg・cmcm æ‘©æ“Šä¿‚æ•° Ό1.60 PV倀 100 比范䟋  参考䟋で甚いたビスプノヌルのプロピレ
ンオキシド付加䜓Bisol―2Pを100℃に加熱
しお枛圧䞋に脱氎しお氎分率を0.015にした。
このポリオヌル50ず゚チレンゞアミンにプロピ
レンオキシドを付加しお埗られたOH䟡540平均
分子量415の゚チレンゞアミン基䜓ポリオヌル
50より成る混合ポリオヌル100に、脂肪族油
ずしお䞞善石油補RO―320を10加え、80℃に
加熱しお枛圧䞋に脱氎しお氎分率を0.014にし
た。これをビヌカヌに移し、カヌボゞむミド倉性
MDIミリオネヌトMTL、NCO含有量28.8
117を添加しビヌカヌ䞭で40秒間プロペラ型撹
拌機で撹拌し、次いで分間真空デシケヌタヌ䞭
で脱泡した。以䞋、参考䟋ず同様にしお硬質ポ
リりレタンを埗お、その物性を同様にしお枬定し
た。
Heat distortion temperature (load 4.6Kg/cm 2 ) 83℃ Bending modulus 6000Kg/cm 2 Bending strength 184Kg/cm 2 Izot impact value (without notch)
2.8Kg・cm/cm Friction coefficient ÎŒ=1.60 PV value 100 Comparative example 4 The propylene oxide adduct of bisphenol A (Bisol-2P) used in Reference Example 1 was heated to 100℃ and dehydrated under reduced pressure to remove moisture. The rate was set to 0.015%.
Ethylenediamine-based polyol with an OH value of 540 (average molecular weight 415) obtained by adding propylene oxide to 50g of this polyol and ethylenediamine.
To 100 g of a mixed polyol consisting of 50 g, 10 g of RO-320 manufactured by Maruzen Oil was added as an aliphatic oil, heated to 80° C., and dehydrated under reduced pressure to give a moisture content of 0.014%. Transfer this to a beaker and denature it with carbodiimide.
MDI (Millionate MTL, NCO content 28.8%)
117 g was added, stirred in a beaker for 40 seconds with a propeller type stirrer, and then defoamed in a vacuum desiccator for 1 minute. Hereinafter, a rigid polyurethane was obtained in the same manner as in Reference Example 1, and its physical properties were measured in the same manner.

熱倉圢枩床 80℃ 曲げ匟性率 19260Kgcm2 アむゟツト衝撃倀 3.0Kg・cmcm æ‘©æ“Šä¿‚æ•° Ό0.24 PV倀 440Heat deformation temperature 80℃ Flexural modulus 19260Kg/cm 2Izotsu impact value 3.0Kg・cm/cm Friction coefficient ÎŒ=0.24 PV value 440

Claims (1)

【特蚱請求の範囲】[Claims]  少なくずも官胜性の氎酞基を有するポリオ
ヌル成分ず少なくずも官胜性のポリむ゜シアネ
ヌト成分の反応により埗られるポリりレタンを含
む組成物であ぀お、該ポリオヌル成分ずしお
―ビス―ヒドロキシプニルプロパンの
プロピレンオキシド付加䜓の40〜80重量郚及び氎
酞基䟡200〜700の芳銙族アミン基䜓ポリオキシア
ルキレンポリオヌルの20〜60重量郚からなる混合
ポリオヌルを䜿甚し、該ポリオヌル成分及び又
はポリむ゜シアネヌト成分に脂肪族もしくは芳銙
族の油成分を添加したこずを特城ずする耐摩擊、
耐摩耗性硬質ポリりレタン組成物。
1 A composition comprising a polyurethane obtained by the reaction of a polyol component having at least a difunctional hydroxyl group and an at least difunctional polyisocyanate component, the polyol component containing 2,
A mixed polyol consisting of 40 to 80 parts by weight of a propylene oxide adduct of 2-bis(4-hydroxyphenyl)propane and 20 to 60 parts by weight of an aromatic amine-based polyoxyalkylene polyol having a hydroxyl value of 200 to 700 is used. , a friction resistant product characterized by adding an aliphatic or aromatic oil component to the polyol component and/or polyisocyanate component;
Abrasion resistant hard polyurethane composition.
JP58162338A 1983-09-02 1983-09-02 Non-rigid polyurethane having frictional resistance, and wear resistance Granted JPS6053520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58162338A JPS6053520A (en) 1983-09-02 1983-09-02 Non-rigid polyurethane having frictional resistance, and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58162338A JPS6053520A (en) 1983-09-02 1983-09-02 Non-rigid polyurethane having frictional resistance, and wear resistance

Publications (2)

Publication Number Publication Date
JPS6053520A JPS6053520A (en) 1985-03-27
JPS6346766B2 true JPS6346766B2 (en) 1988-09-19

Family

ID=15752651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58162338A Granted JPS6053520A (en) 1983-09-02 1983-09-02 Non-rigid polyurethane having frictional resistance, and wear resistance

Country Status (1)

Country Link
JP (1) JPS6053520A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8627658D0 (en) * 1986-11-19 1986-12-17 Bp Chem Int Ltd Polyurethane froth foams

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634721A (en) * 1979-08-30 1981-04-07 Hitachi Ltd Rigid polyurethane composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634721A (en) * 1979-08-30 1981-04-07 Hitachi Ltd Rigid polyurethane composition

Also Published As

Publication number Publication date
JPS6053520A (en) 1985-03-27

Similar Documents

Publication Publication Date Title
EP0245864B1 (en) Cyclohexanedimethanol/diamine mixtures as rim extenders
US4808691A (en) Polyether-polycarbonate diols and processes for their production and use
US5418259A (en) Process for preparing polyurethane elastomer from a soft-segment isocyanate-terminated prepolymer
US3294713A (en) Organic polysocyanates and polyurethanes prepared therefrom
US20090131606A1 (en) Polyurethane/polyurea elastomers based on 2,4'-diphenylmethane diisocyanate prepolymers and the production thereof
BG63506B1 (en) Method for the preparation of elastic polyurethane moulded products having compact surface and cellular core
US4590224A (en) Siloxane-containing polyisocyanurate
CA2259934A1 (en) Process for preparing compact or cellular polyurethane elastomers and isocyanate prepolymers suitable for this purpose
AU708633B2 (en) Production of compact or cellular polyurethane elastomers based on polyisocyanate mixtures containing 3,3' -dimethylbiphenyl 4,4'-diisocyanate and isocyanate prepolymers suitable for this purpose
GB2201961A (en) Process for the preparation of rigid polyurethane
GB2139238A (en) Flexible polyurethane foams
WO1991014726A1 (en) Polyoxyalkylene polyols containing internal polyoxyethylene blocks and a process for preparing polyurethanes therefrom
US4386167A (en) Polyisocyanurate polymer containing pendant urea groups, polyol dispersions and polyurethane compositions prepared therefrom
JP2000086792A (en) Polyurea elastomeric microporous foam
JPS6346766B2 (en)
CA2028320A1 (en) Isocyanate-reactive compositions
US4254229A (en) Polyurethane plastics containing thio groups
JPS6347728B2 (en)
JPS6347727B2 (en)
JPS5947223A (en) Highly heat-resistant rigid polyurethane
JPS6338066B2 (en)
JPH0330612B2 (en)
JPS641488B2 (en)
JPS646650B2 (en)
JPS646649B2 (en)