JPS646649B2 - - Google Patents

Info

Publication number
JPS646649B2
JPS646649B2 JP59047777A JP4777784A JPS646649B2 JP S646649 B2 JPS646649 B2 JP S646649B2 JP 59047777 A JP59047777 A JP 59047777A JP 4777784 A JP4777784 A JP 4777784A JP S646649 B2 JPS646649 B2 JP S646649B2
Authority
JP
Japan
Prior art keywords
polyol
weight
bisphenol
polyurethane
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59047777A
Other languages
Japanese (ja)
Other versions
JPS60190415A (en
Inventor
Takashi Nishi
Yukio Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP59047777A priority Critical patent/JPS60190415A/en
Publication of JPS60190415A publication Critical patent/JPS60190415A/en
Publication of JPS646649B2 publication Critical patent/JPS646649B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏なポリりレタン暹脂の補造法に関
し、特に高い熱倉圢枩床を有する硬質に関する。 硬質ポリりレタンのうち、無発泡成圢物ず䜎発
泡成圢物ぱンゞニアリング暹脂ずしお各皮機噚
郚品や自動車郚品等に甚いられおいる。 埓来の硬質ポリりレタンは、倚官胜性の暹脂族
又は芳銙族のポリオヌル単量䜓やポリオキシアル
キレンポリオヌル、特にポリオキシプロピレンポ
リオヌル又は倚官胜性の脂肪族或は芳銙族ポリ゚
ステルポリオヌルの䞀皮又はそれ以䞊の混合物か
らなるポリオヌル成分ず、脂肪族又は芳銙族ポリ
む゜シアネヌト或はポリむ゜チオシアネヌトの䞀
皮、又はそれ以䞊の混合物からなるポリむ゜シア
ネヌト成分ずを觊媒、発泡剀等の存圚䞋で硬化成
圢されおいる。 しかしながら、これらのポリりレタンン成圢䜓
は䞀般に耐熱性に乏しく、耐熱性を評䟡する尺床
ずしお熱倉圢枩床ASTM ―648に準拠しお
枬定をず぀た堎合、埓来のポリりレタン成圢物
はせいぜい80〜100℃が限床であり、実甚匷床を
有しお100℃を越えるこずは困難であ぀た。䞀方
む゜シアネヌトの䞉量化によ぀お埗られるむ゜シ
アヌレヌト基の導入により耐熱性を向䞊させ埗る
が、同時に埗られる成圢䜓が極端にもろくなり実
甚に耐えないずいう欠点を生ずる。 本発明の目的は高い熱安定性を有するポリりレ
タンを提䟛するこずにあり、特に埓来の硬質ポリ
りレタンでは達成できなか぀た少なくずも100℃
以䞊の高い熱倉圢枩床を有し䞔぀実甚匷床、特に
耐衝撃性を有する新芏なポリりレタンを提䟛する
こずにある。 本発明は―ビス――ヒドロキシ
プロポキシプニルプロパンを成分ずする
―ビス―ヒドロキシプニルプロパ
ンのプロピレンオキシド付加䜓80〜98重量郚及び
ポリ゚ヌテルポリオヌルにビニル基を持぀モノマ
ヌをグラフト重合させお埗られたポリマヌポリオ
ヌル〜20重量郚からなる混合ポリオヌルを含有
する、少なくずも官胜性の氎酞基を有するポリ
オヌル成分ず少なくずも官胜性のポリむ゜シア
ネヌト成分を反応させるこずを特城ずする熱倉圢
枩床が100℃以䞊の高耐熱性硬質ポリりレタン暹
脂の補造法に係る。 本発明のポリりレタンは各皮の分野に䜿甚でき
るが、特に耐熱性を芁求される各皮の工業甚郚
品、䟋えば摺動材の郚品たたはその他被芆物等ず
しお有甚である。 本発明においおはポリオヌル成分の成分ずし
お䞋蚘構造を有する―ビス――ヒ
ドロキシプロポキシプニルプロパンを成
分ずする―ビス―ヒドロキシプニ
ルプロパン以䞋ビスプノヌルず称する
のプロピレンオキシド以䞋POず称する付加
䜓を䜿甚したこずにより、耐熱性に優れた硬質ポ
リりレタンを埗るこずに成功したものである。 即ち本発明においおはポリオヌル成分の成分
ずしおビスプノヌルのPO付加䜓を甚いたた
め、ポリむ゜シアネヌトず反応しお埗られるポリ
りレタンは分子鎖䞭の芳銙環濃床が高く剛盎な分
子構造になるので高いガラス転移点を有する。埓
぀お熱安定性に優れ、熱倉圢枩床以䞋HDTず
蚘すにおいおも高いずいう特城を発揮する。ビ
スプノヌルのPO付加䜓を甚いた堎合、その
代わりにビスプノヌルのEO゚チレンオキシ
ド付加䜓を甚いた堎合に比しお、HDTは10℃
以䞊も高い。 本発明の䞊蚘ビスプノヌル―PO付加䜓は
公知の方法によりビスプノヌル、モルに察
しPOをモル又はそれ以䞊反応させるこずによ
り埗られる。即ち䞊蚘付加䜓はビスプノヌル
のモルに察しおPOがプノヌル性氎酞基にそ
れぞれモル付加した―ビス――
ヒドロキシプロポキシプニルプロパンを
成分ずしお含有し、その含有量は通垞玄40重量
以䞊、奜たしくは玄80重量以䞊であるのが良
い。その他の成分ずしおビスプノヌル、モ
ルに察しおPOがモル以䞊の付加䜓を通垞玄60
重量以䞋、奜たしくは玄20重量以䞋含むこず
ができる。又、その他の成分ずしお䞀玚の末端氎
酞基を又はケ有する、ビスプノヌルず
POのモル又はモル以䞊の付加䜓は、付加反
応時の副生物ずしお生成し、任意の割合でポリオ
ヌル成分䞭に含むこずができる。しかし、未反応
のプノヌル性氎酞基を有する䟋えばビスプノ
ヌル及びビスプノヌルのPO、モル付加
䜓などは重量以䞋でなければならない。 尚、ビスプノヌル、モルに察しおPOが
モルの付加䜓が40重量未満の堎合にはポリオ
ヌル成分のビスプノヌルの骚栌の濃床が䜎䞋
するので埗られるポリりレタンの耐熱性は䜎䞋す
る。曎にビスプノヌルのPO付加䜓ずむ゜シ
アネヌトからなる硬質ポリりレタンは耐熱性は高
いが、もろいずいう欠点があり実甚的ず蚀い難
い。 本発明はこのような欠点をポリマヌポリオヌル
を䜵甚するこずにより解決し、匕匵り匷さ、曲げ
匷さ、曲げ匟性率及び衝撃匷さが改良された。し
かも摺動郚材ずしお重芁な圧力Kgcm2ず
速床minの積であるPV倀が向䞊する
こずも刀明した。 本発明においお䞊蚘ポリマヌポリオヌルはポリ
゚ヌテルポリオヌルにビニル基を持぀モノマヌを
グラフト重合させたものであり、その氎酞基䟡は
箄56〜200の範囲のものが奜たしい。具䜓䟋ずし
お䟋えば垂販品の代衚䟋を瀺せば、䞉井日曹補の
POP31/28、32/30、34/35、36/28、40/45等を挙
げるこずができる。ポリマヌポリオヌルの添加量
はビスプノヌルのPO付加䜓80〜98重量郚に
察し、〜20重量郚の範囲が望たしい。たたポリ
マヌポリオヌルはポリオヌル成分及び又はポリ
む゜シアネヌト成分に添加するこずができるが、
ビスプノヌルのPO付加䜓に添加すれば粘床
䜎䞋に効果があり、む゜シアネヌト成分に添加す
ればプレポリマヌのような動きをしお物理特性を
向䞊させる。 さらに本発明ではポリオヌル成分ずしお䞊蚘混
合ポリオヌル100重量郚に、少なくずも官胜性
の氎酞基䟡200〜700、奜たしくは300〜500の芳銙
族アミン基䜓ポリオキシアルキレンポリオヌル10
〜40重量郚を䜵甚する堎合には埗られるポリりレ
タンの衝撃匷床は意倖にも予想に反し、その高い
HDTを殆ど䜎䞋させるこずなく衝撃匷床を高め
るずいう盞乗効果が埗られるこずが䌎぀た。即ち
䞊蚘皮類のポリオヌル成分を単独で甚いた堎合
の各々のポリりレタンの衝撃匷床よりも、䞊蚘
皮類のポリオヌル成分を䜵甚したポリりレタンの
衝撃匷床は優れる。この理由に぀いおは未だ十分
に理論解明できおいないが、埓来の硬質ポリりレ
タンではHDTを高めるず衝撃匷床が䜎䞋する傟
向があり、HDTず衝撃匷床の䞡者ずも高めるの
は至難であ぀たこずを考えるず、䞊蚘本発明の効
果は驚くべきこずである。 又本発明においおビスプノヌルのPO付加
䜓、ポリマヌポリオヌル及び芳銙族アミン基䜓ポ
リオヌルを䜵甚したこずにより高いHDTず衝撃
匷床が埗られるばかりでなく、加工性、成圢性等
をも有効に向䞊させ埗るこずも刀぀た。ここにい
う加工性の向䞊ずは、芳銙族アミン基䜓ポリオヌ
ルを導入したこずによりポリオヌル液の粘床が䜎
䞋し、又ポリオヌル液ずポリむ゜シアネヌト液が
宀枩䞋でも良く混合するいわゆる盞溶性の向䞊で
あり、又芳銙族第玚アミンによる適床な自己觊
媒䜜甚により化孊反応が進行するので、觊媒をあ
えお必芁ずしない。曎にNCO Indexを䜎くしお
も反応性が向䞊するので物理特性の向䞊及び摩擊
係数の䜎䞋にも奜たしい。埓぀おポリオヌル液に
觊媒を加える必芁がないので、ポリオヌル液の保
存安定性に優れるこずなどが挙げられる。又成圢
性の向䞊ずは少なくずも官胜性の芳銙族アミン
基䜓ポリオヌルによる䞀次網目の導入により、ポ
リりレタン成圢品の脱型時の匷床が高くなるこず
などが挙げれる。 䞊蚘の少なくずも官胜性の氎酞基䟡200〜
700、奜たしくは300〜500の芳銙族アミン基䜓ポ
リオキシアルキレンポリオヌルは、公知の方法に
よりアニリンなどの芳銙族モノアミン又は
―及び―トリレンゞアミンTDA及び
いわゆる粗補TDA、4′―ゞアミノゞプニ
ルメタン及びアニリンずホルマリンの瞮合により
埗られるポリメチレンポリプニレンポリアミ
ン、オルト又はメタ又はパラプニレンゞアミ
ン、メタ又はパラキシリレンゞアミンなどの芳銙
族ゞアミン及び芳銙族ポリアミンの皮又はそれ
以䞊に、プロピレンオキシド、゚チレンオキシド
などのアルキレンオキシドの皮又は皮以䞊を
付加しお埗られ、遊離の玚又は玚アミンが実
質的に残぀おいないポリオヌルである。この芳銙
族アミン基䜓ポリオヌルをビスプノヌルの
PO付加䜓及びポリマヌポリオヌルず䜵甚する堎
合、混合ポリオヌル成分の平均の氎酞基䟡を特に
300〜500にするのが奜たしい。又、この䜵甚系混
合ポリオヌルの玚アミン濃床は3meq以䞋
にするのが奜たしく、0.2〜1.5meqの範囲に
するのが特に奜たしい。これらの範囲内では䜵甚
による䞊蚘の盞乗効果が特に著しい。 䞊蚘の芳銙族アミン基䜓ポリオヌルは、粘床を
䞋げ加工性を向䞊させるためその合成の段階で、
芳銙族アミン類に加えお以䞋の脂肪族グリコヌル
類等を共開始剀ずしお甚いるこずができる。䟋え
ば゚チレングリコヌル、ゞ゚チレングリコヌル、
プロピレングリコヌル、ゞプロピレングリコヌ
ル、グリセリン、トリメチロヌルプロパン、グル
コヌス、゜ルビトヌル、シナクロヌスなどの倚官
胜脂肪族グリコヌル゚タノヌルアミン、ゞ゚タ
ノヌルアミン、トリ゚タノヌルアミン、゚チレン
ゞアミンなどの脂肪族アミン及び脂肪族アルカノ
ヌルアミン類などがあげられ、これら共開始剀
は、芳銙族アミン類に察しお等モル以䞋で甚いる
のが奜たしい。 本発明は䞊蚘ビスプノヌルのPO付加䜓ず
ポリマヌポリオヌルからなる混合ポリオヌルをポ
リオヌル成分ずするこずが特城であるが、曎に優
れた耐熱性、あるいは優れた䌞びや衝撃匷さを目
的ずしおこの混合ポリオヌル成分に他の少なくず
も官胜性の氎酞基䟡50〜1830のポリオヌルを䜵
甚するこずができる。この堎合、ビスプノヌル
のPO付加䜓55〜97重量郚、ポリマヌポリオヌ
ル〜15重量郚及び氎酞基䟡50〜1830のポリオヌ
ル〜30重量郚の割合で䜵甚するのが奜たしい。 少なくずも官胜性の氎酞基䟡50〜1830のポリ
オヌルずしおは具䜓的には、次のようなポリオヌ
ルを挙げるこずができる。 (a) 少なくずも官胜性の氎酞基を有する氎酞基
䟡50〜850の芳銙族ポリオヌル。 (ã‚€) ハむドロキノン、ピロガロヌル、4′―
む゜プロピリデンゞプノヌルなどの少なく
ずも個の氎酞基を有する単環又は倚環芳銙
族化合物にプロピレンオキシド、゚チレンオ
キシドなどのアルキレンオキシドを付加しお
埗られる氎酞基䟡250〜600のポリオヌル (ロ) フタル酞、む゜フタル酞、テレフタル酞、
トリメリツト酞などの芳銙族倚塩基酞にプロ
ピレンオキシド、゚チレンオキシドなどのア
ルキレンオキシドを付加しお埗られる氎酞基
䟡300〜500のポリオヌル (ハ) メタキシレングリコヌル、バラキシリレン
グリコヌル (ニ) フタル酞、む゜フタル酞、テレフタル酞な
どの芳銙族ゞカルボン酞もしくはその無氎物
もしくはその䜎玚アルコヌル゚ステル、及
び又はアゞピン酞、コハク酞などの脂肪族
ゞカルボン酞などを酞成分ずし、゚チレング
リコヌル、―ブチレングリコヌル、ト
リメチロヌルプロパンなどの脂肪族ポリオヌ
ル、―シクロヘキサンゞオヌル、
―シクロヘキサンゞメタノヌル、ββ
β′β′―テトラメチル―10―テ
トラオキサスピロ―りンデカン―
―ゞ゚タノヌルなどの脂環匏ポリオヌ
ル又は䞊蚘(ã‚€)(ロ)、(ハ)のポリオヌルをポリオ
ヌル成分ずする氎酞基䟡50〜450のポリ゚ス
テルポリオヌル (b) 氎酞基䟡800〜1830の倚官胜脂肪族グリコヌ
ル。 䟋えば゚チレングリコヌル、ゞ゚チレングリ
コヌル、プロピレングリコヌル、ゞプロピレン
グリコヌル、グリセリン、トリ゚タノヌルアミ
ンなど。 (c) 氎酞基䟡300〜800の倚官胜脂肪族ポリオヌル 䟋えばシナクロヌス、゜ルビトヌル、グリコ
ヌル、ペンタ゚リスリトヌル、トリメチロヌル
プロパン、グリセリン、゚チレンゞアミン、ゞ
゚タノヌルアミン、氎などの皮又は皮以䞊
にプロピレンオキシド、゚チレンオキシドなど
のアルキレンオキシドの皮又は皮以を付加
したポリオヌル。 以䞊䟋挙したポリオヌル類は特に奜たしいもの
であり、これら以倖の少なくずも官胜性の氎酞
基䟡50〜1830のポリオヌルを䜿甚するこずができ
る。 䞀方、ビスプノヌルのPO付加䜓は高粘床
のため䞊蚘氎酞基䟡が50〜1830のポリオヌルずは
必ずしも盞溶性が良くなく、倖芳䞍良や品質䞍均
䞀が発生する堎合がある。この欠点を解消するに
はビスプノヌルのPO付加䜓ず同様の芳銙族
基を有する前蚘芳銙族アミン基䜓ポリオキシアル
キレンポリオヌルを䜵甚するのが奜たしい。この
堎合、䞊蚘ビスプノヌルのPO付加䜓55〜97
重量郚、ポリマヌポリオヌル〜15重量郚及び氎
酞基䟡50〜1830のポリオヌル〜30重量郚からな
る混合ポリオヌル100重量郚に察しお、芳銙族ア
ミン基䜓ポリオヌルを10〜40重量郚配合するのが
奜たしい。 本発明においおポリオヌル類はむ゜シアネヌト
類ずの反応に先だち、氎分率を0.05以䞋、奜た
しくは、0.02以䞋ずしおおく必芁がある。たた
ポリむ゜シアネヌト類も予め脱ガスを十分にしお
おく。こられを怠るず硬化反応時に䞍必芁な発泡
が起こる。䜆し発泡䜓を埗る堎合合は勿論この限
りではない。 本発明のポリむ゜シアネヌト成分ずしおはポリ
りレタン補造分野における各皮の少なくずも官
胜性の公知の脂肪族、脂環族及び芳銙族ポリむ゜
シアネヌトを䜿甚できるが、なかでも芳銙族ポリ
む゜シアネヌトが特に奜適に䜿甚される。䟋えば
4′―ゞプニルメタンゞむ゜シアネヌト
MDI及びカヌボゞむミド倉性MDI䟋えば日
本ポリりレタン瀟MTL、ポリメチレンポリプ
ニルむ゜シアネヌトPAPI、ポリメリツクポ
リむ゜シアネヌト䟋えば䜏友バむ゚ルりレタン
44V、―及び―トリレンゞむ゜シ
アネヌトTDI、オルトトルむゞンゞむ゜シア
ネヌトTODI、ナフチレンゞむ゜シアネヌト
NDI、キシリレンゞむ゜シアネヌトXDI等
が奜適に䜿甚される。 ポリオヌル成分ずポリむ゜シアネヌト成分はワ
ンシペツト法でもプレポリマヌ法でも反応させる
こずができる。ポリオヌルずポリむ゜シアネヌト
ずの反応はむ゜シアネヌトむンデツクス
NCOIndexずしお、奜たしくは、100〜180、
特に奜たしくは105〜160の範囲で行うのが適圓
で、この範囲倖ではむ゜シアネヌトむンデツクス
が小さくな぀おも倧きくな぀おも耐熱性は䜎䞋し
おくる。この原因は明らかでないが、実質的なポ
リマヌの分子量が䜎䞋するためず掚定される。 本発明のポリりレタンの補造に際しお觊媒は特
に必芁ずしないが、トリ゚チレンゞアミンなどの
玚アミン、ゞブチルチンゞラりレヌトなどの有
機金属化合物などの公知の觊媒を甚いるこずもで
きる。しかしむ゜シアヌレヌト環を生成するむ゜
シアネヌト䞉量化觊媒は奜たしくない。尚、無機
質充填剀をポリオヌル又はポリむ゜シアネヌトに
予め混合しおおくこずにより無機質充填剀含有ポ
リりレタンずするこずも可胜である。無機質充填
剀ずしおはミルドガラスフアむバヌ、チペツプド
ストランドガラスフアむバヌなどのガラスフアむ
バヌ、グラフアむト、炭化珪玠、酞化アルミニり
ム、二硫化モリブデンなどが挙げられ、硬床、成
型収瞮率、摩擊係数、耐摩耗性などの改良に効果
があるが、充填剀の最少限の添加が望たしく、過
剰の添加は物理特性の劣化を招く。 尚、耐摩擊、耐摩耗性の芁求される堎合には、
最滑油を添加するこずにより、飛躍的に向䞊させ
るこずができる。この堎合、最滑油はりレタン暹
脂100重量郚に察しお〜20重量郚添加するのが
奜たしい。 たた本発明では氎、トリフルオロトリクロロ゚
タンなどのハロゲン化炭化氎玠、アゟビスむ゜ブ
チロニトリルなどの有機発泡剀を甚いるこずによ
り発泡䜓ずするこずも可胜である。 本発明においお硬化反応は䟋えば次のように行
うこずができる。先ず配合物の液枩を宀枩〜120
℃ずし、泚型する型の枩床を50〜120℃ずしお泚
型、硬化しお脱型する。本発明の硬化成圢䜓はそ
のたたでも埓来のポリりレタン成圢䜓よりも高い
HDTを有しおいるが、曎に140〜180℃の枩床で
熱凊理を行うこずにより、衝撃匷床等の特性を向
䞊させるこずができる。熱凊理は空気又は窒玠な
どの䞍掻性ガス雰囲気䞭で行うこずができる。 以䞋に参考䟋及び実斜䟋を挙げお本発明を説明
する。 参考䟋  ビスプノヌルのプロピレンオキシド付加䜓
〔東邊千葉化孊工業補、「BISOL―2P」ガスクロ
マトグラフ分析によりPOのモル付加䜓玄93、
POのモル付加䜓玄を含む。OH䟡316〕
1000gを100℃に加熱しお枛圧䞋に脱氎し氎分率
を0.015にしお埗られたポリオヌル100g及び䞊
蚘方法で真空脱氎した1100gのカヌボゞむミド倉
性MDI日本ポリりレタン瀟、「ミリオネヌト
MTL」、NCO含有量28.888gをビヌカヌ䞭で
40秒間プロペラ型撹拌機で撹拌し、次いで分間
真空デシケヌタヌ䞭で脱泡した。この混合液を盎
ちに90℃に加熱した内寞130mm×130mm×mmの組
立お匏ガラスモヌルドに泚ぎこみ、100℃の空気
恒枩槜䞭で30分間反応させた埌、硬化物を型より
取出した。この間気泡の発生はみられなか぀た。
次いで160℃の空気恒枩槜䞭で時間熱凊理を行
い。無発泡のややもろい硬質ポリりレタンを埗
た。 埗られたポリりレタンの熱倉圢枩床をASTM、
D648により荷重18.6Kgcm2の条件䞋で、曲げ匟
性率をASTM、D790により、アむゟツト衝撃倀
をASTM、D256により、ノツチ付の条件䞋で、
摩擊係数を東掋ボヌルドりむン瀟補の摩擊詊隓機
により、也燥状態、20mmin、〜60Kgcm2の
条件䞋で枬定した。第衚に物性を瀺す。 実斜䟋 〜 ポリマヌポリオヌル䞉井日曹補、「POP40
45」、氎酞基䟡110を100gずり、100℃に加熱し
真空脱氎した。たた―トリレンゞアミン
TDAモルに察しおプロピレンオキシド5.6
モル、゚チレンむオキシド2.6モルを付加反応し
お埗られたOH䟡400のTDA基䜓ポリオヌル歊
田薬品工業補「GR―30」150gを100℃に加熱し
お枛圧䞋に脱氎し氎分率0.015にした。 第衚の配合に埓぀お、ビヌカヌに参考䟋で
調敎したBISOL―2Pず䞊蚘方法で調敎したポリ
マヌポリオヌル及びGR―30を所定量添加しお混
合ポリオヌルずし、その䞊に参考䟋で調敎した
MTLを加え、参考䟋ず同様の方法で硬質ポリ
りレタンを埗た。第衚に物性を瀺す。 実斜䟋 〜10 分子量200のゞオヌル䞉掋化成補、「PP―
200」、氎酞基䟡560100gを100℃に加熱し真空
脱氎した。たた庶糖ベヌス系のポリオヌル䞉井
日曹補、「LV450A」、氎酞基䟡450100gを100℃
に加熱し真空脱氎した。 ビヌカヌに参考䟋で調敎したBISOL―2Pず
実斜䟋〜で調敎したポリマヌポリオヌル及び
GR―30ず䞊蚘のPP―200及びLV450Aを第衚
に瀺した配合所定量を入れ混合ポリオヌルずし、
参考䟋で調敎したMTLを添加しお参考䟋ず
同様にしお硬質ポリりレタンを埗た。第衚に物
性を瀺す。
The present invention relates to a novel method for producing polyurethane resins, particularly hard polyurethane resins having high heat distortion temperatures. Among rigid polyurethanes, non-foamed molded products and low-foamed molded products are used as engineering resins in various equipment parts, automobile parts, and the like. Conventional rigid polyurethanes are composed of one or more polyfunctional resinous or aromatic polyol monomers, polyoxyalkylene polyols, especially polyoxypropylene polyols, or polyfunctional aliphatic or aromatic polyester polyols. A polyol component consisting of a mixture and a polyisocyanate component consisting of one or more aliphatic or aromatic polyisocyanates or polyisothiocyanates are cured and molded in the presence of a catalyst, a blowing agent, etc. However, these polyurethane molded products generally have poor heat resistance, and when heat distortion temperature (measured according to ASTM D-648) is used as a measure to evaluate heat resistance, conventional polyurethane molded products have a temperature of 80 to 80% at most. The limit was 100°C, and it was difficult to exceed 100°C with practical strength. On the other hand, heat resistance can be improved by introducing isocyanurate groups obtained by trimerization of isocyanate, but at the same time, the resulting molded product becomes extremely brittle and cannot be put into practical use. The object of the present invention is to provide a polyurethane with high thermal stability, in particular at least 100°C, which has not been achieved with conventional rigid polyurethanes.
The object of the present invention is to provide a novel polyurethane that has a high heat distortion temperature as described above and has practical strength, particularly impact resistance. The present invention comprises 80 to 98 parts by weight of a propylene oxide adduct of 2,2-bis(4-hydroxyphenyl)propane containing 2,2-bis{4-(2-hydroxypropoxy)phenyl}propane as one component; A polyol component having at least a difunctional hydroxyl group and an at least difunctional polyisocyanate component, which contains a mixed polyol consisting of 2 to 20 parts by weight of a polymer polyol obtained by graft polymerizing a monomer having a vinyl group to an ether polyol. The present invention relates to a method for producing a highly heat-resistant rigid polyurethane resin having a heat distortion temperature of 100°C or higher, which is characterized by reacting the following. The polyurethane of the present invention can be used in various fields, and is particularly useful as various industrial parts that require heat resistance, such as parts for sliding materials and other coatings. In the present invention, 2,2-bis(4-hydroxyphenyl)propane (2,2-bis{4-(2-hydroxypropoxy)phenyl}propane) having the following structure as one component of the polyol component is used in the present invention. (hereinafter referred to as bisphenol A)
By using a propylene oxide (hereinafter referred to as PO) adduct, we succeeded in obtaining a rigid polyurethane with excellent heat resistance. That is, in the present invention, since the PO adduct of bisphenol A was used as one component of the polyol component, the polyurethane obtained by reacting with polyisocyanate has a high concentration of aromatic rings in the molecular chain and has a rigid molecular structure, so it has a high glass content. Has a transition point. Therefore, it exhibits excellent thermal stability and a high heat distortion temperature (hereinafter referred to as HDT). When using the PO adduct of bisphenol A, the HDT is 10°C compared to when using the EO (ethylene oxide) adduct of bisphenol A instead.
Even more expensive. The bisphenol A-PO adduct of the present invention can be obtained by reacting 1 mole of bisphenol A with 2 or more moles of PO using a known method. That is, the above adduct is bisphenol A
2,2-bis{4-(2-
Hydroxypropoxy) phenyl}propane 1
Contained as an ingredient, its content is usually about 40% by weight
The content is preferably about 80% by weight or more. Other components include bisphenol A, an adduct containing 3 moles or more of PO per 1 mole, usually about 60%
It may contain up to % by weight, preferably up to about 20% by weight. In addition, bisphenol A having one or two primary terminal hydroxyl groups as other components.
The adduct of 2 moles or 3 moles or more of PO is produced as a by-product during the addition reaction, and can be contained in the polyol component in any proportion. However, the amount of unreacted phenolic hydroxyl groups, such as bisphenol A and PO, 1 molar adducts of bisphenol A, must be 1% by weight or less. In addition, if the adduct of 2 moles of PO per 1 mole of bisphenol A is less than 40% by weight, the concentration of the skeleton of bisphenol A, which is a polyol component, decreases, resulting in a decrease in the heat resistance of the resulting polyurethane. . Furthermore, although a rigid polyurethane composed of a PO adduct of bisphenol A and an isocyanate has high heat resistance, it has the drawback of being brittle and is therefore difficult to call practical. The present invention solves these drawbacks by using a polymer polyol in combination, and the tensile strength, flexural strength, flexural modulus, and impact strength are improved. Moreover, it has been found that the PV value, which is the product of P (pressure: Kg/cm 2 ) and V (velocity: m/min), which are important for sliding members, is improved. In the present invention, the polymer polyol is a polyether polyol graft-polymerized with a monomer having a vinyl group, and preferably has a hydroxyl value in the range of about 56 to 200. As a specific example, a representative example of a commercially available product is Mitsui Nisso's
Examples include POP31/28, 32/30, 34/35, 36/28, 40/45, etc. The amount of polymer polyol added is preferably in the range of 2 to 20 parts by weight per 80 to 98 parts by weight of the PO adduct of bisphenol A. Additionally, polymer polyols can be added to polyol components and/or polyisocyanate components, but
When added to the PO adduct of bisphenol A, it is effective in reducing viscosity, and when added to the isocyanate component, it behaves like a prepolymer and improves physical properties. Furthermore, in the present invention, as a polyol component, 100 parts by weight of the above-mentioned mixed polyol is added with at least 10 parts of an aromatic amine-based polyoxyalkylene polyol having a difunctional hydroxyl value of 200 to 700, preferably 300 to 500.
When ~40 parts by weight is used together, the impact strength of the polyurethane obtained is surprisingly high, contrary to expectations.
This was accompanied by a synergistic effect of increasing impact strength with almost no decrease in HDT. In other words, the impact strength of the three types of polyol components above is higher than the impact strength of each polyurethane when the three types of polyol components are used alone.
Polyurethane containing various types of polyol components has excellent impact strength. The reason for this has not yet been fully elucidated, but considering that with conventional hard polyurethanes, impact strength tends to decrease when HDT is increased, and it is extremely difficult to increase both HDT and impact strength. , the above effects of the present invention are surprising. Furthermore, in the present invention, by using the PO adduct of bisphenol A, a polymer polyol, and an aromatic amine-based polyol in combination, not only high HDT and impact strength can be obtained, but also processability, moldability, etc. can be effectively improved. I also realized that. The improvement in processability referred to here refers to the reduction in the viscosity of the polyol liquid due to the introduction of the aromatic amine-based polyol, and the improvement in so-called compatibility in which the polyol liquid and the polyisocyanate liquid mix well even at room temperature. Further, since the chemical reaction proceeds due to the moderate autocatalytic action of the aromatic tertiary amine, no catalyst is intentionally required. Furthermore, even if the NCO Index is lowered, the reactivity is improved, which is also preferable for improving physical properties and lowering the coefficient of friction. Therefore, since there is no need to add a catalyst to the polyol liquid, the storage stability of the polyol liquid is excellent. Furthermore, improvement in moldability includes increasing the strength of the polyurethane molded product upon demolding due to the introduction of a primary network using at least a difunctional aromatic amine-based polyol. The above-mentioned at least bifunctional hydroxyl value 200~
Aromatic amine-based polyoxyalkylene polyols having a molecular weight of 700, preferably 300 to 500, can be prepared using known methods such as aromatic monoamines such as aniline or 2,4
- and 2,6-tolylene diamine (TDA) and so-called crude TDA, 4,4'-diaminodiphenylmethane and polymethylene polyphenylene polyamines obtained by condensation of aniline and formalin, ortho- or meta- or para-phenylene diamines. , a free primary compound obtained by adding one or more alkylene oxides such as propylene oxide and ethylene oxide to one or more aromatic diamines and aromatic polyamines such as meta- or para-xylylene diamine. Or it is a polyol in which substantially no secondary amine remains. This aromatic amine-based polyol is mixed with bisphenol A.
When used in combination with PO adducts and polymer polyols, the average hydroxyl value of the mixed polyol components should be
It is preferable to set it to 300-500. Further, the tertiary amine concentration of the mixed polyol used in combination is preferably 3 meq/g or less, particularly preferably in the range of 0.2 to 1.5 meq/g. Within these ranges, the above-mentioned synergistic effect due to combined use is particularly remarkable. The above-mentioned aromatic amine-based polyols are synthesized at the stage of synthesis to reduce viscosity and improve processability
In addition to aromatic amines, the following aliphatic glycols and the like can be used as coinitiators. For example, ethylene glycol, diethylene glycol,
Examples include polyfunctional aliphatic glycols such as propylene glycol, dipropylene glycol, glycerin, trimethylolpropane, glucose, sorbitol, and sucrose; aliphatic amines and aliphatic alkanolamines such as ethanolamine, diethanolamine, triethanolamine, and ethylenediamine. These co-initiators are preferably used in an equimolar or less amount relative to the aromatic amine. The present invention is characterized in that a mixed polyol consisting of the PO adduct of bisphenol A and a polymer polyol is used as a polyol component. Other at least difunctional polyols having a hydroxyl value of 50 to 1830 may be used in combination with the component. In this case, it is preferable to use 55 to 97 parts by weight of a PO adduct of bisphenol A, 2 to 15 parts by weight of a polymer polyol, and 1 to 30 parts by weight of a polyol having a hydroxyl value of 50 to 1,830. Specific examples of the at least difunctional polyol having a hydroxyl value of 50 to 1830 include the following polyols. (a) An aromatic polyol having a hydroxyl value of 50 to 850 and having at least difunctional hydroxyl groups. (a) Hydroquinone, pyrogallol, 4,4'-
Polyol with a hydroxyl value of 250 to 600 obtained by adding an alkylene oxide such as propylene oxide or ethylene oxide to a monocyclic or polycyclic aromatic compound having at least two hydroxyl groups such as isopropylidene diphenol (b) Phthalic acid, isophthalic acid acid, terephthalic acid,
Polyols with a hydroxyl value of 300 to 500 obtained by adding alkylene oxides such as propylene oxide and ethylene oxide to aromatic polybasic acids such as trimellitic acid (c) Metaxylene glycol, baraxylylene glycol (d) Phthalic acid, isophthalic acid, The acid component is aromatic dicarboxylic acid such as terephthalic acid or its anhydride or its lower alcohol ester, and/or aliphatic dicarboxylic acid such as adipic acid or succinic acid, and ethylene glycol, 1,4-butylene glycol, or trimethylol. Aliphatic polyols such as propane, 1,4-cyclohexanediol, 1,
4-Cyclohexane dimethanol, β, β,
β',β'-tetramethyl-2,4,8,10-tetraoxaspiro(5,5)-undecane-
Polyester polyol with a hydroxyl value of 50 to 450, whose polyol component is an alicyclic polyol such as 3,9-diethanol or the polyol of (a), (b), or (c) above (b) Polyfunctional polyester with a hydroxyl value of 800 to 1830 Aliphatic glycols. For example, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin, triethanolamine, etc. (c) Polyfunctional aliphatic polyol with a hydroxyl value of 300 to 800 For example, one or more of sucrose, sorbitol, glycol, pentaerythritol, trimethylolpropane, glycerin, ethylenediamine, diethanolamine, water, etc., and propylene oxide, ethylene oxide, etc. A polyol to which one or more alkylene oxides are added. The polyols exemplified above are particularly preferred, and other at least difunctional polyols having a hydroxyl value of 50 to 1830 can also be used. On the other hand, since the PO adduct of bisphenol A has a high viscosity, it is not necessarily compatible with the above-mentioned polyol having a hydroxyl value of 50 to 1830, which may result in poor appearance and nonuniform quality. In order to eliminate this drawback, it is preferable to use the above-mentioned aromatic amine-based polyoxyalkylene polyol having the same aromatic group as the PO adduct of bisphenol A. In this case, the PO adduct 55-97 of the above bisphenol A
It is preferable to blend 10 to 40 parts by weight of an aromatic amine base polyol to 100 parts by weight of a mixed polyol consisting of 2 to 15 parts by weight of a polymer polyol and 1 to 30 parts by weight of a polyol having a hydroxyl value of 50 to 1830. . In the present invention, the polyol must have a moisture content of 0.05% or less, preferably 0.02% or less prior to the reaction with the isocyanate. Also, the polyisocyanates should be sufficiently degassed in advance. If this is not done, unnecessary foaming will occur during the curing reaction. However, this is of course not the case when obtaining a foam. As the polyisocyanate component of the present invention, various at least difunctional aliphatic, alicyclic, and aromatic polyisocyanates known in the field of polyurethane production can be used, but aromatic polyisocyanates are particularly preferably used. . For example, 4,4'-diphenylmethane diisocyanate (MDI) and carbodiimide-modified MDI (e.g. Nippon Polyurethane Co., Ltd. MTL), polymethylene polyphenyl isocyanate (PAPI), polymeric polyisocyanate (e.g. Sumitomo Bayer Urethane)
44V), 2,4- and 2,6-tolylene diisocyanate (TDI), orthotoluidine diisocyanate (TODI), naphthylene diisocyanate (NDI), xylylene diisocyanate (XDI), and the like are preferably used. The polyol component and the polyisocyanate component can be reacted by a one-shot method or a prepolymer method. The reaction between polyol and polyisocyanate is preferably performed as an isocyanate index (NCOIndex) of 100 to 180,
Particularly preferably, it is within the range of 105 to 160; outside this range, heat resistance decreases regardless of whether the isocyanate index becomes smaller or larger. Although the cause of this is not clear, it is presumed that it is due to a decrease in the substantial molecular weight of the polymer. Although a catalyst is not particularly required for producing the polyurethane of the present invention, known catalysts such as tertiary amines such as triethylene diamine and organometallic compounds such as dibutyltin dilaurate can also be used. However, isocyanate trimerization catalysts that produce isocyanurate rings are not preferred. Incidentally, it is also possible to obtain an inorganic filler-containing polyurethane by mixing the inorganic filler with the polyol or polyisocyanate in advance. Inorganic fillers include glass fibers such as milled glass fibers and chopped strand glass fibers, graphite, silicon carbide, aluminum oxide, molybdenum disulfide, etc., and have properties such as hardness, molding shrinkage rate, coefficient of friction, and wear resistance. However, it is desirable to add a minimum amount of filler, and adding too much will lead to deterioration of physical properties. In addition, when friction resistance and wear resistance are required,
By adding lubricating oil, it can be dramatically improved. In this case, the lubricating oil is preferably added in an amount of 1 to 20 parts by weight per 100 parts by weight of the urethane resin. In the present invention, it is also possible to form a foam by using water, a halogenated hydrocarbon such as trifluorotrichloroethane, or an organic blowing agent such as azobisisobutyronitrile. In the present invention, the curing reaction can be carried out, for example, as follows. First, adjust the liquid temperature of the compound to room temperature to 120℃.
℃, and the temperature of the casting mold is set to 50 to 120℃, and the mold is poured, hardened, and demolded. The cured molded product of the present invention is higher than conventional polyurethane molded products even as it is.
Although it has HDT, properties such as impact strength can be improved by further performing heat treatment at a temperature of 140 to 180°C. The heat treatment can be performed in an inert gas atmosphere such as air or nitrogen. The present invention will be explained below with reference to reference examples and examples. Reference example 1 Propylene oxide adduct of bisphenol A [manufactured by Toho Chiba Chemical Co., Ltd., "BISOL-2P" (approx. 93% of 2 mole adduct of PO as determined by gas chromatographic analysis,
Contains approximately 7% of the 3 molar adduct of PO. OH value 316)]
100g of polyol obtained by heating 1000g to 100°C and dehydrating under reduced pressure to a moisture content of 0.015%, and 1100g of carbodiimide-modified MDI (Japan Polyurethane Co., Ltd., "Millionate") obtained by vacuum dehydration by the above method.
MTL', NCO content 28.8%) 88g in a beaker
The mixture was stirred with a propeller type stirrer for 40 seconds and then defoamed in a vacuum desiccator for 1 minute. This mixed solution was immediately poured into a prefabricated glass mold with inner dimensions of 130 mm x 130 mm x 6 mm heated to 90°C, and after reacting for 30 minutes in an air constant temperature bath at 100°C, the cured product was taken out from the mold. During this time, no bubbles were observed.
Next, heat treatment was performed for 2 hours in an air constant temperature bath at 160°C. A non-foamed, slightly brittle hard polyurethane was obtained. The heat distortion temperature of the obtained polyurethane is determined by ASTM,
The flexural modulus is determined by D648 under a load of 18.6 kg/cm 2 by ASTM, the Izot impact value by D790 is determined by ASTM, and the notched condition is determined by D256.
The friction coefficient was measured using a friction tester manufactured by Toyo Baldwin Co., Ltd. under dry conditions at 20 m/min and 5 to 60 kg/cm 2 . Table 1 shows the physical properties. Examples 1 to 4 Polymer polyol [manufactured by Mitsui Nisso, “POP40/
45", hydroxyl value 110] was taken, heated to 100°C, and dehydrated in vacuum. Also, 5.6% of propylene oxide per mole of 2,4-tolylene diamine (TDA)
150 g of TDA-based polyol (GR-30, manufactured by Takeda Pharmaceutical Co., Ltd.) with an OH value of 400 obtained by addition reaction with 2.6 moles of ethylene oxide was heated to 100°C and dehydrated under reduced pressure to obtain a moisture content of 0.015%. I made it. According to the formulation in Table 1, a predetermined amount of BISOL-2P prepared in Reference Example 1, the polymer polyol prepared in the above method, and GR-30 are added to a beaker to obtain a mixed polyol, and then added to the mixed polyol prepared in Reference Example 1. did
A rigid polyurethane was obtained in the same manner as in Reference Example 1 by adding MTL. Table 1 shows the physical properties. Examples 5 to 10 Diol with a molecular weight of 200 [manufactured by Sanyo Chemical Co., Ltd., “PP-
200'', hydroxyl value 560] was heated to 100°C and dehydrated in vacuum. In addition, 100g of sucrose-based polyol [manufactured by Mitsui Nisso, "LV450A", hydroxyl value 450] was heated to 100℃.
and vacuum dehydrated. BISOL-2P prepared in Reference Example 1 and the polymer polyol prepared in Examples 1 to 4 were placed in a beaker.
Add GR-30 and the above PP-200 and LV450A in the specified amounts shown in Table 2 to make a mixed polyol.
A rigid polyurethane was obtained in the same manner as in Reference Example 1 by adding MTL prepared in Reference Example 1. Table 2 shows the physical properties.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  ―ビス――ヒドロキシプロポ
キシプニルプロパンを成分ずする
―ビス―ヒドロキシプニルプロパンのプ
ロピレンオキシド付加䜓80〜98重量郚及びポリ゚
ヌテルポリオヌルにビニル基を持぀モノマヌをグ
ラフト重合させお埗られたポリマヌポリオヌル
〜20重量郚からなる混合ポリオヌルを含有する、
少なくずも官胜性の氎酞基を有するポリオヌル
成分ず少なくずも官胜性のポリむ゜シアネヌト
成分を反応させるこずを特城ずする熱倉圢枩床が
100℃以䞊の高耐熱性硬質ポリりレタン暹脂の補
造法。
1 2,2-bis{4-(2-hydroxypropoxy)phenyl}propane as one component
-Polymer polyol 2 obtained by graft polymerizing 80 to 98 parts by weight of a propylene oxide adduct of bis(4-hydroxyphenyl)propane and a monomer having a vinyl group to a polyether polyol
containing a mixed polyol consisting of ~20 parts by weight,
The heat distortion temperature is characterized by reacting a polyol component having at least a difunctional hydroxyl group with an at least difunctional polyisocyanate component.
A method for manufacturing hard polyurethane resin with high heat resistance of 100℃ or higher.
JP59047777A 1984-03-12 1984-03-12 High heat-resistant solid polyurethane resin Granted JPS60190415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59047777A JPS60190415A (en) 1984-03-12 1984-03-12 High heat-resistant solid polyurethane resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59047777A JPS60190415A (en) 1984-03-12 1984-03-12 High heat-resistant solid polyurethane resin

Publications (2)

Publication Number Publication Date
JPS60190415A JPS60190415A (en) 1985-09-27
JPS646649B2 true JPS646649B2 (en) 1989-02-06

Family

ID=12784797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59047777A Granted JPS60190415A (en) 1984-03-12 1984-03-12 High heat-resistant solid polyurethane resin

Country Status (1)

Country Link
JP (1) JPS60190415A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7419968B2 (en) * 2020-05-26 2024-01-23 東゜ヌ株匏䌚瀟 Urethane prepolymer composition solution

Also Published As

Publication number Publication date
JPS60190415A (en) 1985-09-27

Similar Documents

Publication Publication Date Title
DK175499B1 (en) Water-foamed flexible polyurethane foam and method for making flexible polyurethane foam
US6331577B1 (en) Process for producing elastic polyurethane moldings with compact surfaces and cellular cores
US4321333A (en) Polyurethane prepared from polyisocyanate blend
US4590224A (en) Siloxane-containing polyisocyanurate
EP0004116B1 (en) Process for the preparation of cross-linked polyurethanes
CN102341420A (en) Highly elastic flexible polyurethane foams
US9139685B2 (en) Process for the preparation of a polyurethane polymer with secondary hydroxyl end groups comprising polyester polyols
US20110015366A1 (en) Novel chain extenders for polyurethane elastomer formulations
US4189544A (en) Polyisocyanurate polymers prepared using carbamate modifier
US4569951A (en) Polymers prepared by reaction of a polyisocyanate with a secondary amine terminated adduct of a primary amine compound and a polyepoxide
EP0429169A1 (en) Isocyanate-reactive composition
JPS646649B2 (en)
JPS5947223A (en) Highly heat-resistant rigid polyurethane
US4902777A (en) N-(polyoxyalkyl)-n-(alkyl)amines
Frisch et al. Isocyanurate-containing polyurethanes
JPH0330612B2 (en)
JPH03239716A (en) Composition for forming flexible polyurethane foam and its production
JPH0440369B2 (en)
JPS646650B2 (en)
JPS6086112A (en) Polyurethane resin having abrasion resistance and wear resistance
JPS58204018A (en) Heat-resistant polyurethane resin
JPS6346766B2 (en)
JPS60163913A (en) Heat-, friction- and abrasion-resistant polyurethane
EP0366266A1 (en) Polymer polyol dispersions, a process for making them and polyurethane foams prepared using such polyol dispersions
JPS5947224A (en) Polyurethane