JPS634670B2 - - Google Patents

Info

Publication number
JPS634670B2
JPS634670B2 JP4097281A JP4097281A JPS634670B2 JP S634670 B2 JPS634670 B2 JP S634670B2 JP 4097281 A JP4097281 A JP 4097281A JP 4097281 A JP4097281 A JP 4097281A JP S634670 B2 JPS634670 B2 JP S634670B2
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
current collecting
electrolyte layer
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4097281A
Other languages
Japanese (ja)
Other versions
JPS57154062A (en
Inventor
Tatsu Osagawa
Hiromasa Yamamoto
Kazuyoshi Ueno
Juichi Nakagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4097281A priority Critical patent/JPS57154062A/en
Publication of JPS57154062A publication Critical patent/JPS57154062A/en
Publication of JPS634670B2 publication Critical patent/JPS634670B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/02Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electrolytic methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】 本発明は固体電気化学素子およびその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid electrochemical device and a method for manufacturing the same.

固体電気化学素子は一般に、動作極とこの動作
極にイオン導電性固体電解質よりなる固体電解質
層を介して対向する対極と、さらに必要であれば
動作極の電位を正確に検出するために、対極とは
別に固体電解質層を介し動作極に対向するようし
て設けられた基準電極とからなり、動作極と対極
との間を通過する電気量に対応して、対極あるい
は基準極に対する動作極の電位がほゞ直線的に変
化し、通電を停止するとその時の電位がそのまゝ
保持される性質を有するものである。
Solid electrochemical devices generally include a working electrode, a counter electrode that faces the working electrode through a solid electrolyte layer made of an ionically conductive solid electrolyte, and, if necessary, a counter electrode that is arranged to accurately detect the potential of the working electrode. It consists of a reference electrode that is separately provided to face the working electrode with a solid electrolyte layer interposed therebetween, and the amount of electricity that passes between the working electrode and the counter electrode changes depending on the amount of electricity that passes between the working electrode and the reference electrode. It has a property that the potential changes almost linearly, and when the current supply is stopped, the current potential is maintained as it is.

この固体電気化学素子に充電、休止、放電、休
止を順次行なわせた時の基準極に対する動作極の
電位の理想的な経過は、第1図のように、それぞ
れの動作点に区切りを持つたいくつかの直線を組
み合わせたものとして示される。
When this solid-state electrochemical element is sequentially charged, rested, discharged, and rested, the ideal progression of the potential of the working electrode with respect to the reference electrode is as shown in Figure 1, because each operating point has a break. It is shown as a combination of several straight lines.

すなわち、一定電流で素子に充電(動作極から
対極方向への通電)していくと、基準極に対する
動作極電位は時間に対してほゞ直線的に上昇して
いく。次に、通電停止時の値を保持し続ける。次
に、一定電流で放電(対極から動作極方向に通
電)させると、動作極電位は、時間に対してほゞ
直線的に下降していく。次に、通電を休止した状
態に切り換えると、動作極電位は、通電停止時の
値を保持し続ける。
That is, when the element is charged with a constant current (current is passed from the working electrode to the opposite electrode), the potential of the working electrode with respect to the reference electrode increases almost linearly with time. Next, the value at the time of energization is continued to be held. Next, when a constant current is discharged (current is applied in the direction from the counter electrode to the active electrode), the potential of the active electrode decreases almost linearly over time. Next, when switching to a state in which the energization is stopped, the operating electrode potential continues to hold the value at the time when the energization was stopped.

このような特性を有する固体電気化学素子の構
成は、既によく知られているように、第2図Aま
たはBに示される断面を有するものである。第2
図A,Bの素子構成を固体電解質として銅イオン
導電性のものを用いた場合を例として述べると、
図において、1は対極であり、Cu2Sと固体電解
質との混合物をプレス成型することにより形成さ
れる。その上に固体電解質層2、Cu2Sと固体電
解質との混合物からなる動作極層3、固体電解質
層2′、対極と同じ材料からなる基準極層4を順
次プレス成型することにより形成される。最後に
基準極及び対極の集電電極6,6′を最終圧力で
圧入した後型からとり出して成型素子とする。動
作極の集電電極5,5′は、第2図Aに示すよう
に、素子成型後に圧入するか、第2図Bに示すよ
うに、成型時に動作極3と固体電解質層2′の層
間に圧入しておき、素子成型後、基準極4及び固
体電解質層2′の一部を切り欠き、動作極の集電
電極5′をとり出すようにする。次に、それぞれ
の集電電極に、リード線8,8′,8″を、半田又
は導電性接着剤7,7′,7″でもつて接続し、こ
の素子を保護するため、必要に応じ外装9を樹脂
でもつて行なう。
The structure of a solid-state electrochemical device having such characteristics has a cross section shown in FIG. 2A or B, as is already well known. Second
Taking as an example the case where the device configurations in Figures A and B use a copper ion conductive solid electrolyte,
In the figure, 1 is a counter electrode, which is formed by press-molding a mixture of Cu2S and a solid electrolyte. Thereon, a solid electrolyte layer 2, a working electrode layer 3 made of a mixture of Cu2S and a solid electrolyte, a solid electrolyte layer 2', and a reference electrode layer 4 made of the same material as the counter electrode are formed by press molding in sequence. Finally, the reference electrode and counter current collector electrodes 6, 6' are press-fitted with a final pressure and then taken out from the mold to form a molded element. The current collecting electrodes 5, 5' of the working electrode are either press-fitted after the device is molded, as shown in FIG. 2A, or inserted between the working electrode 3 and the solid electrolyte layer 2' during molding, as shown in FIG. 2B. After molding the device, a part of the reference electrode 4 and the solid electrolyte layer 2' are cut out, and the current collecting electrode 5' of the working electrode is taken out. Next, connect the lead wires 8, 8', 8'' to each current collecting electrode with solder or conductive adhesive 7, 7', 7'', and cover the device with an exterior cover if necessary to protect the element. Perform step 9 with resin.

上記した従来の構成の素子においては、第1図
に示した動作特性を得るための歩どまりが悪かつ
たり、歩どまりを上げるためには非常に手間が
かゝつていた。すなわち、第2図Aに示したよう
に、動作極集電電極5を素子成型後に圧入するよ
うな場合、集電電極5は、動作極3中において、
ある場合には基準極4に近く圧入されたり(極端
な場合は固体電解質層2′の中に圧入)、またある
場合には対極1側に寄つた位置に圧入されたりす
る。この動作極集電電極5の位置は、第1図のよ
うな動作特性を得るには、第2図Bに示したよう
に動作極3と固体電解質層2′の境界面に正しく
挿入されなければならない。若し、正しく集電電
極が挿入されないときは、素子の動作特性は、第
3図aに示すように、素子への通電を停止した後
も、その電位が通電中に変化して来た方向へ変化
し続ける(以下、オーバーシユートと云う)か、
又は、第3図bに示すように通電を休止している
ときの電位の保持が悪く、充電停止後の電位は、
充電停止時の電位から低下して行き、あるいは、
放電停止後の電位は、放電停止時の電位から次第
に上昇して行き、電位が安定しないなどの影響が
ある。
In the above-mentioned conventional device, the yield for obtaining the operating characteristics shown in FIG. 1 was poor, and it took a great deal of effort to improve the yield. That is, as shown in FIG. 2A, when the working electrode current collecting electrode 5 is press-fitted after the element molding, the current collecting electrode 5 is inserted into the working electrode 3 in the following manner.
In some cases, it is press-fitted close to the reference electrode 4 (in extreme cases, it is press-fitted into the solid electrolyte layer 2'), and in other cases, it is press-fitted at a position closer to the counter electrode 1 side. In order to obtain the operating characteristics shown in FIG. 1, the working electrode current collecting electrode 5 must be inserted correctly at the interface between the working electrode 3 and the solid electrolyte layer 2' as shown in FIG. 2B. Must be. If the current collecting electrode is not inserted correctly, the operating characteristics of the element will continue to change in the direction in which the potential has changed during energization, even after the energization of the element is stopped, as shown in Figure 3a. (hereinafter referred to as overshoot), or
Or, as shown in Figure 3b, the potential is not maintained well when the current is stopped, and the potential after charging is stopped is
The potential decreases from the potential when charging is stopped, or
The potential after discharging is stopped gradually increases from the potential at the time of discharging, which has the effect that the potential is not stable.

一方、第2図Bのように構成しようとすれば、
基準極4および固体電解質層2′の一部を切り欠
かねばならないが、この作業により、素子の各層
間の結着が弱められ、その結果として、第4図に
示すように、充電開始時および停止時並びに放電
開始時および停止時に電位の急激な変化(△V)
を生じるようになる。また、素子作製時にはこの
ような電位の急激な変化がなくても、熱衝撃試験
のような耐久試験を行なうと、第5図のbに示す
ように△Vが増加するようになる。
On the other hand, if you try to configure it as shown in Figure 2B,
Although it is necessary to cut out a part of the reference electrode 4 and the solid electrolyte layer 2', this operation weakens the bond between each layer of the element, and as a result, as shown in FIG. Sudden change in potential (△V) when stopping, starting and stopping discharge
begins to occur. Furthermore, even if there is no such sudden change in potential during device fabrication, when a durability test such as a thermal shock test is performed, ΔV increases as shown in b in FIG. 5.

本発明は、上記の欠点をなくし、第1図のよう
な動作特性を持つ素子を、歩どまり良く、容易
に、かつ簡単に作製することを目的としたもので
ある。また、素子の信頼性をより向上させて、厳
しい環境においても、長時間使用に耐える素子を
作製することを目的としたものである。
The object of the present invention is to eliminate the above-mentioned drawbacks and to easily and simply manufacture an element having operating characteristics as shown in FIG. 1 with good yield. Another purpose is to further improve the reliability of the element and to produce an element that can withstand long-term use even in harsh environments.

従来、この種素子において、第1図に示したよ
うな動作特性を得るためには、第2図に示した構
成において、各層間の結着状態を良くすることが
必要であると考えられて来た。そのために、前述
したように成型金型の中で各層を重ねてプレス成
型する手段がとられて来た。これは、固体電解質
や電極材料には、他の材料の混入は機能を低下さ
せるために好ましくないという一般的な考え方に
基ずき、かつ、粉体を成型したときの各層の結着
を良くするために、前述した手段が選ばれて来た
わけである。しかしながら、本発明者等は、上記
に反して、適当な種類および量の結着剤の混入
は、むしろ好ましい結果を得ることを見出した。
Conventionally, in this type of device, it has been thought that in order to obtain the operating characteristics shown in FIG. 1, it is necessary to improve the bonding state between each layer in the configuration shown in FIG. 2. It's here. To this end, as described above, methods have been taken in which each layer is stacked and press-molded in a mold. This is based on the general idea that it is undesirable to mix other materials into solid electrolytes and electrode materials because it reduces their functionality, and also to improve the cohesion of each layer when the powder is molded. In order to do so, the above-mentioned means have been chosen. However, the inventors have found that, contrary to the above, incorporation of a suitable type and amount of binder yields rather favorable results.

本発明はこの点に鑑みて為されたものであり、
固体電解質層に、ある温度以上になると反応硬化
する熱硬化性樹脂を含有させることを特徴として
いる。
The present invention has been made in view of this point,
The solid electrolyte layer is characterized by containing a thermosetting resin that reacts and hardens when the temperature exceeds a certain temperature.

以下、本発明に係る素子の構成およびその製造
方法を、第6図A,Bを参照して説明する。第6
図Aは本発明の製造方法を説明するための分解斜
視図であり、第6図Bはこの方法により得られる
素子本体の外観を示す斜視図である。熱硬化性樹
脂を含有した固体電解質層12,12′および対
極11、動作極13、基準極14の各層は、それ
ぞれ別々にタブレツトに成型しておく。このう
ち、対極11、動作極13および基準極14の各
電極には、リード線と接合するために設けられた
第2図A,Bの5′,6,6′に対応する集電電極
15,16,16′(16′は隠れて見えない)を
あらかじめ埋設しておく。これらの各層を、成型
金型の中で一体に集積し、樹脂の硬化温度より高
い温度に加熱した状態で、プレス加工により接合
して一体となし第6図Bに示すような素子本体を
形成する。素子を金型より取り出して後、基準極
14および固体電解質層12′の一部を切り欠い
て動作極集電電極15をとり出し、各集電電極に
半田又は導電性接着剤でリード付けを行ない、必
要に応じ樹脂で外装を施こして完成させる。この
ようにして、第2図Bに断面図を示したものとほ
ぼ同様の構成の素子が得られる。
Hereinafter, the structure of the device and the manufacturing method thereof according to the present invention will be explained with reference to FIGS. 6A and 6B. 6th
FIG. 6A is an exploded perspective view for explaining the manufacturing method of the present invention, and FIG. 6B is a perspective view showing the appearance of the element body obtained by this method. The solid electrolyte layers 12, 12' containing a thermosetting resin, the counter electrode 11, the working electrode 13, and the reference electrode 14 are each separately molded into a tablet. Among these, each of the counter electrode 11, the working electrode 13, and the reference electrode 14 has a current collecting electrode 15 corresponding to 5', 6, 6' in FIG. , 16, 16'(16' is hidden and cannot be seen) are buried in advance. These layers are assembled together in a mold, heated to a temperature higher than the curing temperature of the resin, and then joined by press working to form an element body as shown in Figure 6B. do. After taking out the device from the mold, a part of the reference electrode 14 and the solid electrolyte layer 12' is cut out to take out the active collector electrode 15, and leads are attached to each collector electrode with solder or conductive adhesive. Then, if necessary, apply a resin exterior to complete the process. In this way, an element having substantially the same structure as that shown in cross-section in FIG. 2B is obtained.

本発明に用いる熱硬化性樹脂としては、無溶剤
形のものあるいは粉末形式のものが適しており、
この種樹脂として、エポキシ樹脂あるいはポリエ
ステル樹脂がある。この樹脂の添加量として、対
極側の固体電解質層12においては材料100重量
部に対して10重量部より多くなると、固体電解質
層2の抵抗値が高くなり、イオンの導電性が著し
く損なわれる。たゞし、基準極14側の固体電解
質層12′には、樹脂の添加量を25重量部まで増
やしても素子としての機能は変わらないが、それ
よりも添加量が多くなると、この固体電解質層1
2′の高抵抗値のために、基準極としての機能を
果さなくなる。また、樹脂の添加量が1重量部よ
り少ないときは、十分な各層の結着が得られな
い。
As the thermosetting resin used in the present invention, a solvent-free type or a powder type is suitable.
Examples of this type of resin include epoxy resin and polyester resin. If the amount of this resin added is more than 10 parts by weight per 100 parts by weight of the material in the solid electrolyte layer 12 on the counter electrode side, the resistance value of the solid electrolyte layer 2 will increase and the ionic conductivity will be significantly impaired. However, even if the amount of resin added to the solid electrolyte layer 12' on the reference electrode 14 side is increased to 25 parts by weight, the function as an element will not change; layer 1
Due to the high resistance value of 2', it no longer functions as a reference pole. Moreover, when the amount of resin added is less than 1 part by weight, sufficient binding of each layer cannot be obtained.

以下、本発明の具体的な実施例を第6図に従つ
て述べる。まず銅イオン導電性固体電解質とし
て、CuClのCuイオンの1/5をRb+、K+、NR4 +
(RはHあるいはアルキル基)のうちから選ばれ
たカチオンで置換し、かつCl-イオンの1/4〜7/20
をI-イオンで置換されたものを用い(これをSE
と略す)、このSEとエポキシ系粉体熱硬化性樹脂
とを30:1の割合で混合したものを重さ0.6g径
15φのタブレツトに室温で成型しておく。対極及
び基準極材料としては、硫化第一銅9部と上記
SE1部を混合したものを重さ0.6g径15φのタブレ
ツトに成型しておく。動作極としては、硫化第一
銅と上記SEとを等量混合したものを重さ0.6g、
径15φのタブレツトに成型しておく。それぞれの
電極には、集電電極となり、かつ、リード線付け
を半田付けが容易に行なえる金属を好ましい位置
に埋設しておく。また、基準極側の固体電解質層
12′となるタブレツトは、上記SEとエポキシ系
粉体熱硬化性樹脂と9:1の割合で混合したもの
を重さ0.6g径15φに室温で成型しておく。これら
のタブレツトを、第6図Aに示すように、素子と
しての機能を持つように順次に重ね合わせ、この
積み重ねが円滑に入る金型に入れ、4ton/cm2の圧
力で、200℃で加圧成型して成型素子を得る。こ
の成型素子の基準極14および固体電解質層1
2′の一部を切り欠き、動作極集電電極15を取
り出した後、各集電電極にリード線を半田付け
し、樹脂で外装して第2図Bに示すような構造の
素子を得る。
Hereinafter, specific embodiments of the present invention will be described with reference to FIG. First, as a copper ion conductive solid electrolyte, 1/5 of the Cu ions in CuCl are converted into Rb + , K + , NR 4 +
(R is H or an alkyl group), and 1/4 to 7/20 of the Cl - ion.
is substituted with I - ion (this is SE
), a mixture of this SE and epoxy powder thermosetting resin at a ratio of 30:1, weighing 0.6 g in diameter.
Mold into a 15φ tablet at room temperature. The counter electrode and reference electrode materials include 9 parts of cuprous sulfide and the above.
Mix 1 part of SE and mold it into a tablet weighing 0.6g and having a diameter of 15φ. As the working electrode, a mixture of equal amounts of cuprous sulfide and the above SE was used, weighing 0.6 g.
Form into a tablet with a diameter of 15φ. In each electrode, a metal is embedded at a preferable position to serve as a current collecting electrode and to which lead wires can be easily soldered. In addition, the tablet that becomes the solid electrolyte layer 12' on the reference electrode side is made by molding a mixture of the above SE and an epoxy powder thermosetting resin in a ratio of 9:1 to a weight of 0.6g and a diameter of 15φ at room temperature. put. As shown in Figure 6A, these tablets are stacked one on top of the other so that they function as devices, placed in a mold that allows the stack to fit smoothly, and heated at 200°C under a pressure of 4 tons/ cm2 . A molded element is obtained by pressure molding. Reference electrode 14 and solid electrolyte layer 1 of this molded element
After cutting out a part of 2' and taking out the active collector electrode 15, lead wires are soldered to each collector electrode and covered with resin to obtain an element having the structure shown in FIG. 2B. .

なお、上記実施例においては、電極材料の一例
として硫化第一銅を用いたが、これ以外にもセレ
ン化第一銅、テルル化第一銅等のカルコゲン化銅
も用いることができる。
In the above embodiment, cuprous sulfide was used as an example of the electrode material, but copper chalcogenides such as cuprous selenide and cuprous telluride may also be used.

上記実施例のように、固体電解質層に、適当量
の粉体熱硬化性樹脂を混入させ、加熱加圧時の樹
脂の硬化により各層間の結着を強固にすることに
より、従来、素子の成型を一つの型の中で順次に
各層を積み重ねていたのに対して、各層を別々の
タブレツトに成型して後積層するという製造上の
改善となし、極めて効率よく素子を製造できるだ
けでなく、素子の信頼性の面においても著しい向
上を見ることができる。
As in the above example, by mixing an appropriate amount of powdered thermosetting resin into the solid electrolyte layer and hardening the resin during heating and pressure, the bond between each layer is strengthened. Instead of stacking each layer one after another in one mold, we improved the manufacturing process by molding each layer into separate tablets and then stacking them together.This not only made it possible to manufacture devices extremely efficiently, but also A significant improvement can also be seen in the reliability of the device.

次に、このようにして得た本発明の素子と、従
来のように熱硬化性樹脂を含まない素子について
次の条件で熱衝撃試験を行なつたときの、充放電
の開始及び終了時の電位の急激な変化の値(第4
図の△V)を図示すると第5図のようになる。熱
衝撃試験の条件としては、低温側−20℃、高温側
+80℃とし、各温度の槽に30分間保持した後、別
の槽に突入させる操作をくり返し、この操作の
5、20、100サイクル後に、素子に1mAの充放
電動作を行ない、その時の充放電の開始及び停止
時の電位の変化を読みとつた。この電位の急激な
変化は、充電開始時と停止時は、大きさはほゞ同
じで、その方向が逆になる。また、放電と充電に
おいても、第4図に見られるように、大きさは
ほゞ同じで、その方向が逆になる。第5図におい
て、aは本発明による素子の熱衝撃試験における
電位の急激な変化の値の推移を示すものであり、
bは従来の素子の熱衝撃試験における電位の急激
な変化の推移を示すものである。
Next, a thermal shock test was conducted on the device of the present invention obtained in this way and a conventional device that does not contain a thermosetting resin under the following conditions. Value of sudden change in potential (4th
When ΔV) in the figure is illustrated, it becomes as shown in FIG. The conditions for the thermal shock test were -20°C on the low temperature side and +80°C on the high temperature side, and after being kept in a bath at each temperature for 30 minutes, the operation was repeated to plunge into another bath, and this operation was repeated for 5, 20, and 100 cycles. Afterwards, the device was subjected to a charging/discharging operation of 1 mA, and changes in potential at the start and stop of charging/discharging were read. This rapid change in potential has approximately the same magnitude when charging starts and stops, but its direction is opposite. Furthermore, as shown in FIG. 4, the magnitudes of discharge and charge are almost the same, but the directions are opposite. In FIG. 5, a shows the transition of the value of a sudden change in potential in the thermal shock test of the element according to the present invention,
b shows the transition of a rapid change in potential in a conventional thermal shock test of an element.

第5図に見られるように、初期においては全く
同じ性能のように見えても、従来の素子では、熱
衝撃により次第に層間の結着が損なわれ、素子の
性能が劣化するが、本発明の素子ではサイクル数
が増大してもほとんど変化せず、信頼性の優れた
素子を提供することができる。
As shown in FIG. 5, even if the performance appears to be exactly the same at the beginning, with the conventional element, the bond between layers is gradually impaired due to thermal shock, and the performance of the element deteriorates. The device hardly changes even if the number of cycles increases, and it is possible to provide a highly reliable device.

以上の説明から明らかなように、本発明は、素
子を構成する各層を別々に室温であらかじめタブ
レツトに成型した後、成型金型に層積して加熱、
加圧し、各層に含まれる熱硬化性樹脂により結着
させて一体としたため、素子作製において自動機
械を用いて量産することができ、素子を安価に提
供できるものである。さらに、第5図に示した熱
衝撃試験の結果から明らかなように、素子として
も特性の変動の少ない優れたものが得られ、その
実用上の価値は多大である。
As is clear from the above description, in the present invention, each layer constituting an element is separately molded into a tablet at room temperature, and then layered in a mold and heated.
Since the layers are pressurized and bonded together using the thermosetting resin contained in each layer, the device can be mass-produced using automatic machines, and the device can be provided at low cost. Furthermore, as is clear from the results of the thermal shock test shown in FIG. 5, an excellent element with little variation in characteristics was obtained, and its practical value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は固体電気化学素子を一定電流で充放電
させたときの基準極に対する動作極電位の時間変
化を示す好ましい曲線図、第2図A,Bは、固体
電気化学素子の構成例を示す断面図、第3図は従
来の素子において、一定電流で充放電させたとき
の基準極に対する動作電位の時間変化を示す不具
合な曲線図、第4図は従来の素子におけるもう一
つの不具合を示す曲線図、第5図は熱衝撃試験を
行なつたときの第2図Bの構成における本発明お
よび従来の素子において充放電動作時の通電開始
及び停止時の電位の急激な変化の推移を示す曲線
図、第6図A,Bは本発明の製造方法の過程を示
す分解斜視図および素子本体の外観図である。 11……対極、12,12′……固体電解質層、
13……動作極、14……基準極、15,16,
16′……集電電極。
Fig. 1 is a preferred curve diagram showing the time change of the operating electrode potential with respect to the reference electrode when the solid-state electrochemical device is charged and discharged with a constant current, and Fig. 2 A and B show an example of the structure of the solid-state electrochemical device. A cross-sectional view, Figure 3 is a defective curve diagram showing the time change of the operating potential with respect to the reference electrode when charging and discharging with a constant current in a conventional element, and Figure 4 shows another defect in the conventional element. The curve diagram, FIG. 5, shows the transition of rapid changes in potential at the start and stop of energization during charging and discharging operations in the present invention and the conventional device with the configuration shown in FIG. 2B when a thermal shock test was conducted. The curve diagram and FIGS. 6A and 6B are an exploded perspective view showing the process of the manufacturing method of the present invention and an external view of the element body. 11... Counter electrode, 12, 12'... Solid electrolyte layer,
13... Operating pole, 14... Reference pole, 15, 16,
16'...Collecting electrode.

Claims (1)

【特許請求の範囲】 1 集電電極を有する動作極の一方の面にイオン
導電性固体電解質より成る第1の固体電解質層を
介して集電電極を有する対極を設け、かつ、前記
動作極の他方の面にイオン導電性固体電解質より
成る第2の固体電解質層を介して集電電極を有す
る基準極を設け、前記動作極の前記基準極に対す
る電位が、前記動作極と前記対極との間に通電す
る電気量に対応して略直線的に変化する固体電気
化学素子において、前記第1および第2の固体電
解質層が熱硬化性樹脂を含有し、かつ、前記動作
極に設けられた集電電極を前記第2の固体電解質
層との境界面近傍に配し、この集電電極を一部が
露出するように設けてなることを特徴とする固体
電気化学素子。 2 特許請求の範囲第1項の記載において、熱硬
化性樹脂として、エポキシ樹脂およびポリエステ
ル樹脂から選ばれた少くとも1種を用いることを
特徴とする固体電気化学素子。 3 対極を形成する材料、動作極を形成する材料
および基準極を形成する材料を、前記各極に埋設
される集電電極の少なくとも一部が表面に露出し
た状態でそれぞれ成型し、かつ、第1および第2
の固体電解質層を形成するイオン導電性固体電解
質と熱硬化性樹脂との混合組成物を前記熱硬化性
樹脂が硬化しない温度において成型し、これらの
成型物を、対極、第1の固体電解質層、動作極、
第2の固体電解質層、基準極の順序で、かつ、前
記対極および基準極に埋設された集電電極を第1
および第2の固体電解質層と接しない側に配し、
前記動作極に埋設された集電電極を前記第2の固
体電解質層と接する側に配して積層し、この積層
体を前記熱硬化性樹脂が硬化する温度において、
加圧して一体に成型した後、前記動作極に埋設さ
れた集電電極の一部が露出した状態となるよう前
記基準極および第2の固体電解質層の一部を除去
し、しかる後、前記各集電電極にリード線を接合
することを特徴とする固体電気化学素子の製造方
法。
[Claims] 1. A counter electrode having a current collecting electrode is provided on one surface of a working electrode having a current collecting electrode via a first solid electrolyte layer made of an ionically conductive solid electrolyte, and A reference electrode having a current collecting electrode is provided on the other surface via a second solid electrolyte layer made of an ion-conductive solid electrolyte, and the potential of the working electrode with respect to the reference electrode is between the working electrode and the counter electrode. In the solid electrochemical device, the first and second solid electrolyte layers contain a thermosetting resin, and a collector provided at the working electrode is provided. A solid electrochemical device, characterized in that a current collecting electrode is arranged near the interface with the second solid electrolyte layer, and a part of the current collecting electrode is exposed. 2. A solid electrochemical device according to claim 1, characterized in that at least one selected from epoxy resins and polyester resins is used as the thermosetting resin. 3. Molding the material forming the counter electrode, the material forming the working electrode, and the material forming the reference electrode, respectively, with at least a part of the current collecting electrode embedded in each electrode exposed on the surface, and 1st and 2nd
A mixed composition of an ion-conductive solid electrolyte and a thermosetting resin forming the solid electrolyte layer is molded at a temperature at which the thermosetting resin does not harden, and these molded products are used as the counter electrode and the first solid electrolyte layer. , working pole,
a second solid electrolyte layer, a reference electrode, and a current collecting electrode embedded in the counter electrode and the reference electrode;
and arranged on the side not in contact with the second solid electrolyte layer,
Laminating the current collecting electrode embedded in the working electrode on the side in contact with the second solid electrolyte layer, and heating the laminated body at a temperature at which the thermosetting resin hardens.
After pressurizing and molding them into one piece, the reference electrode and a part of the second solid electrolyte layer are removed so that a part of the current collecting electrode embedded in the working electrode is exposed, and then the A method for manufacturing a solid-state electrochemical device, characterized by joining a lead wire to each current collecting electrode.
JP4097281A 1981-03-20 1981-03-20 Solid state electrochemical element and manufacture thereof Granted JPS57154062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4097281A JPS57154062A (en) 1981-03-20 1981-03-20 Solid state electrochemical element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4097281A JPS57154062A (en) 1981-03-20 1981-03-20 Solid state electrochemical element and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS57154062A JPS57154062A (en) 1982-09-22
JPS634670B2 true JPS634670B2 (en) 1988-01-29

Family

ID=12595360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4097281A Granted JPS57154062A (en) 1981-03-20 1981-03-20 Solid state electrochemical element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS57154062A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333764U (en) * 1986-08-22 1988-03-04
JPH02113834A (en) * 1988-10-21 1990-04-26 Iseki & Co Ltd Laying unit for hydroponic culture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333764U (en) * 1986-08-22 1988-03-04
JPH02113834A (en) * 1988-10-21 1990-04-26 Iseki & Co Ltd Laying unit for hydroponic culture

Also Published As

Publication number Publication date
JPS57154062A (en) 1982-09-22

Similar Documents

Publication Publication Date Title
JP4478706B2 (en) Lithium ion conductive solid electrolyte and all solid lithium secondary battery using the same
US20080274412A1 (en) Chip battery
US20060196042A1 (en) Method for producing non-aqueous electrolyte secondary battery
CN103098150B (en) Piezo-resistance is installed on surface
JP2008059954A (en) Manufacturing method of secondary battery
JP2009054484A (en) All solid lithium secondary battery and its manufacturing method
JP2016001595A (en) Lithium ion secondary battery
JP2009093968A (en) Whole-solid lithium secondary battery
US20040049909A1 (en) Method for making a micro-battery
JPWO2020137258A1 (en) battery
US4349384A (en) Method for the manufacture of segments for commutators
JPS634670B2 (en)
JP2000235853A (en) Power generating element
JPS6256469B2 (en)
JP3088907B2 (en) Solid capacitor and its manufacturing method
JPS6253070B2 (en)
JP2000251858A (en) Nonaqueous secondary battery and manufacture thereof
JP6777181B2 (en) Lithium ion secondary battery
JPS6322050B2 (en)
EP0324033A4 (en) Method of producing plate for lead storage battery.
JPH02253569A (en) Manufacture of solid state secondary battery
JPS6253069B2 (en)
WO2024096018A1 (en) All-solid-state secondary battery and method for producing same
JPS6310866B2 (en)
US290941A (en) Assig-nob of one-half