JPS6346391A - Fluidized bed heat exchanger - Google Patents

Fluidized bed heat exchanger

Info

Publication number
JPS6346391A
JPS6346391A JP19023486A JP19023486A JPS6346391A JP S6346391 A JPS6346391 A JP S6346391A JP 19023486 A JP19023486 A JP 19023486A JP 19023486 A JP19023486 A JP 19023486A JP S6346391 A JPS6346391 A JP S6346391A
Authority
JP
Japan
Prior art keywords
heat exchanger
fluidized bed
particles
fluidized
fluidized particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19023486A
Other languages
Japanese (ja)
Inventor
Yoshinori Watanabe
吉典 渡辺
Yoshiaki Aoki
美昭 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19023486A priority Critical patent/JPS6346391A/en
Publication of JPS6346391A publication Critical patent/JPS6346391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce pressure loss and to obtain a high heat transfer coefficient by specifying the ratio of the fin interval of a heat exchanger or the tube interval thereof with respect to the diameter of fluidized particles. CONSTITUTION:In a fluidized bed heat exchange in which around a heat exchanger formed by bonding a plurality of flat tubes 3 through which a coolant flows and a plurality of fins 2 by brazing or tube expansion, fluidized particles 1 are retained, the ratio of the fin interval or the tube interval with respect to the diameter of said fluidized particles is made three times or more. By this arrangement, the fluidized particles 1 can be stably caused to float within a temperature interface layer formed along the air flow direction on the surfaces of fins 2 or tubes 3, and hence frosting can be extremely delayed. Accordingly, pressure loss of the heat exchanger can be reduced and the heat transfer coefficient can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空調用、ヒートポンプ用、あるいは産業用熱交
換器等に広く利用できる流動層熱交換器に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fluidized bed heat exchanger that can be widely used for air conditioning, heat pumps, industrial heat exchangers, and the like.

〔従来の技術〕[Conventional technology]

流動層熱交換器は、従来、化学プラント用あるいは排熱
回収用等に広く用いられているがこれらは一般に流動粒
子の密度が犬きく(ρρ≠3000Kqm /m’ )
粒子径も0.3φ個以下と小さいため、圧力損失が10
0+a+Aq以上と大きく、圧力損失が5+l1lII
Aq程度のヒートポンプ用熱−交換器等のような低圧損
タイプの熱交換器には使用されていないのが実情である
Fluidized bed heat exchangers have conventionally been widely used for chemical plants or waste heat recovery, but these generally have a high density of fluidized particles (ρρ≠3000Kqm/m').
The particle size is small, less than 0.3φ, so the pressure loss is 10
Large pressure loss of 0+a+Aq or more, 5+l1lII
The reality is that it is not used in low pressure drop type heat exchangers such as Aq heat exchangers for heat pumps.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ヒートポンプ用流動層熱交換器等の低圧損タイプとして
使用する場合、流動粒子径を決めると熱交換器のフィン
間あるいはチューブ間で粒子が安定浮遊できる最少のフ
ィン間隔あるいはチューブ間隔が存在する。
When used as a low pressure drop type such as a fluidized bed heat exchanger for a heat pump, there is a minimum fin spacing or tube spacing that allows particles to be stably suspended between the fins or tubes of the heat exchanger when the diameter of the fluidized particles is determined.

即ち、流動粒子を安定浮遊させることにより低圧損で熱
伝達率を向上させるための最適値が存在する。
That is, there is an optimum value for improving the heat transfer coefficient with low pressure drop by stably suspending the fluidized particles.

本発明は、ヒートポンプ用熱交換器等の低圧損タイプの
ものとして必要な低圧損で高熱伝達率を得ることができ
る流動層熱交換器を提供しようとするものである。
The present invention aims to provide a fluidized bed heat exchanger that can obtain a high heat transfer coefficient with a low pressure drop necessary for a low pressure drop type heat exchanger such as a heat exchanger for a heat pump.

〔問題点を解決するだめの平反〕[Failure to solve problems]

本発明は、上記課題を達成するため、熱交換器のまわり
に流動粒子を保持せしめてなる流動層熱交換器において
、前記流動粒子の径に対して、前記熱交換器のフィン間
隔もしくはチューブ間隔の比率を3倍以上として流動層
熱交換器を構成したものである。
In order to achieve the above object, the present invention provides a fluidized bed heat exchanger in which fluidized particles are held around the heat exchanger. The fluidized bed heat exchanger is configured with a ratio of 3 times or more.

〔作用〕[Effect]

上記のようにフィン間隔もしくはチューブ間隔を流動粒
子の径の3倍以上とすることにより。
By setting the fin spacing or tube spacing to three times or more the diameter of the fluidized particles as described above.

フィンあるいはチューブ表面上に空気流れ方向に沿って
できる温度境界層内に流動粒子を安定浮遊させることが
できる。
Fluid particles can be stably suspended in a temperature boundary layer formed along the air flow direction on the fin or tube surface.

〔実施例〕〔Example〕

以下に本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図に冷媒(フレオン22又は12)が流れる複数本
の扁平チー−ブ3と複数枚のフィン2とをロー付あるい
は拡管により接合した流動層熱交換器を示す。
FIG. 1 shows a fluidized bed heat exchanger in which a plurality of flat tubes 3 through which a refrigerant (Freon 22 or 12) flows and a plurality of fins 2 are joined by brazing or tube expansion.

第2図には複数本の扁平チー−プ3のみからなる流動層
熱交換器を示す。1は流動粒子、2はプレートフィン、
3は扁平チューブ、4は分散板、Sはプレートフィン2
の間隔又は扁平チューブ3間の最小寸法である。なお2
図示していないが、扁平チー−プ3の代りに丸形のチ−
ブを用いた熱交換器やコルゲートフィンを用いた熱交換
器にも同様に適用することができる。
FIG. 2 shows a fluidized bed heat exchanger consisting only of a plurality of flat cheeps 3. 1 is a fluid particle, 2 is a plate fin,
3 is a flat tube, 4 is a distribution plate, S is a plate fin 2
or the minimum dimension between the flat tubes 3. Note 2
Although not shown, a round chip is used instead of the flat chip 3.
The present invention can be similarly applied to a heat exchanger using a fin or a heat exchanger using a corrugated fin.

また9図示のようにチューブ配列は空気流れaに対して
千鳥配列にした方が好結果が得られる。
Further, better results can be obtained by arranging the tubes in a staggered arrangement with respect to the air flow a, as shown in Figure 9.

bは冷媒の流れを示している。b indicates the flow of refrigerant.

第3図は粒子径に対するフィン間隔の比率(S/粒子径
)と熱交換器の熱伝達率の関係を示す図で、S/粒子径
〈3.Oで急激に熱伝達率が低下しているが、これは粒
子に作用する空気流れの抗力が粒子の重力とバランスす
るためにピッチ間に存在し得る粒子数が急減するためで
あり、伝熱面と衝突する粒子の数は減少して着霜も早ま
る。しかし、S/粒径〉3.0を選べばこのようなこと
はなく着霜も柩端に遅延できる。
FIG. 3 is a diagram showing the relationship between the ratio of the fin spacing to the particle diameter (S/particle diameter) and the heat transfer coefficient of the heat exchanger, and shows the relationship between the ratio of the fin spacing to the particle diameter (S/particle diameter) and the heat transfer coefficient of the heat exchanger. The heat transfer coefficient decreases rapidly in O, but this is because the drag force of the air flow acting on the particles is balanced with the gravity of the particles, so the number of particles that can exist between the pitches decreases rapidly, and the heat transfer rate decreases rapidly. The number of particles colliding with the surface is reduced and frost formation is accelerated. However, if S/particle size>3.0 is selected, this problem will not occur and frost formation can be delayed to the coffin ends.

第4図は所定ピッチの流動層熱交換器の熱伝達率/圧力
損失: kw/△Paと粒子径:dpの関係を粒子密度
:ρpをパラメータに示したもので粒子が流動化する適
値での熱伝達率と圧力損失している実験結果である。実
験に使用した流動粒子はポリスチレン発泡粒子又は相当
のものでρp = 500〜l O00(Kym/i)
である。なお、ヒートポンプ用熱交換器としてはkW/
ΔPa=40 (k、Il /−−℃/咽AQ)程度以
上が要求されるので、 、p=500ではdp= 1.
5以下2ρp=1000ではdp==Q、3以下の粒子
径が適当となる。
Figure 4 shows the relationship between heat transfer coefficient/pressure drop: kW/△Pa and particle diameter: dp in a fluidized bed heat exchanger with a predetermined pitch, using particle density: ρp as a parameter, which is the optimum value for fluidizing the particles. The heat transfer coefficient and pressure loss are experimental results. The fluidized particles used in the experiment were polystyrene foam particles or equivalent particles, and ρp = 500 ~ l O00 (Kym/i)
It is. In addition, as a heat exchanger for a heat pump, kW/
Since ΔPa=40 (k, Il/−−℃/pharyngeal AQ) or more is required, when p=500, dp=1.
When 2ρp=1000 is 5 or less, dp==Q, and a particle size of 3 or less is appropriate.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によるとフィン間隔又はチューブ間
隔を流動粒子径の3倍以上とすることにより熱交換器の
圧損を小さくシ、かつ、熱伝達率を向上させることが出
来る。
As described above, according to the present invention, by setting the fin spacing or tube spacing to three times or more the diameter of the fluidized particles, it is possible to reduce the pressure drop in the heat exchanger and improve the heat transfer coefficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプレートフィン流動層熱交換器の構成図、第2
図は扁平チー−プ流動層熱交換器の構成図、第3図は流
動層熱交換器の熱伝達特性図、第4図は流動粒子径と熱
伝達率/圧力損失の関係を示す図である。 1・・・流動粒子、2・・・プレートフィン、3・・・
扁平チューブ、4・・・分散板、S・・・フィン間隔又
はチューブ間隔
Figure 1 is a block diagram of a plate-fin fluidized bed heat exchanger, Figure 2
The figure shows the configuration of a flat cheap fluidized bed heat exchanger, Figure 3 shows the heat transfer characteristics of the fluidized bed heat exchanger, and Figure 4 shows the relationship between fluid particle diameter and heat transfer coefficient/pressure loss. be. 1...Fluid particles, 2...Plate fins, 3...
Flat tube, 4... Dispersion plate, S... Fin spacing or tube spacing

Claims (1)

【特許請求の範囲】[Claims] 熱交換器のまわりに流動粒子を保持せしめてなる流動層
熱交換器において、前記流動粒子の径に対して、前記熱
交換器のフィン間隔もしくはチューブ間隔の比率を3倍
以上としたことを特徴とする流動層熱交換器。
A fluidized bed heat exchanger comprising fluidized particles held around the heat exchanger, characterized in that the ratio of the fin spacing or tube spacing of the heat exchanger to the diameter of the fluidized particles is three times or more. Fluidized bed heat exchanger.
JP19023486A 1986-08-13 1986-08-13 Fluidized bed heat exchanger Pending JPS6346391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19023486A JPS6346391A (en) 1986-08-13 1986-08-13 Fluidized bed heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19023486A JPS6346391A (en) 1986-08-13 1986-08-13 Fluidized bed heat exchanger

Publications (1)

Publication Number Publication Date
JPS6346391A true JPS6346391A (en) 1988-02-27

Family

ID=16254724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19023486A Pending JPS6346391A (en) 1986-08-13 1986-08-13 Fluidized bed heat exchanger

Country Status (1)

Country Link
JP (1) JPS6346391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102224388A (en) * 2008-11-24 2011-10-19 Rwe动力股份公司 Indirectly heated fluidized bed dryer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102224388A (en) * 2008-11-24 2011-10-19 Rwe动力股份公司 Indirectly heated fluidized bed dryer

Similar Documents

Publication Publication Date Title
US4998580A (en) Condenser with small hydraulic diameter flow path
JPH05695Y2 (en)
JPH02287094A (en) Heat exchanger
JP2553647B2 (en) Fin tube heat exchanger
JPS6346391A (en) Fluidized bed heat exchanger
JPH0271096A (en) Heat exchanger with fin
JPS6317393A (en) Heat exchanger
JPS633185A (en) Finned heat exchanger
JPS62112997A (en) Heat exchanger
JP2628570B2 (en) Fin tube type heat exchanger
JPH0195294A (en) Heat exchanger
JPS6127493A (en) Heat exchanger with fins
JPS63197884A (en) Finned heat exchanger
JPS6176882A (en) Heat exchange device
JP2603224Y2 (en) Heat exchanger
JPS6099991A (en) Fluidized bed heat exchanger
CN2109540U (en) Low boiling point in-tube boiling heat exchanger
JPH0297896A (en) Manufacture of heat exchanger
JPH02171596A (en) Heat exchanger with fins
JPH0363498A (en) Heat exchanger
JPS61272594A (en) Finned heat exchanger
JPS63116094A (en) Heat exchanger with fins
JP2001116481A (en) Multitubular heat-exchanger
JPS60181568A (en) Refrigerator
JPS60164191A (en) Filler layer type heat exchanger