JPS6345936B2 - - Google Patents

Info

Publication number
JPS6345936B2
JPS6345936B2 JP55147578A JP14757880A JPS6345936B2 JP S6345936 B2 JPS6345936 B2 JP S6345936B2 JP 55147578 A JP55147578 A JP 55147578A JP 14757880 A JP14757880 A JP 14757880A JP S6345936 B2 JPS6345936 B2 JP S6345936B2
Authority
JP
Japan
Prior art keywords
foam board
foam
board
present
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55147578A
Other languages
Japanese (ja)
Other versions
JPS5772830A (en
Inventor
Takao Kadota
Masahiko Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Kakoh KK
Original Assignee
Dow Kakoh KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Kakoh KK filed Critical Dow Kakoh KK
Priority to JP55147578A priority Critical patent/JPS5772830A/en
Publication of JPS5772830A publication Critical patent/JPS5772830A/en
Publication of JPS6345936B2 publication Critical patent/JPS6345936B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • B29C44/507Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying extruding the compound through an annular die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/001Tubular films, sleeves

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規なスチレン系発泡板に関し、詳し
くは、例えば、これをそのまま、或は所望の形状
に押圧賦形して、90℃前後の熱を受ける構築物の
内装断熱材、加熱滅菌ができる断熱容器、電子線
加熱調理に耐える断熱容器等に活用できる新規な
スチレン系発泡板に関する。 従来、ビーズ型内成形、或は押出成形されたポ
リスチレン発泡体は、剛性があつて断熱性に優
れ、緩衝性をも有することから建物の断熱材、物
品包装時の緩衝材等に古くから用いられている
他、トレー、食品容器、育苗箱、魚介類の運搬箱
等に広く用いられて知られている。 しかしながら、従来のこれ等スチレン発泡体に
は例えば90℃前後の熱を受けた場合の寸法変化率
で示される耐熱性に乏しい。又、着火したときの
燃焼速度が大きい。更に衝撃に対しては、凹みや
割れを生じる等の欠点があり、これ等の欠点をさ
ける用途に使用されているのが現状である。 その理由は、例えば耐熱性を向上させようとす
ると耐衝撃性が低下しこれを緩和させようとする
と断熱性能が低下するし、又難燃剤等を用いて燃
焼速度を遅らせようとすると、食品容器等には使
用し難くなる等、要するに、耐熱性、断熱性、防
炎性、賦形成形性、対食品適性等を満足できる水
準に兼備させることができなかつたからである。 近来、省エネルギー問題が重視され、航空機、
船舶、車輛等の軽量化にともなう内装断熱材、太
陽熱を収蓄するための保温断熱材、建物の居住性
を保つための屋根、壁断熱材等のあり方が課題と
なり、一方、即席調理食品の普及は耐熱性・断熱
性に優れた食品用容器素材の登場を求めている。 本発明は、このような市場の実状に鑑みて鋭意
研究の結果、ようやく完成されたもので、その目
的は、耐熱性、断熱性、防炎性、耐衝撃性、表面
硬度、対食品適性、賦形成形適性等のすべてが、
実用に供し得るに充分な水準に兼備されている新
規なスチレン系樹脂発泡板を経済的に提供するこ
とにある。 本発明によれば、アクリル酸、メタクリル酸、
無水マレイン酸、の少なくとも一成分を含むスチ
レン成分が75〜95重量%で且つビカツト軟化点が
115℃以上のスチレン系共重合体樹脂で構成され
ている密度60〜200Kg/m3、肉厚み2.5〜7mmの発
泡板であつて、該板は表皮部の厚み(T)と該板
の内部に位置する気泡の気泡膜の厚み(t)との
間で(T/t)≧2.5の関係を満たす表皮部を板両
面に有していて、更に該板をJIS A−9511に準じ
て押曲げたときのたわみ係数(p/y)が、1.5
≧(p/y)≧0.2であることを特徴とするスチレ
ン系樹脂発泡板 但し、たわみ係数(p/y)は、荷重(p)と
のたわみ量(y)との関係が実質上直線的になる
部分での係数で、下記の条件で測定し次式で求め
られるものが提供される。 (p/y)=E・4bh3/l3 p;荷重(Kg) l;スパン距離(cm)〔20cmを採用〕 b;発泡板片の巾(cm)〔7.5cmを採用〕 h;発泡板片の厚み(cm)〔測定時の各々による〕 E;曲げ弾性率(Kg/cm2)〔JIS A−9511ポリス
チレンフオームによる〕 y;たわみ量(cm) 以下本発明の内容を図面等を用いて詳述する。 第1図は本発明の、第2,3図は比較品の各々
発泡板の断面部分の拡大写真である。 本発明の発泡体の第1の特徴は第1〜3図の対
比でも明らかなように、板の表層部に位置した気
泡の気泡膜が連なつて形成された内厚の表皮部を
板の両面に有していて、この表皮部で両表面を実
質的に覆つていることである。この特徴は、同じ
樹脂で作られた第2図の比較の発泡板には認める
ことができないものであるし、第3図に示すよう
な発泡板上に肉厚のフイルム等を貼着した積層発
泡板とも異なる構造であることを示している。 更にこの特徴は、第2図の発泡板では得られな
い表面硬度、圧縮強さ(表面)、賦形成形適性を
発揮するし、第3図の積層発泡板では達成できな
い圧縮強さ(表面)、表皮部の耐剥離強さ、経済
性を発揮し得る利点を有している。 本発明の発泡板の第2の特徴は、上記第1の特
徴をもつ発泡板を構成する気泡群が、アクリル
酸、メタクリル酸、無水マレイン酸の少なくとも
一成分を含むスチレン系共重合体樹脂で形成され
ていることである。 その理由は本発明の発泡板に耐熱性、防炎性、
対食品適性を兼備させるためのもので、例えばそ
の成分を、アクリルアミド、αメチルスチレンマ
レイミド等に変えたりすると、同じスチレン系共
重合樹脂であつても、これ等の特性を兼備できな
くなつてしまうからである。この辺りの事情は実
施例、比較例−1の第1表に明示されている。 本発明者等の知見によると、アクリル酸、メタ
クリル酸、無水マイレン酸の成分量の増大は、発
泡板の耐熱性を高める傾向につながることもある
が、逆に発泡板の耐応力クレージング性が低下し
てしまうこともあるので、こんな際は、融点の比
較的低い、アクリル酸メチル、アクリル酸エチル
等のアクリル酸エステル、或はゴム物質を10%以
下の量で付加されていると、耐応力クレージング
性の低下を防ぐことができるので効果的である。 しかしながら、本発明の発泡体の第3の特徴と
して、上記第1、2の特徴を満たす発泡板であつ
ても樹脂組成のスチレン成分が75〜95重量%の範
囲にあつて、且つそのビカツト軟化点が115℃以
上のものであるスチレン系共重合体樹脂のもので
なくてはならないことである。 この理由は、本発明の成形体の耐熱性、対食品
適性をより完全なものにし、更に圧縮強さ等を付
与するためのもので、例えば、上記第1、2の特
徴を満たし、更にスチレン成分が75〜95重量%の
範囲を満たすものでも、ビカツト軟化点が115℃
未満のものは、例えば耐熱性が低下するし、逆に
第1、2の特徴とビカツト軟化点の115℃以上の
条件を満たすものでも、スチレン成分の範囲外の
ものは、対食品適性が悪化する欠点があるからで
ある。このへんの事情は実施例・比較例2の第2
表に明示されている。 次いで、本発明の第4の特徴は、上記第1、
2、3の特徴を満たすものであつても、その発泡
板の密度が、60〜200Kg/m3であつて、且つ、第
1の特徴で述べた表皮部の肉厚(T)が発泡板内
部に位置する気泡の膜厚(t)との間で、(T/
t)≧2.5の関係を満たすものでなければならな
い。 この理由は、本発明の発泡板に要求される断熱
性能、断熱性能の持続性、防炎性及び表面硬度を
実用性のある水準にバランスさせて兼備させるた
めのものである。一般に発泡板では、気泡の大き
さや板の厚みが一定の場合、密度を下げて断熱性
能を向上させると、防炎性、表面硬度が低下する
し、気泡膜厚を高めてその防炎性を高めても、表
面硬度は密度が高まる割には向上しないし、気泡
径を小さくして断熱性能を高めようとすると、密
度がよつたり破泡が生じたりして断熱性能やその
持続性が低下したりしてしまう欠点がある。本発
明ではこれ等相互の調和の難かしさを、発泡板表
面部を実質的に覆う表皮部を厚く付すことによつ
て緩和させたものである。 本発明者等の知見によると、気泡の形状は、表
層部に近いもの程、断面長手方向に偏平化してい
るもの程、断熱性能は向上するが、表皮部を厚く
したいあまり内部気泡膜を薄くしすぎることは、
圧縮強さや断熱性能の低下につながることもある
ので注意が必要である。実験では(T/t)を10
程度までにしても、良好な成形体が得られること
が確認されている。 更に本発明の第5の特徴は、上記1〜4の特徴
を満たすものであつても、発泡板の肉厚みが2.5
〜7mmの範囲で、該板をJIS A−9511に準じて押
曲げたときのたわみ係数(p/y)が0.2〜1.5の
値のものである必要がある。 この理由は、本発明の発泡板に、これを賦形す
るときに必要な、深絞り性、賦形適性温度条件範
囲で代表される賦形成形性、加熱加重下での寸法
変化率で示す耐熱及び耐落錘衝撃性を実用的水準
に兼備させるためのものである。 一般に(p/y)は、板の厚みやその密度等で
変化する性格のものではあるが、本発明での評価
(第4表参照)は、密度及び(T/t)をほぼ同
水準に揃えてあるので、ここでいう発泡板の肉厚
みと(p/y)との関係は、発泡板内部の気泡形
状、気泡性、気泡分布、気泡膜の分布等が総合さ
れた所謂、発泡板内部の気泡の構造状態を示す1
つの構造指標であるということができる。 以上、詳述したように本発明の発泡板は、上記
第1〜5の特徴のすべてを満足させたことによつ
て、従来のスチレン系発泡板とは違つた様々な実
用特性を兼備した新規な発泡板になり得たのであ
る。 本発明の発泡板は、例えば、下記のような特殊
な製造条件下で、注意深く作成することによつて
製造できる。 第4図に示す製造装置要図によつてこれを説明
すると、原料樹脂は、ホツパー部1から押出機2
内に、一般の核剤や滑剤と共に供給され、ここで
加熱されて溶融する。次に溶融した樹脂に注入口
3から圧入された一般の有機発泡剤が混合され、
温調器4で温調された後、約100〜170℃の温度の
環状のダイス5から常温常圧下の大気中にチユー
ブ状に押出される。 チユーブ状のパリソン6は、チユーブ内の圧力
によつてインフレーシヨンされ、デフレーター7
で平板状に折りたたまれ、上記パリソンの引取り
とパリソンを挟圧する機能を持つピンチロール8
を経て、発泡板9となるのである。又10は、バ
ブル内の均圧化と温調を行なうための気体循環マ
ンドレルである。 この際特に注意すべきことは、環状ダイスの口
径と、インフレーシヨン部の最大径との比(ブロ
ーアツプ比)、及びデフレーター7の開角度、並
にバブル内の温調、とのバランスを計ることで、
使用樹脂、使用発泡剤、目標密度等で若干変動は
あるが、本発明者等の実験では、 Γブローアツプ比 2.0〜3.0 Γデフレーター開角度 44〜70度 Γバブル内吹入温度 118〜160℃ Γ挟圧直前のパリソン内外面温度差 10〜30 の範囲からその組合せを選ぶことが必要である。
この必要性は、パリソン6は押出直後に発泡しそ
の外側表面は著しく冷却されることになる。こと
に、本発明に使用する樹脂は融点が高いのでこの
傾向は著しい。一方、パリソン外表面は、冷却さ
れる程、硬い表皮部が形成されるが、内表面側の
冷却が進みすぎると挟圧時に、これを融着し、剥
離しない一体化された発泡板9にすることができ
ない。とは云ば、パリソン内外表面の温度差を早
く、或は大きくかけすぎると、パリソン内部の気
泡構造が変化して本発明でいうp/yの関係を満
足する構造のものにならない。 従つて、本発明での上記条件は、ブローアツプ
の程度を適切にして二軸方向の伸展にともなう冷
却(及び気泡形状の形成)を外部冷却に加算し、
内部過冷分はバブル内温調(勾配)で調和させよ
うとする思想である。 尚この際、デフレーターとバブルとの接触はパ
リソン外面の冷却にも寄与しているので、バブル
との接触長が適切にとれるように、その表面摩擦
抵抗を小さくし、ブローアツプ比に合つた開角度
を選ぶことが必要である。 実施例、比較例に用いる樹脂は下記の通りであ
る。
The present invention relates to a new styrene foam board, and more specifically, for example, it can be used as is or pressed into a desired shape as an interior insulation material for structures that receive heat of around 90 degrees Celsius, and as a heat sterilizable insulation material. This invention relates to a new styrene foam board that can be used for containers, insulated containers that can withstand electron beam cooking, etc. Conventionally, polystyrene foams molded in bead molds or extruded have been used for a long time as insulation materials for buildings, cushioning materials for packaging goods, etc. because they are rigid, have excellent heat insulation properties, and also have cushioning properties. In addition, it is widely used in trays, food containers, seedling boxes, seafood transportation boxes, etc. However, these conventional styrene foams have poor heat resistance as shown by the rate of dimensional change when subjected to heat of, for example, around 90°C. Also, the combustion speed when ignited is high. Furthermore, it has drawbacks such as denting and cracking when subjected to impact, and at present it is used for purposes that avoid these drawbacks. The reason for this is that, for example, if you try to improve the heat resistance, the impact resistance will decrease, and if you try to alleviate this, the insulation performance will decrease, and if you try to slow the combustion rate by using flame retardants etc. In other words, it was not possible to achieve a satisfactory level of heat resistance, heat insulation, flame retardancy, formability, suitability for food, etc. In recent years, energy conservation issues have been emphasized, and aircraft,
As ships and vehicles become lighter, issues such as interior insulation materials, thermal insulation materials to collect solar heat, and roof and wall insulation materials to maintain the livability of buildings have become issues. Popularization requires the emergence of food container materials with excellent heat resistance and insulation properties. The present invention was finally completed as a result of intensive research in view of the actual market conditions, and its objectives are to improve heat resistance, heat insulation, flame resistance, impact resistance, surface hardness, suitability for food, All of the aptitude for shaping, etc.
It is an object of the present invention to economically provide a novel styrenic resin foam board that has a sufficient level of functionality for practical use. According to the invention, acrylic acid, methacrylic acid,
The styrene component containing at least one component of maleic anhydride is 75 to 95% by weight, and the softening point is
It is a foamed board with a density of 60 to 200 kg/m 3 and a wall thickness of 2.5 to 7 mm, which is made of styrene copolymer resin at a temperature of 115°C or higher, and the board has a thickness of the skin (T) and the inside of the board. The board has skin parts on both sides that satisfy the relationship (T/t)≧2.5 with the thickness (t) of the bubble film of the bubbles located at The deflection coefficient (p/y) when bent is 1.5
≧ (p/y) ≧ 0.2. However, the deflection coefficient (p/y) has a substantially linear relationship between the amount of deflection (y) and the load (p). The coefficient at the part where (p/y)=E・4bh 3 /l 3 p; Load (Kg) l; Span distance (cm) [20cm was adopted] b; Width of foam board piece (cm) [7.5cm was adopted] h; Foaming Thickness of plate piece (cm) [according to each measurement] E: Flexural modulus (Kg/cm 2 ) [according to JIS A-9511 polystyrene foam] y: Deflection amount (cm) The content of the present invention will be explained below with reference to drawings, etc. This will be explained in detail using FIG. 1 is an enlarged photograph of a cross-sectional portion of a foam board of the present invention, and FIGS. 2 and 3 are comparative foam boards. The first feature of the foam of the present invention is that, as is clear from the comparison between FIGS. It has on both sides, and both surfaces are substantially covered with this skin part. This feature cannot be observed in the comparative foam board shown in Figure 2, which is made of the same resin, and is not found in the foam board shown in Figure 3, which is a laminated film with a thick film attached to the foam board. This shows that the structure is different from that of a foam board. Furthermore, this feature provides surface hardness, compressive strength (surface), and suitability for shaping that cannot be achieved with the foam board shown in Figure 2, and compressive strength (surface) that cannot be achieved with the laminated foam board shown in Figure 3. It has the advantage of being able to demonstrate peeling resistance strength of the skin part and economical efficiency. A second feature of the foam board of the present invention is that the cells constituting the foam board having the first feature are made of a styrene copolymer resin containing at least one component of acrylic acid, methacrylic acid, and maleic anhydride. It is being formed. The reason for this is that the foam board of the present invention has heat resistance, flame resistance,
It is intended to have both food compatibility. For example, if the ingredients are changed to acrylamide, α-methylstyrene maleimide, etc., even if it is the same styrene-based copolymer resin, it will no longer have these characteristics. It is from. The circumstances around this are clearly shown in Table 1 of Examples and Comparative Example-1. According to the findings of the present inventors, an increase in the content of acrylic acid, methacrylic acid, and maleic anhydride may lead to a tendency to increase the heat resistance of the foam board, but conversely, the stress craze resistance of the foam board may be increased. Therefore, in such cases, if acrylic esters such as methyl acrylate and ethyl acrylate, which have relatively low melting points, or rubber substances are added in an amount of 10% or less, the resistance will decrease. This is effective because it can prevent deterioration in stress crazing properties. However, as a third feature of the foam of the present invention, even if the foam board satisfies the first and second features above, the styrene component of the resin composition is in the range of 75 to 95% by weight, and its Vikatsu softens. It must be made of a styrene copolymer resin with a temperature of 115°C or higher. The reason for this is to further perfect the heat resistance and food suitability of the molded product of the present invention, and further impart compressive strength, etc. Even if the ingredients meet the range of 75 to 95% by weight, the Vikatsu softening point is 115℃
If the styrene component is less than 115°C, the heat resistance will deteriorate, and even if the styrene component satisfies the conditions of 115°C or higher for the first and second characteristics, the suitability for food will deteriorate. This is because it has the disadvantage of The circumstances surrounding this are explained in the second example and comparative example 2.
clearly stated in the table. Next, the fourth feature of the present invention is the above-mentioned first,
Even if the foam board satisfies characteristics 2 and 3, the density of the foam board is 60 to 200 kg/ m3 , and the thickness (T) of the skin part described in the first characteristic is a foam board. Between the film thickness (t) of the bubble located inside, (T/
t) must satisfy the relationship of ≧2.5. The reason for this is to balance the insulation performance, sustainability of insulation performance, flame retardance, and surface hardness required of the foam board of the present invention to a practical level. In general, with foam boards, if the size of the bubbles and the thickness of the board are constant, reducing the density to improve the insulation performance will reduce the flame retardant properties and surface hardness, and increasing the bubble film thickness will reduce the flame retardant properties. Even if you increase the density, the surface hardness does not improve as much as the density increases, and if you try to improve the insulation performance by reducing the bubble diameter, the density will warp or bubbles will break, which will affect the insulation performance and its sustainability. There is a drawback that it may deteriorate. In the present invention, these difficulties in achieving mutual harmony are alleviated by providing a thick skin portion that substantially covers the surface portion of the foam board. According to the findings of the present inventors, the closer the shape of the bubble is to the surface layer and the flatter it is in the longitudinal direction of the cross section, the better the insulation performance. Too much is
Care must be taken as this may lead to a decrease in compressive strength and insulation performance. In the experiment, (T/t) is 10
It has been confirmed that a good molded product can be obtained even if the temperature is reduced to a certain extent. Furthermore, the fifth feature of the present invention is that even if the above features 1 to 4 are satisfied, the wall thickness of the foam board is 2.5%.
~7 mm, and the deflection coefficient (p/y) when the plate is pressed and bent according to JIS A-9511 must be 0.2 to 1.5. The reason for this is shown in the deep drawability, forming formability represented by the temperature range suitable for forming, and the dimensional change rate under heating load, which are necessary when forming the foam board of the present invention. This is to provide a practical level of heat resistance and falling weight impact resistance. In general, (p/y) varies depending on the thickness of the board, its density, etc., but the evaluation in the present invention (see Table 4) is based on the density and (T/t) being at approximately the same level. Therefore, the relationship between the wall thickness of the foam board and (p/y) here is based on the so-called foam board, which is a comprehensive consideration of the bubble shape, foam properties, bubble distribution, bubble film distribution, etc. inside the foam board. 1 showing the structural state of the internal bubbles
It can be said that there are two structural indicators. As detailed above, the foam board of the present invention satisfies all of the above-mentioned characteristics 1 to 5, and thus is a novel product that has various practical properties different from conventional styrene foam boards. This made it possible to create a foam board. The foam board of the present invention can be manufactured, for example, by careful preparation under special manufacturing conditions as described below. This will be explained with reference to the schematic diagram of the manufacturing apparatus shown in FIG.
It is supplied together with a general nucleating agent and a lubricant, and is heated and melted here. Next, a general organic blowing agent press-injected from the injection port 3 is mixed into the molten resin.
After being temperature controlled by the temperature regulator 4, it is extruded into a tube shape from an annular die 5 at a temperature of about 100 to 170°C into the atmosphere at room temperature and pressure. The tube-shaped parison 6 is inflated by the pressure inside the tube, and the deflator 7
Pinch roll 8 which is folded into a flat plate shape and has the function of picking up the parison and pinching the parison.
After that, the foam board 9 is formed. Further, 10 is a gas circulation mandrel for equalizing the pressure and controlling the temperature inside the bubble. At this time, special attention should be paid to the ratio of the diameter of the annular die to the maximum diameter of the inflation section (blow-up ratio), the opening angle of the deflator 7, and the balance with the temperature control inside the bubble. By that,
Although there are slight variations depending on the resin used, the blowing agent used, the target density, etc., in the experiments conducted by the present inventors, Γ blow-up ratio: 2.0 to 3.0 Γ deflator opening angle: 44 to 70 degrees Γ Blow temperature inside the bubble: 118 to 160 °C Γ It is necessary to select a combination within the range of a temperature difference between the inside and outside surfaces of the parison immediately before the clamping of 10 to 30 degrees.
This requirement results in the parison 6 being foamed immediately after extrusion and its outer surface being significantly cooled. In particular, this tendency is remarkable because the resin used in the present invention has a high melting point. On the other hand, as the outer surface of the parison is cooled, a hard skin is formed, but if the inner surface side is cooled too much, it will be fused and bonded to the integrated foam board 9 that will not peel off when the inner surface is cooled too much. Can not do it. However, if the temperature difference between the inner and outer surfaces of the parison is applied too quickly or to a large extent, the cell structure inside the parison will change and the structure will not satisfy the p/y relationship defined in the present invention. Therefore, the above conditions in the present invention include adding the cooling (and formation of bubble shape) accompanying the expansion in the biaxial direction to the external cooling with an appropriate degree of blow-up;
The idea is to balance the internal supercooling with temperature control (gradient) inside the bubble. At this time, the contact between the deflator and the bubble also contributes to cooling the outer surface of the parison, so in order to ensure an appropriate contact length with the bubble, the surface frictional resistance is reduced and the opening angle is adjusted to match the blow-up ratio. It is necessary to choose. The resins used in Examples and Comparative Examples are as follows.

【表】 本発明で用いるビカツト軟化点及び(T/t)
の測定方法は下記の方法に基づくものである。 Γビカツト軟化点:ASTM−D−1525 Γ(T/t):発泡板をその厚み方向に均一に切
断し、その断面を顕微鏡或いは光学投影機によ
つて、発泡板の表皮部に位置した気泡の気泡膜
が連なつて形成されている表皮部の厚みと該板
の中央部に位置する気泡膜の厚みとをランダム
に各々に10点とり、その各々の平均値をT、及
びtとしその比を取る。 本発明で用いる各評価項目は次の評価方法、評
価尺度に基づくものである。 耐熱性能 −1 耐熱性 Γ評価方法:60分の加熱によつて最初の寸法
に対し、1.0%を越える寸法変化を生じる
最低温度を指標として評価したもの。 Γ試験片:寸法300mm×450mm 個数 2個 Γ標線の記入方法 第5図に示す寸法の試験片につかみ部
A1の反対側の30cm角の中央で直交する2
本の線S1を記入し、この線上、板の端か
ら約50mmのところに更に標線S2を記入す
る。 標線の長さの測定は0.05mmまで正確にノ
ギスで測定する。 Γ恒温槽、熱風循環式恒温槽、測定温度 (85℃±1℃、90℃±1℃、95℃±1
℃) Γ測定方法:試験片は、あらかじめ標線間の
距離を測定しておき、そのつかみ部A1を
つかんで恒温槽内につるし、各温度で60分
間加熱した後懸垂したまま放冷し、冷却後
標線間の距離を再測定し、次の式によつて
巾、長さの変化率を測定する。 Di:E/l×100 Di:寸法変化率 % E:加熱による伸び又は収縮(mm) l:標線間のもとの距離(mm) Γ 評価尺度
[Table] Vikat softening point and (T/t) used in the present invention
The measurement method is based on the following method. ΓVikat Softening Point: ASTM-D-1525 Γ (T/t): Cut the foam board uniformly in the thickness direction, and measure the cross section of the foam board using a microscope or optical projector to determine the air bubbles located on the skin of the foam board. 10 points are randomly taken for each of the thickness of the skin part where the bubble membranes are connected and the thickness of the bubble membrane located in the center of the plate, and the average value of each is T and t. Take the ratio. Each evaluation item used in the present invention is based on the following evaluation method and evaluation scale. Heat Resistance Performance-1 Heat Resistance ΓEvaluation Method: Evaluated using as an index the lowest temperature at which a dimensional change of more than 1.0% occurs with respect to the initial dimension after 60 minutes of heating. Γ test piece: Dimensions: 300mm x 450mm Quantity: 2 pieces How to write the Γ mark line: Grip the test piece with the dimensions shown in Figure 5.
2 orthogonal at the center of the 30cm square on the opposite side of A1
Draw a line S1 on the book, and then draw a marked line S2 on this line about 50mm from the edge of the board. Measure the length of the marked line accurately to 0.05mm using a caliper. Γ constant temperature bath, hot air circulation constant temperature bath, measurement temperature (85℃±1℃, 90℃±1℃, 95℃±1
℃) Γ measurement method: Measure the distance between the gauge lines for the test piece in advance, then hang it in a thermostatic chamber by gripping part A1, heat it at each temperature for 60 minutes, and then leave it to cool while hanging. After cooling, measure the distance between the marked lines again, and measure the rate of change in width and length using the following formula. Di: E/l×100 Di: Dimensional change rate % E: Elongation or contraction due to heating (mm) l: Original distance between gauge lines (mm) Γ Evaluation scale

【表】 −2 耐熱性(加熱寸法変化率) Γ評価方法:−1耐熱性の方法に準じ、
加熱寸法変化率を求め評価したもの Γ測定条件 90℃±1℃ 96時間 Γ試験片:−1耐熱性のものに準ずる。 Γ評価尺度
[Table] -2 Heat resistance (heating dimensional change rate) Γ evaluation method: -1 Heat resistance method,
Evaluated by determining the heating dimensional change rate Γ measurement conditions 90°C ± 1°C for 96 hours Γ test piece: -1 Same as heat resistant. Γ rating scale

【表】 −3 耐熱性(加重下での加熱寸法変化率) Γ評価方法:下記の方法により、求めたL値
によつて加重下での加熱寸法変化率を評価
したもの。 Γ試験片:長さ450mm、巾50mm、厚みはサン
プルサイズ Γ測定方法:試験片の片面全体に渉つて、
0.1g/cm3の加重をかけて加重をかけた面
を下向きにして、スパン長300mmの支持枠
上に置き、90℃±1℃に保たれた熱風循環
恒温槽内で96Hr加熱し、室温放冷後試験
片の中央部のたれ下り量Lmmを測定し、た
れ下り率=L/300×100を求める。 Γ評価尺度
[Table] -3 Heat resistance (heat dimensional change rate under load) Γ evaluation method: The heating dimensional change rate under load was evaluated using the L value determined by the method below. Γ test piece: length 450mm, width 50mm, thickness is sample size Γ measurement method: across one side of the test piece,
A load of 0.1 g/cm 3 was applied, the loaded side was placed facing downward, and placed on a support frame with a span length of 300 mm, heated for 96 hours in a hot air circulation constant temperature oven maintained at 90°C ± 1°C, and then brought to room temperature. After cooling, measure the amount of sagging Lmm at the center of the test piece, and calculate the sagging rate = L/300×100. Γ rating scale

【表】 断熱性能 −1 断熱性 熱伝導率の測定 Γ評価方法:ASTM C−518に準拠し、
kcal/m・Hr・℃の単位でかつ0℃の値
で評価したもの Γ評価尺度
[Table] Insulation performance-1 Insulation property Measurement of thermal conductivity Γ evaluation method: Based on ASTM C-518,
Evaluation scale in units of kcal/m・Hr・℃ and value at 0℃

【表】 −2 断熱性(経時による断熱性能の持続性
を示す) Γ評価方法:強制的に吸水させた後の熱伝導
率を測定し、吸水前の伝熱導率の比によつ
て評価したもの。 Γ試験方法 縦200mm、横200mm、厚さ各サンプルの厚
み、の発泡板について第6図に示す装置を
用いて測定する。即ち、断熱材12で囲ま
れた温度調節機13を備えた容器11に50
℃の温湯14を入れ該容器の開口部側を前
記発泡板により、パツキン16を介して閉
塞する。この際、発泡板15の下面と容器
内の温湯面との間は約30mmの距離を設ける
ように配置する。また発泡板の上面は、循
環水口17及び18から循環される冷却水
によつて3℃に冷却されている冷却板19
に密着している。このような状態を保つて
60日間放置したのち発泡板の表面をガーゼ
で軽く拭きとり、ASTM C518に従つてこ
のものの熱伝導率λ′を測定し、あらかじめ
試験前に−1断熱性によつて測定した
熱伝導率λとの変化の割合λ′/λを求め評
価する。 Γ評価尺度
[Table] -2 Thermal insulation properties (indicating the sustainability of insulation performance over time) Γ Evaluation method: Measure the thermal conductivity after forced water absorption, and evaluate by the ratio of the thermal conductivity before water absorption What I did. Γ Test method A foam board measuring 200 mm long, 200 mm wide, and the thickness of each sample is measured using the device shown in Figure 6. That is, in a container 11 equipped with a temperature controller 13 surrounded by a heat insulating material 12,
℃ hot water 14 is poured into the container, and the opening side of the container is closed with the foam board via the gasket 16. At this time, the foam board 15 is arranged so that there is a distance of about 30 mm between the lower surface of the foam plate 15 and the hot water surface in the container. Further, the upper surface of the foam board is cooled to 3°C by cooling water circulated from the circulation water ports 17 and 18.
Closely attached to. keep it like this
After leaving it for 60 days, the surface of the foam board was wiped gently with gauze, and the thermal conductivity λ' of this material was measured according to ASTM C518. The rate of change λ'/λ is determined and evaluated. Γ rating scale

【表】 防炎性(燃焼速度の大小をいう) Γ評価方法:ASTM−D−1692に準じ測定し、
mm/mmの単位で評価したもの Γ測定方法:ASTM−D−1692に準ずる Γ評価尺度
[Table] Flame retardancy (referring to the magnitude of burning rate) Γ evaluation method: Measured according to ASTM-D-1692,
Evaluation in units of mm/mm Γ measurement method: Based on ASTM-D-1692 Γ evaluation scale

【表】 賦形成形性能 −1 成形加工性 Γ評価方法 一般に加熱成形、或いは加熱真空成形を
行なう場合の成形品の深さと成形品の口径
或いは成形品の口形が長方形の場合はその
短辺の長さの比を測定し絞り比として成形
用素材の成形加工性を評価したもの。 Γ測定方法 絞り比は次式によつて与えられる。 Q=H/W Q:絞り比 H:成形品の最大深さ(mm) W:成形品の口部の直径または1辺の長
さ、成形品の口形が長方形の場合はその
短辺の長さで表わす。 良否の判定は成形によつて成形品表面
に、ひび、割れ、表面のあれ、が全くない
場合で、かつ成形金型の凹型の内寸法(a)と
成形品の外寸法(b)の比(a/b)が0.9以
上、更らに金型の凸型の外寸法(c)と成形品
の内寸法(d)の比(c/d)も0.9以上の場
合を成形可能範囲と規定する。 Γ評価尺度
[Table] Molding performance - 1 Molding processability Γ Evaluation method In general, when heat forming or heating vacuum forming is performed, the depth of the molded product and the diameter of the molded product, or if the mouth shape of the molded product is rectangular, the short side of the molded product. This is an evaluation of the moldability of a molding material by measuring the length ratio and using the drawing ratio. Γ measurement method The aperture ratio is given by the following formula. Q=H/W Q: Drawing ratio H: Maximum depth of the molded product (mm) W: Diameter or length of one side of the mouth of the molded product, or length of the short side if the mouth of the molded product is rectangular Expressed by . Judgment of pass/fail is when there are no cracks, cracks, or surface roughness on the surface of the molded product due to molding, and the ratio of the inner dimension (a) of the concave mold of the molding die to the outer dimension (b) of the molded product. The moldable range is defined as the case where (a/b) is 0.9 or more, and the ratio (c/d) between the outside dimension (c) of the convex mold of the mold and the inside dimension (d) of the molded product is also 0.9 or more. do. Γ rating scale

【表】 −2 成形加工性(発泡板の加熱成形加工
性) Γ評価方法:加熱加工時の最適温度における
最高成形温度巾を測定しその成形温度巾の
大、小により発泡板の加熱成形加工性の評
価をしたもの。 Γ測定装置 上下12cmの間隔で面積560mm×400mmに
5.4KWのインフラスタイルヒーターを上
下両面に設けた加熱装置と440mm×330mm深
50mmコーナー60Rである小型模型木型を備
えたプレス式熱成形機。 Γ試験方法 発泡板の両面を加熱した後ヒーターを取
去り、5秒間放置した後成形する際、成形
品に、しわ、偏肉、表面肌荒れ現象が全く
見られない品質のものである前堤で、前記
加熱時間が最も長く取れる温度条件を各試
験発泡板によつて選び、その加熱時間の長
さによつて評価する。 Γ評価尺度
[Table] -2 Molding processability (heat molding processability of foam board) Γ Evaluation method: Measure the maximum molding temperature range at the optimum temperature during heat processing, and evaluate the heat molding process of the foam board depending on whether the molding temperature range is large or small. Gender evaluation. Γ measurement device 560mm x 400mm area with 12cm intervals above and below
Heating device with 5.4KW infrastyle heaters installed on both top and bottom sides and 440mm x 330mm depth
Press-type thermoforming machine equipped with a small model wooden mold with 50mm corners and 60R. Γ Test method After heating both sides of the foam board, remove the heater, leave it for 5 seconds, and then mold the product. The temperature conditions that allow the longest heating time are selected for each test foam board, and the evaluation is made based on the length of the heating time. Γ rating scale

【表】 表面硬度 Γ評価方法:JIS K6301Cタイプによつて測定
し、表面硬度を評価したもの。 Γ評価尺度
[Table] Surface hardness Γ evaluation method: Measured by JIS K6301C type and evaluated surface hardness. Γ rating scale

【表】 圧縮強さ Γ評価方法:ASTM−D−1621の方法により
厚みの10%を圧縮するのに要する荷重、即ち
10%圧縮強度を測定し耐圧特性を評価したも
の。 Γ評価尺度
[Table] Compressive strength Γ evaluation method: Load required to compress 10% of the thickness using the ASTM-D-1621 method, i.e.
The pressure resistance characteristics were evaluated by measuring 10% compressive strength. Γ rating scale

【表】 耐落錘衝撃性能 Γ評価方法:ASTM−D−1709−75の落錘衝
撃試験法によつて評価したものとする。 38mm径のミサイル形状のおもりを66cmの高
さから落下させ、40gの荷重で増減させる。
20回の落錘を行ないASTMの計算方法に従
つて計算した。 Γ評価尺度
[Table] Falling weight impact resistance Γ Evaluation method: Evaluated according to the falling weight impact test method of ASTM-D-1709-75. A missile-shaped weight with a diameter of 38 mm is dropped from a height of 66 cm, and the load is increased or decreased by 40 g.
The weight was dropped 20 times and calculated according to the ASTM calculation method. Γ rating scale

【表】 対食品適性 −1 対食品適性(揮発成分量) Γ評価方法:ポリオレフイン等衛生協議会の
自主規制に共なう材質試験の揮発成分及び
使用樹脂のコモノマーの残存量を全揮発成
分量としガスクロマトグラフ法により定量
し評価したもの。 Γ評価尺度
[Table] Suitability for food -1 Suitability for food (amount of volatile components) Γ Evaluation method: The remaining amount of volatile components and comonomer of the resin used in the material test in accordance with the self-regulation of the Polyolefin Hygiene Council, and the total amount of volatile components Quantitated and evaluated by gas chromatography. Γ rating scale

【表】 −2 対食品適性(PH値) Γ評価方法 発泡板の1gを粉砕して蒸留水50mlの中
に入れて2Hr煮沸したのち、試料をろ別し
冷却したろ液についてJIS Z8802「PH測定
方法」に従つてPHを測定し、評価したも
の。 Γ評価尺度
[Table] -2 Food suitability (PH value) Γ evaluation method After crushing 1 g of foam board and boiling it in 50 ml of distilled water for 2 hours, filter the sample and cool the filtrate. PH was measured and evaluated according to "Measurement Method". Γ rating scale

【表】 実施例・比較例 1 第4図と同等の装置を用い、樹脂番号B、D、
E、F、J、K、L、M(以上8種類)の樹脂の
各々について、発泡板を作成した。この際、得ら
れる発泡板の目標を、密度140%Kg/m3、(T/
t)=4.0、発泡板の厚み4mm、(p/y)=0.5、
に置き、これに極力近づけるために、主要な製造
条件は以下の通りとした。但し、核剤としてはタ
ルク、滑剤としてはステアリン酸バリウム、発泡
剤としてはジクロロジフルオロメタンを用いた
(特にことわらない限り、以後の各例においても
同じ)。
[Table] Examples/Comparative Examples 1 Using the same equipment as in Fig. 4, resin numbers B, D,
Foamed boards were created for each of the resins E, F, J, K, L, and M (the above eight types). At this time, the aim of the foam board obtained was to have a density of 140% Kg/m 3 and (T/
t) = 4.0, foam board thickness 4 mm, (p/y) = 0.5,
In order to get as close to this as possible, the main manufacturing conditions were set as follows. However, talc was used as a nucleating agent, barium stearate was used as a lubricant, and dichlorodifluoromethane was used as a blowing agent (unless otherwise specified, the same applies to each subsequent example).

【表】 得られた発泡板について順に1〜8の一連番号
を付し、本文記載の評価方法で、耐熱性、防炎
性、対食品適性について評価し、その結果を第
1表にまとめた。 第1表の結果によると、本発明の発泡板を構成
しているスチレン系共重合体樹脂の成分は、アク
リル酸、メタクリル酸、無水マレイン酸のいずれ
かから選ばれたものでなければならないことが分
る。
[Table] The obtained foam boards were numbered sequentially from 1 to 8 and evaluated for heat resistance, flame retardancy, and suitability for food using the evaluation method described in the text, and the results are summarized in Table 1. . According to the results in Table 1, the components of the styrene copolymer resin constituting the foam board of the present invention must be selected from acrylic acid, methacrylic acid, and maleic anhydride. I understand.

【表】 実施例・比較例 2 使用樹脂をA、C、G、H、I(計5種)のも
のに変更したこと、及び主要な製造条件を以下の
通りにした以外は、実施例・比較例−1と同じ条
件を用い、同方法で発泡板を作成した。
[Table] Example/Comparative Example 2 Example/Comparative Example 2 Except that the resin used was changed to A, C, G, H, and I (5 types in total) and the main manufacturing conditions were as follows. A foam board was created using the same conditions and method as in Comparative Example-1.

【表】 得られた発泡板につき、順に9〜13番の番号を
付し、実施例・比較例−1を得た発泡板No.1、
3、4と共に本文記載の評価方法で、耐熱性、
圧縮強さ、対食品適性について評価しその結果
を第2表にまとめた。 第2表の結果によると、本発明発泡板を構成し
ているスチレン系共重合体樹脂の成分は、アクリ
ル酸、メタクリル酸、無水マレイン酸のいずれか
を含むものであつても、スチレン成分の割合が、
75〜95重量%のものでなければならないし、その
内にあつても、ビカツト軟化点が115℃以上の値
を示すものでなければならないことが分る。
[Table] The obtained foam boards are numbered 9 to 13 in order, and foam board No. 1 from which Example/Comparative Example-1 was obtained;
Along with 3 and 4, heat resistance,
Compressive strength and suitability for food were evaluated and the results are summarized in Table 2. According to the results in Table 2, even if the styrene copolymer resin constituting the foamed board of the present invention contains acrylic acid, methacrylic acid, or maleic anhydride, the styrene component The percentage is
It is understood that the content must be 75 to 95% by weight, and even within that range, it must have a Vicatto softening point of 115°C or higher.

【表】 実施例・比較例 3 使用樹脂を記号Bのものに固定すること、及び
主要な製造条件を以下の通りにした以外は実施
例・比較例−1と同じ条件同じ方法を用いて、
種々の発泡板を作成した。
[Table] Example/Comparative Example 3 Using the same conditions and method as Example/Comparative Example-1, except that the resin used was fixed to symbol B and the main manufacturing conditions were as follows,
Various foam boards were created.

【表】 この際、発泡板の厚みを極力4mm目標に揃え、
(p/y)が0.4の値に近くなるようにしたので、
得られた発泡板の密度は大巾に変動した。得られ
た成形体には、14、15及び18〜22の番号を付し
た。 上記の方法の1部を再現確認するために使用樹
脂をE、Fの番号のものに変更して得た発泡板に
は、16、17の番号を付した。 得られた9種の発泡板に実施例・比較例−1で
得たNo.1の発泡板を追加し、各々の発泡板につい
て本文記載の評価方法で断熱性、防炎性、断熱
性、表面硬度、を評価し、その結果を第3表に
まとめた。 第3表の結果からは、本発明の発泡体は、本発
明で云う樹脂組成範囲、ピカツト軟化点を満たす
樹脂で構成されているものであつても、本発明の
成形板に要求する評価項目の水準を満足する成形
板は、その密度が60〜200Kg/m3の範囲のもので
あつて、且つ(T/t)が少なくとも2.5の値を
示す構造のものでなければならないこが分る。
[Table] At this time, adjust the thickness of the foam board to the target of 4mm as much as possible,
Since (p/y) was set to be close to the value of 0.4,
The density of the resulting foam board varied widely. The obtained molded bodies were numbered 14, 15 and 18-22. In order to reproduce and confirm a part of the above method, the resins used were changed to those with numbers E and F, and the foam boards obtained were numbered 16 and 17. The No. 1 foam board obtained in Example/Comparative Example-1 was added to the nine types of foam boards obtained, and each foam board was evaluated for heat insulation, flame retardancy, heat insulation, and The surface hardness was evaluated and the results are summarized in Table 3. The results in Table 3 show that even if the foam of the present invention is made of a resin that satisfies the resin composition range and Picato softening point referred to in the present invention, it does not meet the evaluation items required for the molded plate of the present invention. It can be seen that a molded plate that satisfies the standard must have a density in the range of 60 to 200 kg/m 3 and a structure in which (T/t) shows a value of at least 2.5. .

【表】【table】

【表】 実施例・比較例 4 主要な製造条件を以下の通りにした以外は、実
施例・比較例−3と同じ条件・方法で実験をくり
返し得られた発泡板について23、24、25、及び
27、28、29の番号を付した。
[Table] Example/Comparative Example 4 23, 24, 25, as well as
They were numbered 27, 28, and 29.

【表】 又確認のためにD、F信号の樹脂を使用した成
形体については26、30、31の番号を付した。 この際の発泡板は、厚み、(p/y)が共に揃
わず、変動した。 得られた発泡板9種に実施例・比較例−1で得
られたNo.1、4の発泡板を加えた11種の発泡板に
ついて、本文記載の評価方法で成形加工性、成
形加工性、耐熱性、耐落錘衝撃性を評価し、
その結果を第4表にまとめた。 第4表の結果によると、本発明の発泡板は、本
発明でいう成分組成、ピカツト軟化点、密度及び
(T/t)の各々の範囲を満たすものであつても、
本発明の発泡板として具備すべき評価項目を満す
発泡板の構造は、発泡板厚みが2.5〜7mmの範囲
にあつて且つ、p/yが0.2〜1.5の範囲で表現さ
れる気泡構造のものでなければならないことが分
る。
[Table] For confirmation, molded bodies using resins with D and F signals are numbered 26, 30, and 31. In this case, the thickness and (p/y) of the foam board were not uniform and varied. Molding workability and moldability were evaluated using the evaluation methods described in the text for 11 types of foamed boards, including the 9 types of foamed boards obtained and foamed boards No. 1 and 4 obtained in Example/Comparative Example-1. , heat resistance and falling weight impact resistance were evaluated.
The results are summarized in Table 4. According to the results in Table 4, even if the foam board of the present invention satisfies each range of component composition, Picato softening point, density, and (T/t) as defined in the present invention,
The structure of the foamed board that satisfies the evaluation items that the foamed board of the present invention should have is a foamed board with a thickness in the range of 2.5 to 7 mm and a cell structure expressed by p/y in the range of 0.2 to 1.5. I know it has to be something.

【表】 実施例・比較例 5 本発明の発泡板が本発明でいう諸評価をすべて
兼備したものであり、このものは、同種の現行市
販品に対し、どのように位置ずけるかを明らかに
するために、下記発泡板について本文記載の諸評
価方法で評価した。 Γ本発明の発泡板(代表)No.1、No.4 Γ市販品(代表) 記号 商品名 主用途 製造元 W ウツドラツクB 溶着箱用 旭ダウ社製 X 〃 〃 建材用 〃 Y − 溶着箱用 Y社製 その結果を第5表に示す。 第5表の結果によると、本発明の発泡板はすべ
ての評価項目で実用可能な値の水準を満たしてお
り、特に、耐熱性、断熱性、賦形成形性、耐外応
力性に優れており、現行市販品には認められない
特徴を有した新規な成形体であることが分る。
[Table] Example/Comparative Example 5 The foamed board of the present invention has all the evaluations specified in the present invention, and it is clear how this board is positioned compared to the current commercially available products of the same type. In order to achieve this, the following foamed boards were evaluated using the various evaluation methods described in the text. Γ Foam board of the present invention (representative) No. 1, No. 4 Γ Commercial product (representative) Symbol Product name Main use Manufacturer W Utsudrak B For welding boxes Asahi Dow X 〃 〃 For building materials 〃 Y - For welding boxes Y The results are shown in Table 5. According to the results in Table 5, the foam board of the present invention satisfies practical values in all evaluation items, and is particularly excellent in heat resistance, heat insulation, formability, and external stress resistance. It can be seen that this is a new molded product with characteristics not found in current commercially available products.

【表】【table】

【表】 比較例 6 使用樹脂を記号Eのものに、ダイス温度を135
℃に、ブロー比を3.5に、デフレーター開角度を
42度に各々変更する以外は、実施例・比較例−1
と同種の実験をくり返して発泡板(No.32)を得
た。この発泡板を表面の表皮部は、きわめて薄い
もので本発明でいう(T/t)≧2.5の値を下廻る
ものであつた。 次に、商品名ダイラーク#250〔米国アルコ社製
(無水マレイン酸・ゴム・スチレン共重合体)〕を
溶融押出しして、約0.11mm(たて、よこ各約3倍
の延伸品)のシートにあらかじめ作成しておいた
ものを、上記No.32の発泡体の表面に約120℃の温
度を与えて熱貼合し、表皮付きの発泡板(Z)を
得た。 発泡板(Z)の断面拡大写真を第3図に示す。 第3図から明らかなように発泡板(Z)は、本
発明でいう表皮付き発泡板と文言上の概念は同じ
ものであつてもその内部気泡構造は異なつてお
り、少なくとも、発泡板表層部に位置した気泡の
気泡膜が連なつて、その表皮を形成していない。
又この構造上の差異は、例えば圧縮強さ、表皮部
の剥離強さ等で比べると、本発明の発泡板のそれ
に対し、圧縮強さで約30%、剥離強さ約60%も下
廻る値になつて示される。 本発明は、上述の構成要件を満たすことによつ
て、90℃附近での耐熱性、0℃での熱伝導度が約
0.03〜0.04kcal/m・Hr・℃程度の断熱性及びそ
の持続性、防炎性、所望の形状に押圧加工できる
賦形成形性、外力で簡単に変形、破かいしない表
面硬度、圧縮強さ、耐衝撃性、及び食品中に化学
物質を移行させない対食品適性のすべてを兼備
し、しかも、発泡押出法で容易に提供できる等の
利点を有している。 従つてこれを、例えば車輛等の内装材が、スレ
ートの内張材に使用して、その表面温度が70℃近
くになつたときでも、発泡板は変形や寸法変化を
起さず、充分な断熱性を発揮するし、例えばカマ
ボコ板や食器類に使用して加熱滅菌を行なう場合
でも、変形して使用できなくなつたり、食品中に
化学物質を移行させることがないし、更には例え
ば、電子レンジ内での食品の調理容器に使用する
場合でも、火傷することなしにそのまま容器が取
出せるなど、その実用性はきわめて広く、産業界
に果す役割の大きい優れた発明である。
[Table] Comparative example 6 The resin used was of symbol E, the die temperature was 135
℃, blow ratio to 3.5, deflator opening angle to
Example/Comparative Example-1 except for each change to 42 degrees
A foam board (No. 32) was obtained by repeating the same type of experiment. The skin on the surface of this foam board was extremely thin and fell below the value of (T/t)≧2.5 as defined in the present invention. Next, a sheet of approximately 0.11 mm (stretched approximately 3 times in both the vertical and horizontal directions) was melt-extruded from product name Dylarc #250 (manufactured by Alco, USA (maleic anhydride/rubber/styrene copolymer)). The foam plate prepared in advance was thermally bonded to the surface of the foam No. 32 at a temperature of about 120°C to obtain a foam board (Z) with a skin. Fig. 3 shows an enlarged cross-sectional photograph of the foam board (Z). As is clear from FIG. 3, although the foam board (Z) is conceptually the same as the skinned foam board of the present invention, its internal cell structure is different, and at least the surface layer of the foam board is different. The bubble membranes of the bubbles located in the area are connected and do not form the skin.
Moreover, this structural difference is, for example, when comparing the compressive strength and peel strength of the skin part, the compressive strength is about 30% lower and the peel strength is about 60% lower than that of the foam board of the present invention. It is expressed as a value. By satisfying the above-mentioned structural requirements, the present invention has heat resistance around 90°C and thermal conductivity at 0°C.
Insulation properties of 0.03 to 0.04kcal/m・Hr・℃ and its durability, flame retardant properties, formability that allows press processing into desired shapes, easy deformation by external force, surface hardness that does not break, compressive strength It has the following advantages: , impact resistance, and suitability for foods that do not transfer chemical substances into foods, and can be easily provided by the foam extrusion method. Therefore, even when this foam board is used as a slate lining material for the interior of a vehicle, etc., and the surface temperature reaches nearly 70℃, the foam board will not deform or change dimensions, and will maintain sufficient strength. It exhibits heat insulating properties, and even if it is used for heat sterilization on, for example, kamaboko board or tableware, it will not deform and become unusable, and it will not transfer chemical substances into food. Even when used as a container for cooking food in a microwave, the container can be taken out as is without causing burns, and its practicality is extremely wide, making it an excellent invention that will play a major role in industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明発泡板の断面部分の拡大写真、
第2図及び第3図は比較品の断面部分の拡大写真
である。第4図は本発明発泡板の製造装置の側面
略図、第5図は、試験片の寸法、説明図、第6図
は熱伝導率測定装置の側断面図である。
FIG. 1 is an enlarged photograph of a cross-sectional portion of the foamed board of the present invention.
FIGS. 2 and 3 are enlarged photographs of cross-sectional parts of comparative products. FIG. 4 is a schematic side view of an apparatus for manufacturing a foam board of the present invention, FIG. 5 is a diagram showing the dimensions of a test piece, and FIG. 6 is a side sectional view of a thermal conductivity measuring apparatus.

Claims (1)

【特許請求の範囲】 1 アクリル酸、メタクリル酸、無水マレイン
酸、の少なくとも一成分を含むスチレン成分が75
〜95重量%で且つビカツト軟化点が115℃以上の
スチレン系共重合体樹脂で構成されている密度60
〜200Kg/m3、肉厚み2.5〜7mmの発泡板であつ
て、該板は表皮部の厚み(T)と該板の内部に位
置する気泡の気泡膜の厚み(t)との間で(T/
t)≧2.5の関係を満たす表皮部を板両面に有して
いて、更に該板をJIS A−9511に準じて押曲げた
ときのたわみ係数(p/y)が、1.5≧(p/y)
≧0.2であることを特徴とするスチレン系樹脂発
泡板 但し、たわみ係数(p/y)は、荷重(p)と
のたわみ量(y)との関係が実質上直線的になる
部分での係数で、下記の条件で測定し次式で求め
られるものである。 (p/y)=E・4bh3/l3 p;荷重(Kg) l;スパン距離(cm)〔20cmを採用〕 b;発泡板片の巾(cm)〔7.5cmを採用〕 h;発泡板片の厚み(cm)〔測定時の各々による〕 E;曲げ弾性率(Kg/cm2)〔JIS A−9511ポリス
チレンフオームによる〕 y;たわみ量(cm)
[Claims] 1. A styrene component containing at least one component of acrylic acid, methacrylic acid, and maleic anhydride is 75
~95% by weight of styrenic copolymer resin with a softening point of 115°C or higher, density 60
~200Kg/m 3 and a wall thickness of 2.5 to 7 mm, the board has a thickness ( T/
t) ≧2.5, and the deflection coefficient (p/y) when the plate is pressed and bent according to JIS A-9511 is 1.5≧(p/y). )
≧0.2 However, the deflection coefficient (p/y) is the coefficient at the part where the relationship between the load (p) and the deflection amount (y) is substantially linear. It is measured under the following conditions and calculated using the following formula. (p/y)=E・4bh 3 /l 3 p; Load (Kg) l; Span distance (cm) [20cm was adopted] b; Width of foam board piece (cm) [7.5cm was adopted] h; Foaming Thickness of plate piece (cm) [according to each measurement] E: Flexural modulus (Kg/cm 2 ) [according to JIS A-9511 polystyrene foam] y: Amount of deflection (cm)
JP55147578A 1980-10-23 1980-10-23 Foamed plate of styrene-based resin Granted JPS5772830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55147578A JPS5772830A (en) 1980-10-23 1980-10-23 Foamed plate of styrene-based resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55147578A JPS5772830A (en) 1980-10-23 1980-10-23 Foamed plate of styrene-based resin

Publications (2)

Publication Number Publication Date
JPS5772830A JPS5772830A (en) 1982-05-07
JPS6345936B2 true JPS6345936B2 (en) 1988-09-13

Family

ID=15433519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55147578A Granted JPS5772830A (en) 1980-10-23 1980-10-23 Foamed plate of styrene-based resin

Country Status (1)

Country Link
JP (1) JPS5772830A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455272A (en) * 1982-03-29 1984-06-19 Standard Oil Company (Indiana) Method of extruding a polystyrene foam using both a physical blowing agent and water
JP2518606B2 (en) * 1985-07-09 1996-07-24 日本スチレンペーパー 株式会社 Base material for automobile molding ceiling material
JPS6294539A (en) * 1985-10-09 1987-05-01 大日本インキ化学工業株式会社 Foaming food vessel
JPH0689167B2 (en) * 1986-05-08 1994-11-09 三井東圧化学株式会社 Heat shrinkable foam sheet and method for producing the same
GB8621848D0 (en) * 1986-09-10 1986-10-15 Emi Plc Thorn Spotlight arrangement
JPS63205223A (en) * 1987-02-20 1988-08-24 鐘淵化学工業株式会社 Laminated foam sheet for molding
JPH01188537A (en) * 1988-01-23 1989-07-27 Kanegafuchi Chem Ind Co Ltd Expanded heat-resistant styrene based resin sheet
EP1246866A1 (en) * 1999-11-30 2002-10-09 Owens Corning Extruded polystyrene foam with vicat temperature over 100 c
JP2021059652A (en) * 2019-10-04 2021-04-15 リスパック株式会社 Polystyrene resin foam sheet and container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495749A (en) * 1972-05-08 1974-01-18
JPS5332514A (en) * 1976-09-02 1978-03-27 Stamper Richard William Resilient trim panel for vehicle
JPS5542887A (en) * 1978-09-25 1980-03-26 Denki Kagaku Kogyo Kk Preparation of compound plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55117975U (en) * 1979-02-14 1980-08-20

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495749A (en) * 1972-05-08 1974-01-18
JPS5332514A (en) * 1976-09-02 1978-03-27 Stamper Richard William Resilient trim panel for vehicle
JPS5542887A (en) * 1978-09-25 1980-03-26 Denki Kagaku Kogyo Kk Preparation of compound plate

Also Published As

Publication number Publication date
JPS5772830A (en) 1982-05-07

Similar Documents

Publication Publication Date Title
EP0344726B1 (en) Polyolefin resin foamed laminate sheet and double-side vacuum forming of the same
US4528221A (en) Polystyrene foamed sheet suitable for forming
US5858501A (en) Evacuated insulation panel having non-wrinkled surfaces
EP0448570B1 (en) Thermoformable polyaryletherketone sheet
US4567089A (en) Thermoforming propylene polymer laminated sheet
JPS6345936B2 (en)
JP3732418B2 (en) Expandable styrene resin particles
JP4064754B2 (en) Polypropylene resin foam sheet
JP4258769B2 (en) Polystyrene resin laminated foam sheet
JP3533781B2 (en) Styrene resin laminated sheet
EP0172277B1 (en) Thermoformable propylene polymer laminated sheet
JP4350829B2 (en) Method for producing foam molded product and molded product
JP2019210312A (en) Method for producing polystyrene-based resin foam sheet, polystyrene-based resin foam sheet, polystyrene-based resin foam sheet roll material, and container for microwave heating
JP2525611B2 (en) Heat resistant container manufacturing method
JP2005281646A (en) Polystyrenic biaxially stretched sheet and method for producing the same
JP2008075050A (en) Polystyrene-based resin extrusion foamed article
JPH04220440A (en) Styrene resin foam excellent in strength and moldability in secondary foaming
JP2654501B2 (en) New styrenic resin
JP2007223153A (en) Method for thermoforming extrusion foamed plate
JP4990585B2 (en) Polystyrene resin foam sheet
JP2008214533A (en) Extruded foam of polystyrenic resin
JP2004339498A (en) Polypropylene-based resin composition foamed sheet and multi-layer foamed sheet given by using the same
JP4956660B2 (en) Method for producing polycarbonate resin foam container
JPH0657028A (en) Polystyrenic resin foam
JPS60235848A (en) Foamed sheet for molding