JP2518606B2 - Base material for automobile molding ceiling material - Google Patents

Base material for automobile molding ceiling material

Info

Publication number
JP2518606B2
JP2518606B2 JP60150528A JP15052885A JP2518606B2 JP 2518606 B2 JP2518606 B2 JP 2518606B2 JP 60150528 A JP60150528 A JP 60150528A JP 15052885 A JP15052885 A JP 15052885A JP 2518606 B2 JP2518606 B2 JP 2518606B2
Authority
JP
Japan
Prior art keywords
foam
film
base material
thermoplastic resin
automobile molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60150528A
Other languages
Japanese (ja)
Other versions
JPS6212440A (en
Inventor
功一 若林
信吉 下屋敷
彰 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP60150528A priority Critical patent/JP2518606B2/en
Publication of JPS6212440A publication Critical patent/JPS6212440A/en
Application granted granted Critical
Publication of JP2518606B2 publication Critical patent/JP2518606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/02Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners
    • B60R13/0212Roof or head liners
    • B60R13/0225Roof or head liners self supporting head liners

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動車成形天井材用基材に関する。TECHNICAL FIELD The present invention relates to a base material for automobile molding ceiling material.

〔従来の技術〕[Conventional technology]

従来より自動車天井材は、熱可塑性樹脂発泡体を主体
とした自動車成形天井材用基材を天井材形状に成形した
成形体の室内側表面に、ポリウレタンフォーム等からな
るクッション材を貼合し、さらに合成樹脂シートや編織
布等からなる表装材を貼合して構成されている。
Conventionally, an automobile ceiling material has a cushion material made of polyurethane foam or the like, which is attached to the indoor side surface of a molded body formed by molding a thermoplastic resin foam-based base material for an automobile molded ceiling material into a ceiling material shape, Further, it is constructed by laminating a cover material such as a synthetic resin sheet or a woven fabric.

これら自動車成形天井材用基材としては種々の熱可塑
性樹脂発泡体のみからなるものや、これら発泡体の両面
に種々の熱可塑性樹脂フィルムまたはシートを積層して
なる構成のもの(例えば特開昭53−32514号)等が用い
られている。
These base materials for automobile molding ceiling materials are composed of only various thermoplastic resin foams, or those in which various thermoplastic resin films or sheets are laminated on both sides of these foams (for example, JP-A- 53-32514) and the like are used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、従来の自動車成形天井材用基材は、発
泡体のみからなるものは圧縮強さ、曲げ最大荷重等の機
械的強度が必ずしも充分ではないとともにビーススパン
等の熱的強度にも乏しく、温度変化の激しい自動車室内
における長期間の使用によって変形を生じる等の問題が
あり、また発泡体の両面にフィルムやシートを積層した
ものは機械的強度、熱的強度等をある程度向上できるも
のの、いまだ満足のくいものではなかった。
However, conventional base materials for automobile molding ceiling materials, which are made only of foam, do not always have sufficient mechanical strength such as compressive strength and maximum bending load, and also have poor thermal strength such as beespan, resulting in temperature change. There is a problem such as deformation due to long-term use in a car interior that is extremely severe, and a film or sheet laminated on both sides of foam can improve mechanical strength, thermal strength, etc. to some extent, but is still satisfactory. It wasn't a pile.

本発明は上記の点に鑑みなされたもので、機械的強
度、熱的強度に優れた自動車成形天井材用基材を提供す
ることを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a base material for an automobile molding ceiling material, which is excellent in mechanical strength and thermal strength.

〔問題を解決するための手段〕[Means for solving problems]

本発明者等は機械的強度、熱的強度に優れて自動車成
形天井材用基材を開発すべく鋭意研究した結果、ビカッ
ト軟化点が115℃以上の熱可塑性樹脂を基材とする発泡
体表面に、2軸方向に延伸が施された熱可塑性樹脂フィ
ルムを設けてなる積層発泡体が自動車成形天井材用基材
として優れたものであることを見出し本発明を完成する
に至った。
The inventors of the present invention have conducted extensive studies to develop a base material for automobile molding ceiling material having excellent mechanical strength and thermal strength, and as a result, the foam surface based on a thermoplastic resin having a Vicat softening point of 115 ° C. or higher. Further, they have found that a laminated foam provided with a biaxially stretched thermoplastic resin film is excellent as a base material for automobile molding ceiling materials, and completed the present invention.

即ち、本発明の自動車成形天井材用基材は、ビカット
軟化点が115℃以上の熱可塑性樹脂からなる2軸延伸さ
れた発泡体の表面に2軸延伸された熱可塑性樹脂フィル
ムを設けてなり、上記発泡体の熱可塑性樹脂がスチレン
−アクリル系共重合体であり該発泡体の延伸度が各々5
〜40%であり、且つ上記フィルムの熱可塑性樹脂がスチ
レン−アクリル系共重合体であり該フィルムの延伸度が
各々15〜60%である構成を有するものである。
That is, the base material for automobile molded ceiling material of the present invention comprises a biaxially stretched thermoplastic resin film provided on the surface of a biaxially stretched foam made of a thermoplastic resin having a Vicat softening point of 115 ° C. or higher. The thermoplastic resin of the foam is a styrene-acrylic copolymer, and the stretching degree of the foam is 5 each.
-40%, the thermoplastic resin of the film is a styrene-acrylic copolymer, and the stretching degree of the film is 15-60%.

以下、図面に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は筒状発泡体を偏平状として発泡体を使用した
本発明自動車成形天井材基材の一例を示すもので図中1
は自動車成形天井材用基材である。該基材1は、熱可塑
性樹脂を押出発泡せしめた筒状発泡体を挟圧して偏平状
とし且つ内面側を融着せしめて一体に形成されて成る発
泡体2と、該発泡体2の両面に設けられた熱可塑性樹脂
フィルム3、3とから構成されている。
FIG. 1 shows an example of an automobile molding ceiling material base material of the present invention in which a tubular foam is flattened and the foam is used.
Is a base material for automobile molded ceiling materials. The base material 1 is a foamed body 2 formed by integrally pressing a tubular foamed body obtained by extruding a thermoplastic resin into a flat shape by pressing it, and fusing the inner surface side together, and both sides of the foamed body 2. And the thermoplastic resin films 3 and 3 provided on the.

基材1は第2図に示すように押出機4内で熱可塑性樹
脂と発泡剤とを溶融状態で混練し、押出機4の先端に取
付られたサーキュライダーより押出発泡せしめた筒状発
泡体5をガイドローラー6,6・・・とピンチローラー7,7
とによって偏平状として狭圧し、且つ発泡体内面8を融
着せしめて一体に形成した後、熱可塑性樹脂フィルム
3、3を加熱ローラー9、9により熱融着する等により
形成されている。
As shown in FIG. 2, the base material 1 is a cylindrical foamed product obtained by kneading a thermoplastic resin and a foaming agent in a molten state in an extruder 4 and extruding and foaming them by a circulator mounted at the tip of the extruder 4. 5 to guide rollers 6,6 ... and pinch rollers 7,7
Are formed into a flat shape by pressing, and the inner surface 8 of the foam is fused and integrally formed, and then the thermoplastic resin films 3 and 3 are heat-fused by the heating rollers 9 and 9, or the like.

尚、第1図において熱可塑性樹脂フィルムは発泡体の
両表面に設けられているが、これに限られず発泡体の片
面にのみ設けても良い。
Although the thermoplastic resin film is provided on both surfaces of the foam in FIG. 1, it is not limited to this and may be provided on only one surface of the foam.

又、上記熱可塑性樹脂フィルム3は発泡体2表面に熱
融着することにより設けられているが、これに限られる
ものではなく貼着する等によって積層することも可能で
ある。
Further, the thermoplastic resin film 3 is provided on the surface of the foam body 2 by heat fusion, but the invention is not limited to this, and it is also possible to laminate by laminating.

発泡体2を形成する熱可塑性樹脂としてはスチレン−
アクリル系共重合体が用いられ、具体的には、スチレン
−アクリル酸共重合体樹脂、スチレン−メタアクリル酸
共重合体樹脂;アクリル酸メチル、アクリル酸エチル、
メタアクリル酸メチル等のアクリル酸エステル、メタア
クリル酸エステルとスチレンとの共重合体樹脂;アクリ
ルアミド、アクリル酸塩、メタアクリル酸塩等とスチレ
ンとの共重合体樹脂等が挙げられる。上記樹脂のなかで
もスチレン−アクリル酸共重合体樹脂及びスチレン−メ
タアクリル酸共重合体樹脂が耐熱性、成形性に優れ好ま
しい。
The thermoplastic resin forming the foam 2 is styrene-
An acrylic copolymer is used, and specifically, styrene-acrylic acid copolymer resin, styrene-methacrylic acid copolymer resin; methyl acrylate, ethyl acrylate,
Examples thereof include acrylic acid esters such as methyl methacrylate, copolymer resins of methacrylic acid esters and styrene; copolymer resins of acrylamide, acrylate, methacrylic acid salts and styrene. Among the above resins, styrene-acrylic acid copolymer resin and styrene-methacrylic acid copolymer resin are preferable because of their excellent heat resistance and moldability.

又、フィルム3を形成する熱可塑性樹脂としては、ス
チレン−アクリル系共重合体が用いられ、具体的には上
記の発泡体を形成する樹脂として挙げたスチレン−アク
リル系共重合体や、該スチレン−アクリル系共重合体の
各樹脂をゴム変成したもの等が挙げられる。上記各樹脂
をゴム変性したものとは、例えば、ポリブタジエン、ポ
リイソプレン等に上記樹脂を構成するモノマーをグラフ
ト重合する等により得られるものである。又、これらの
樹脂なかでもゴム変性したスチレン−アクリル酸共重合
体樹脂及びゴム変性したスチレン−メタアクリル酸共重
合体樹脂が熱的強度、衝撃強度に優れ好ましい。
Further, as the thermoplastic resin forming the film 3, a styrene-acrylic copolymer is used, and specifically, the styrene-acrylic copolymer mentioned as the resin forming the foam or the styrene is used. -Acrylic copolymer resins obtained by modifying rubbers are listed. The above-mentioned rubber-modified resin is obtained by, for example, graft-polymerizing a monomer constituting the resin to polybutadiene, polyisoprene or the like. Among these resins, a rubber-modified styrene-acrylic acid copolymer resin and a rubber-modified styrene-methacrylic acid copolymer resin are preferable because they have excellent thermal strength and impact strength.

又、上記発泡体2及びフィルム3を形成する熱可塑性
樹脂は本発明の所期の目的の範囲内において樹脂を混合
することも可能である。
Further, the thermoplastic resin forming the foam 2 and the film 3 may be mixed with the resin within the intended range of the present invention.

発泡体2に用いられる熱可塑性樹脂のビカット軟化点
は115℃以上である必要があり、特に120℃以上のものが
好ましい。ビカット軟化点が115℃未満であると耐熱性
に劣り、本発明の所期の目的を達成することができな
い。又は、フィルム3に用いられる熱可塑性樹脂のビカ
ット軟化点も115℃以上であることが好ましい。
The Vicat softening point of the thermoplastic resin used for the foam 2 must be 115 ° C. or higher, and particularly preferably 120 ° C. or higher. When the Vicat softening point is less than 115 ° C, the heat resistance is poor and the intended purpose of the present invention cannot be achieved. Alternatively, the Vicat softening point of the thermoplastic resin used for the film 3 is also preferably 115 ° C. or higher.

又、発泡体2は残存発泡剤量が0.01〜3重量%である
ことが好ましく、残存発泡剤量を上記の範囲とすること
によって発泡体2が加熱時に可塑化作用の過度の影響を
受けることがなく、成形上好ましい。
Further, the foam 2 preferably has a residual foaming agent amount of 0.01 to 3% by weight, and by setting the residual foaming agent amount within the above range, the foam 2 is excessively affected by the plasticizing action when heated. It is preferable for molding.

発泡体2の製造に使用される発泡剤としては通常の発
泡に用いられる発泡剤より任意に選択して用いられ、例
えばプロパン、ブタン、n−ペンタン、イソペンタン等
の脂肪族炭化水素類、ジクロロジフロロメタン、テトラ
フルオロエタン、トリクロロフロロメタン、塩化メチ
ル、塩化エチル等のハロゲン化炭化水素類、メチルエー
テル、エチルエーテル等のエーテル類等が挙げられる。
これらの中で、ジクロロジフロロメタン、と塩化メチル
及び/又は塩化エチルとの混合物が成形上好ましい。更
に発泡体2の発泡倍率を向上でき且つ発泡体2に含有さ
れる残存発泡剤量を上記の範囲とするとともに筒状発泡
体5が確実に融着できる点で、発泡剤としてジクロロジ
フロロメタンと塩化メチル及び/又は塩化エチルを重量
比で5:95〜80:20で混合してなる混合発泡剤を樹脂100重
量部に対し1〜6重量部用いることが好ましい。
The foaming agent used in the production of the foam 2 is arbitrarily selected from the foaming agents used for ordinary foaming, and examples thereof include aliphatic hydrocarbons such as propane, butane, n-pentane and isopentane, and dichlorodiene. Examples thereof include halogenated hydrocarbons such as fluoromethane, tetrafluoroethane, trichlorofluoromethane, methyl chloride and ethyl chloride, and ethers such as methyl ether and ethyl ether.
Of these, a mixture of dichlorodifluoromethane and methyl chloride and / or ethyl chloride is preferable for molding. Further, the expansion ratio of the foamed body 2 can be improved, the amount of the residual foaming agent contained in the foamed body 2 can be set within the above range, and the tubular foamed body 5 can be reliably fused. Therefore, dichlorodifluoromethane is used as the foaming agent. It is preferable to use 1 to 6 parts by weight of a mixed foaming agent, which is a mixture of 5 to 95:80 and 20:20 and methyl chloride and / or ethyl chloride in a weight ratio with respect to 100 parts by weight of resin.

フィルム3は2軸方向に延伸が施されており、その延
伸度は各々15〜60%である。フィルム3の延伸度を上記
の如くすることによりフィルム3の厚さを減少すること
ができ且つ基材1の物性を向上することができる。フィ
ルム3の延伸度は135℃、20秒間オイルバス中で加熱し
た時の加熱収縮率(寸法変化)で表し、加熱前の長さを
aとし加熱後の収縮した後の長さをbとした場合、下記
の(1)式により求められる。
The film 3 is biaxially stretched and the degree of stretching is 15 to 60%. By setting the stretching degree of the film 3 as described above, the thickness of the film 3 can be reduced and the physical properties of the substrate 1 can be improved. The degree of stretching of the film 3 is expressed by the heat shrinkage (dimensional change) when heated in an oil bath at 135 ° C. for 20 seconds, the length before heating is a, and the length after shrinking after heating is b. In this case, it is calculated by the following equation (1).

加熱収縮率(%)=(a−b)/a×100 ……(1) 又、発泡体2も2軸方向に各々5〜40%の範囲に延伸
が施されている。延伸度は特に各々15〜40%の範囲が好
ましい。延伸度を上記の範囲とするために筒状発泡体5
の押出発泡時のブローアップ比(ダイリップの円周を
L1、発泡体2の幅をL2としたとき、(L2×2)/L1
値)を3より大きく(即ち(L2×2)/L1>3)なるよ
うに筒状発泡体5を発泡せしめることが好ましい。
Heat shrinkage (%) = (ab) / a × 100 (1) Further, the foam 2 is also biaxially stretched in the range of 5 to 40%. The degree of stretching is particularly preferably in the range of 15-40%. Cylindrical foam 5 for controlling the degree of stretching within the above range
Blow-up ratio during extrusion foaming of
When L 1 and the width of the foam 2 are L 2 , the tubular shape is such that (L 2 × 2) / L 1 value) is larger than 3 (that is, (L 2 × 2) / L 1 > 3). It is preferable to foam the foam 5.

発泡体2及びフィルム3が2軸方向に延伸が施されて
いることと、前記の如く内面8が融着されていることと
の相乗効果によって基材1の特にビームスパンが飛躍的
に向上される。
The beam span of the base material 1, especially the beam span, is dramatically improved by the synergistic effect that the foam 2 and the film 3 are stretched biaxially and the inner surface 8 is fused as described above. It

尚、発泡体2の延伸度は150℃100秒間オーブン中で加
熱した時の加熱収縮率(寸法変化)で表し、発泡体の場
合と同様に加熱前の長さをaとし加熱後の収縮した後の
長さをbとして、上記(1)式より求られる。
The degree of stretching of the foam 2 is represented by the heat shrinkage rate (dimensional change) when heated in an oven at 150 ° C. for 100 seconds. As in the case of the foam, the length before heating is a and shrinkage after heating is performed. It is obtained from the above equation (1), where the subsequent length is b.

上記フィルム3の厚さは20〜250μであることが好ま
しい。フィルムの厚さが20μ未満ではビームスパン等の
熱的強度、曲げ最大荷重等の機械的強度に劣り、250μ
を越えると軽量化に問題があり、又、コスト高となる。
又、基材1は充分な機械的強度を得る上で全体の厚さを
2〜10mmとすることが好ましい。
The film 3 preferably has a thickness of 20 to 250 μm. If the thickness of the film is less than 20μ, the thermal strength such as beam span and the mechanical strength such as maximum bending load are inferior.
If it exceeds, there is a problem in weight reduction, and the cost becomes high.
Further, the substrate 1 preferably has a total thickness of 2 to 10 mm in order to obtain sufficient mechanical strength.

本発明において、フィルム3が発泡体2の片面のみに
設けられている場合は、フィルム3の無い一方の片面に
スキン層を形成することもできる。スキン層を形成する
ことにより基材1の圧縮強さ、曲げ最大荷重をより向上
することができる。上記スキン層は押出機4より発泡せ
しめられた筒状発泡体5の外表面を冷却する等の方法に
より成形することができる。
In the present invention, when the film 3 is provided on only one side of the foam 2, a skin layer may be formed on one side without the film 3. By forming the skin layer, the compressive strength and the maximum bending load of the base material 1 can be further improved. The skin layer can be formed by a method such as cooling the outer surface of the tubular foam 5 foamed by the extruder 4.

又、基材1の坪量(g/m2)は250〜600g/m2が好まし
い。250g/m2未満では機械的強度を充分満足し得ない場
があり、600g/m2を越えると軽量化に問題があり、また
コスト高となる。
Also, the basis weight of the base material 1 (g / m 2) is preferably 250~600g / m 2. If it is less than 250 g / m 2, there are cases where the mechanical strength cannot be sufficiently satisfied, and if it exceeds 600 g / m 2 , there is a problem in weight reduction and the cost becomes high.

上記のように構成される自動車成形天井材用基材1は
第3図に示すように所定の自動車天井材形状に成形した
後、室内側表面にポリウレタンフォーム等からなるクッ
ション材10を貼合し、さらにクッション材10の室内側正
面に塩化ビニル等の合成樹脂シートや編織布等からなる
表装材11を貼合する等により自動車天井材12が形成され
る。
The base material 1 for automobile molded ceiling material configured as described above is molded into a predetermined automobile ceiling material shape as shown in FIG. 3, and then a cushion material 10 made of polyurethane foam or the like is attached to the surface on the indoor side. Further, an automobile ceiling material 12 is formed by bonding a surface material 11 made of a synthetic resin sheet such as vinyl chloride or a woven cloth on the front surface of the cushion material 10 on the indoor side.

尚、本発明におけるビカット軟化点は、ASTM D−15
25によって測定した値をいう。
The Vicat softening point in the present invention is ASTM D-15.
The value measured by 25.

又、上記基材1は筒状発泡体を挟圧して偏平状とし且
つ内面側を融着せしめて一体に形成された発泡体2を使
用した場合について説明したが、これに限られるもので
はなく、Tダイ等を使用した通常の押出発泡により形成
される発泡体を使用することも可能であるが、偏平状に
形成された内面が融着されていることによって曲げ最大
荷重やビームスパン等の物性が向上される前者のほうが
より好ましい。
Further, the base material 1 is described as a case where the foamed body 2 is formed by pressing the tubular foamed body into a flat shape and fusing the inner surface side to be integrally formed, but the present invention is not limited to this. It is also possible to use a foam formed by ordinary extrusion foaming using a T-die, etc. However, since the flat inner surface is fused, the maximum bending load, beam span, etc. The former, whose physical properties are improved, is more preferable.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1〜3、比較例1〜2 押出機内でスチレン−メタアクリル酸共重合体樹脂
(ビカット軟化点126℃)100重量部に対し、第1表に示
すジクロロジフロロメタンと塩化メチル又は塩化エチル
とからなる混合発泡剤を溶融混練した後、サーキュラー
ダイより筒状発泡体を第1表に示すブローアップ比で押
出発泡せしめ、次いで該筒状発泡体を挟圧して偏平状と
するとともに、挟圧によって発泡体内面側を融着せしめ
て板状の発泡体を得た。
Examples 1 to 3 and Comparative Examples 1 to 2 With respect to 100 parts by weight of styrene-methacrylic acid copolymer resin (Vicat softening point 126 ° C.) in the extruder, dichlorodifluoromethane and methyl chloride or chloride shown in Table 1 were used. After melt-kneading a mixed foaming agent consisting of ethyl, a cylindrical foam is extruded and foamed with a blow-up ratio shown in Table 1 from a circular die, and then the cylindrical foam is pressed to form a flat shape, A plate-shaped foam was obtained by fusing the inside surface of the foam with a pressing force.

次いで実施例1〜3についてはゴム変性されたスチレ
ン−メタアクリル酸共重合体樹脂(ビカット軟化点120
℃)を基材樹脂とし且つ2軸方向に延伸が施こされた第
1表に示す厚さのフィルムを上記発泡体の両面に積層
し、比較例1については上記樹脂を基材樹脂とする無延
伸の第1表に示す厚さのフィルムを発泡体の両面に積層
し積層発泡体を得た。これらの積層発泡体及び比較例2
としてのフィルムを積層しない発泡体の性状を第1表に
示す。
Then, for Examples 1 to 3, a rubber-modified styrene-methacrylic acid copolymer resin (Vicat softening point 120
C.) as a base resin and biaxially stretched films having the thickness shown in Table 1 are laminated on both sides of the foam, and in Comparative Example 1, the above resin is used as the base resin. An unstretched film having a thickness shown in Table 1 was laminated on both sides of the foam to obtain a laminated foam. These laminated foams and Comparative Example 2
Table 1 shows the properties of the foamed product in which the film is not laminated.

次に実施例1〜3、比較例1については得られた積層
発泡体を、比較例2についてはフィルムを積層しない発
泡体をヘッドライナー成形用型をもちいて成形した。成
形後の積層発泡体及び発泡体の諸物性を測定した結果を
第1表に示す。
Next, the laminated foams obtained in Examples 1 to 3 and Comparative Example 1 and the foams in which no film was laminated in Comparative Example 2 were molded using a headliner molding die. Table 1 shows the results of measuring the physical properties of the laminated foam and the foam after molding.

比較例4 発泡体を形成する樹脂としてスチレン−無水マレイン
酸共重合体樹脂(ビカット軟化点120℃)を用い、フィ
ルムを形成する樹脂としてゴム変性されたスチレン−無
水マレイン酸共重合体樹脂(ビカット軟化点116℃)を
用いた他は実施例と同様に積層発泡体を得た。この積層
発泡体の性状を第1表に示す。次いでこの積層発泡体を
実施例1と同様のヘッドライナー成形用型を用いて成形
した。成形後の積層発泡体の諸物性を第1表にあわせて
示す。
Comparative Example 4 A styrene-maleic anhydride copolymer resin (Vicat softening point 120 ° C.) was used as the resin forming the foam, and a rubber-modified styrene-maleic anhydride copolymer resin (Vicut was used as the resin forming the film. A laminated foam was obtained in the same manner as in the example except that the softening point of 116 ° C was used. The properties of this laminated foam are shown in Table 1. Next, this laminated foam was molded using the same headliner molding die as in Example 1. Various physical properties of the laminated foam after molding are also shown in Table 1.

比較例3 発泡体を形成する樹脂及びフィルムを形成する樹脂が
ポリスチレン(ビカット軟化点105℃)である他は実施
例と同様に積層発泡体を得た。この積層発泡体の性状を
第1表に示す。次いでこの積層発泡体を実施例と同様の
ヘッドライナー成形用型を用いて成形した。成形後の積
層発泡体の諸物性を第1表にあわせて示す。
Comparative Example 3 A laminated foam was obtained in the same manner as in Example except that the resin forming the foam and the resin forming the film were polystyrene (Vicat softening point 105 ° C.). The properties of this laminated foam are shown in Table 1. Next, this laminated foam was molded using the same headliner molding die as used in the examples. Various physical properties of the laminated foam after molding are also shown in Table 1.

※1 成形後の積層発泡体及び発泡体より50mm×150mm
の試験片を切り取り、この試験片を50mmの両側縁より内
側25mmの線上を100mm間隔で設けられた2つの支持部上
に支持せしめて載置し、試験片の中央(支持部間の中央
位置)前幅に毎分20mmの速度で荷重を加えて荷重−たわ
み曲線を求め、この曲線上の最大荷重を曲げ最大荷重と
した。
* 1 50 mm x 150 mm from laminated foam and foam after molding
Cut out the test piece, and place the test piece on the center of the test piece (center position between the support parts) by supporting it on two support parts provided at 100 mm intervals on the line 25 mm inside both side edges of 50 mm. ) A load-deflection curve was obtained by applying a load to the front width at a speed of 20 mm / min, and the maximum load on this curve was defined as the maximum bending load.

尚、測定値における縦、横の値は150mmの片が発泡体
の押出方向に沿うように切り取った試験片の測定値を縦
の値として示し、150mmの片が発泡体の押出方向と直行
する方向に沿うように切り取った試験片の測定値を横の
値として示した。
Incidentally, the vertical and horizontal values in the measured values indicate the measured value of the test piece cut so that the piece of 150 mm is along the extrusion direction of the foam as the vertical value, and the piece of 150 mm is orthogonal to the extrusion direction of the foam. The measured value of the test piece cut along the direction is shown as a horizontal value.

※2 ASTM−D−1621に準じ、テストスピード10mm、試
験片の大きさ50mm×50mmとし、試験片の厚さの25%を圧
縮するのに要する荷重を測定し、25%圧縮強さとした。
* 2 According to ASTM-D-1621, the test speed was 10 mm, the size of the test piece was 50 mm x 50 mm, and the load required to compress 25% of the thickness of the test piece was measured to obtain 25% compressive strength.

※3 ビームスパンは成形後の発泡体より150mm×450mm
の試験片を切り取り、この試験片の150mm両側縁より内
側75mmの線上を300mm間隔で設けられた2つの支持部上
に支持せしめて載置し更に試験片の上面に150mm×450mm
の厚さ20mmのポリエチレンシートを重ね合わせた後、10
5℃±2℃に調節された循環乾燥器中で6時間加熱後の
試験片の垂れ下がり量で示した。
* 3 The beam span is 150 mm x 450 mm from the foam after molding.
Cut out the test piece of 150 mm, and place it on the upper surface of the test piece by supporting it on the two support parts provided at intervals of 300 mm on the line 75 mm inward from both side edges of this test piece.
After stacking the 20 mm thick polyethylene sheets,
The amount of sag of the test piece after heating for 6 hours in a circulation dryer adjusted to 5 ° C ± 2 ° C was shown.

尚、測定値における縦、横の値は450mmの辺を発泡体
の押出方向に沿うように切り取った試験辺の測定値を縦
の値として示し、450mmの辺が発泡体の押出方向と直行
する方向に沿うように切り取った試験分の測定値を横の
値として示した。また縦、横の値に相乗平均値をあわせ
て示した。
Incidentally, the vertical and horizontal values in the measured values indicate the measured values of the test side obtained by cutting the side of 450 mm along the extrusion direction of the foam as the vertical value, and the side of 450 mm is orthogonal to the extrusion direction of the foam. The measured value of the test portion cut along the direction is shown as a horizontal value. The geometric mean value is also shown in the vertical and horizontal values.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明の自動車成形天上材用基材
は、ビカット軟化点が115℃以上の熱可塑性樹脂から成
る発泡体表面に、2軸延伸された熱可塑性樹脂フィルム
を設けてなるものであるから、機械的強度に優れるとと
もに、熱的強度にも優れ、温度変化の激しい自動車室内
における長期間の使用によって変形を生じる虞がない等
種々の効果を有する。特に本発明は、延伸度が各々5〜
40%のスチレン−アクリル系共重合体の発泡体と、延伸
度が各々15〜60%のスチレン−アクリル系共重合体のフ
ィルムを用いたことにより、自動車成形天材材用基材と
して重要な特性であるビームスパンが大きく向上すると
いった効果が得られる。
As described above, the base material for automobile molding top material of the present invention comprises a biaxially stretched thermoplastic resin film provided on the surface of a foam made of a thermoplastic resin having a Vicat softening point of 115 ° C. or higher. Therefore, it has excellent mechanical strength as well as excellent thermal strength, and has various effects such as no possibility of being deformed due to long-term use in an automobile compartment where temperature changes drastically. In particular, the present invention has a stretching degree of 5 to 5, respectively.
By using a 40% styrene-acrylic copolymer foam and a styrene-acrylic copolymer film with a stretching ratio of 15 to 60% each, it is important as a base material for automobile molding materials. The effect that the characteristic beam span is greatly improved can be obtained.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の実施例を示すもので、第1図は本発明自
動車成形天井材用基材の一実施例を示す第2図I−I線
に沿う縦断面図、第2図は発泡体の製造工程を示す略
図、第3図は自動車天井材の一例を示す縦断面図であ
る。 1……自動車成形天井材用基材 2……発泡体 3……熱可塑性樹脂フィルム
The drawings show an embodiment of the present invention. FIG. 1 shows an embodiment of the base material for automobile molded ceiling material of the present invention. FIG. 2 is a longitudinal sectional view taken along the line I-I, and FIG. Fig. 3 is a schematic sectional view showing the manufacturing process of Fig. 3, and Fig. 3 is a vertical sectional view showing an example of an automobile ceiling material. 1 ... Base material for automobile molding ceiling material 2 ... Foam material 3 ... Thermoplastic resin film

フロントページの続き (72)発明者 安達 彰 佐倉市上座515−14 (56)参考文献 特開 昭53−32514(JP,A) 特開 昭57−72830(JP,A)Continuation of front page (72) Inventor Akira Adachi 515-14 Kamiza, Sakura City (56) References JP-A-53-32514 (JP, A) JP-A-57-72830 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ビカット軟化点が115℃以上の熱可塑性樹
脂からなる2軸延伸された発泡体の表面に2軸延伸され
た熱可塑性樹脂フィルムを設けてなり、上記発泡体の熱
可塑性樹脂がスチレン−アクリル系共重合体であり該発
泡体の延伸度が各々5〜40%であり、且つ上記フィルム
の熱可塑性樹脂がスチレン−アクリル系共重合体であり
該フィルムの延伸度が各々15〜60%であることを特徴と
する自動車成形天井材用基材。
1. A biaxially stretched thermoplastic resin film is provided on the surface of a biaxially stretched foam made of a thermoplastic resin having a Vicat softening point of 115 ° C. or higher, and the thermoplastic resin of the foam is Styrene-acrylic copolymer, the degree of stretching of the foam is 5 to 40%, and the thermoplastic resin of the film is styrene-acrylic copolymer, and the degree of stretching of the film is 15 to 50%, respectively. 60% base material for automobile molding ceiling material.
【請求項2】発泡体が熱可塑性樹脂を押出発泡せしめた
筒状発泡体を狭圧して偏平状とし且つ内面側を融着せし
めて一体に形成されているとともに2軸方向に延伸され
たものである特許請求の範囲第1項記載の自動車成形天
井材用基材。
2. A foamed body which is formed by integrally compressing a cylindrical foamed body obtained by extruding a thermoplastic resin by extruding and foaming it into a flat shape and fusing the inner surface side and stretching it in a biaxial direction. The base material for automobile molding ceiling material according to claim 1.
【請求項3】フィルムの基材樹脂のビカット軟化点が11
5℃以上である特許請求の範囲第1項〜第2項のいずれ
かに記載の自動車成形天井材用基材。
3. The Vicat softening point of the base resin of the film is 11
The base material for automobile molding ceiling material according to any one of claims 1 to 2, which has a temperature of 5 ° C or higher.
【請求項4】フィルムの厚さが20〜250μである特許請
求の範囲第1項〜第3項のいずれかに記載の自動車成形
天井材用基材。
4. The base material for an automobile molding ceiling material according to any one of claims 1 to 3, wherein the film has a thickness of 20 to 250 μm.
【請求項5】フィルムを形成する熱可塑性樹脂がゴム変
性したスチレン−アクリル系共重合体樹脂である特許請
求の範囲第1項〜第4項のいずれかに記載の自動車成形
天井材用基材。
5. The base material for automobile molding ceiling material according to any one of claims 1 to 4, wherein the thermoplastic resin forming the film is a rubber-modified styrene-acrylic copolymer resin. .
【請求項6】押出発泡に用いられる発泡剤がジクロロジ
フロロメタンと塩化メチル及び/又は塩化エチルとの混
合物である特許請求の範囲第1項〜第5項のいずれかに
記載の自動車成形天井材用基材。
6. The automobile molding ceiling according to any one of claims 1 to 5, wherein the foaming agent used for extrusion foaming is a mixture of dichlorodifluoromethane and methyl chloride and / or ethyl chloride. Material base material.
JP60150528A 1985-07-09 1985-07-09 Base material for automobile molding ceiling material Expired - Lifetime JP2518606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60150528A JP2518606B2 (en) 1985-07-09 1985-07-09 Base material for automobile molding ceiling material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60150528A JP2518606B2 (en) 1985-07-09 1985-07-09 Base material for automobile molding ceiling material

Publications (2)

Publication Number Publication Date
JPS6212440A JPS6212440A (en) 1987-01-21
JP2518606B2 true JP2518606B2 (en) 1996-07-24

Family

ID=15498841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60150528A Expired - Lifetime JP2518606B2 (en) 1985-07-09 1985-07-09 Base material for automobile molding ceiling material

Country Status (1)

Country Link
JP (1) JP2518606B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205223A (en) * 1987-02-20 1988-08-24 鐘淵化学工業株式会社 Laminated foam sheet for molding
JPS63278831A (en) * 1987-05-11 1988-11-16 Kanegafuchi Chem Ind Co Ltd Laminated foam sheet for molding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4256797A (en) * 1976-09-02 1981-03-17 Inmont Corporation Contoured resilient vehicle trim panel
JPS5772830A (en) * 1980-10-23 1982-05-07 Asahi Chem Ind Co Ltd Foamed plate of styrene-based resin

Also Published As

Publication number Publication date
JPS6212440A (en) 1987-01-21

Similar Documents

Publication Publication Date Title
DE69916052T2 (en) THERMOFORMABLE POLYPROPYLENE FOAM
US20110081524A1 (en) Multi-layered foamed polymeric objects and related methods
SE428446B (en) PROCEDURE FOR THE MANUFACTURE OF DELETED FORMATED PANELS
CA1254359A (en) Formed base material for car ceiling member
JP2518606B2 (en) Base material for automobile molding ceiling material
JP2005028593A (en) Laminated sheet for trim material of automobile and trim material of automobile using it
JP3297253B2 (en) Crosslinked polyolefin-based resin foam, laminate and molded article
JP2905037B2 (en) Laminated sheet for automotive interior materials suitable for thermoforming
JP2992074B2 (en) Extruded styrene-based resin foam sheet excellent in cutting workability and method for producing the same
JP4258769B2 (en) Polystyrene resin laminated foam sheet
JP3255844B2 (en) Method for producing foam and foamable sheet used therefor
JP2001162735A (en) Thermoplastic resin laminated foamed sheet, polystyrene- based resin foamed sheet and container thereof
JP2001179903A (en) Laminated foamed sheet and container
JP4367811B2 (en) Multilayer polystyrene resin foam and container
JP3078089B2 (en) Interior molded products for vehicles
JP2970876B2 (en) Extruded styrene-based resin foam sheet excellent in cutting workability and method for producing the same
JP3912701B2 (en) Polystyrene resin laminated foam sheet
JP3006378B2 (en) Vehicle interior molded product and method of manufacturing the same
JPH038422Y2 (en)
JP2000289137A (en) Laminated foam sheet for car interior material
JP2001158416A (en) Multilayer foamed sheet and container
CA1106744A (en) Flexible foam board
JP7455718B2 (en) Polystyrene resin laminated foam board and its manufacturing method
JPS6224525Y2 (en)
JP3320548B2 (en) Method for producing foam laminate and foam molded article