JPS6345469B2 - - Google Patents

Info

Publication number
JPS6345469B2
JPS6345469B2 JP60063422A JP6342285A JPS6345469B2 JP S6345469 B2 JPS6345469 B2 JP S6345469B2 JP 60063422 A JP60063422 A JP 60063422A JP 6342285 A JP6342285 A JP 6342285A JP S6345469 B2 JPS6345469 B2 JP S6345469B2
Authority
JP
Japan
Prior art keywords
etching
etched
gas
ccl
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60063422A
Other languages
Japanese (ja)
Other versions
JPS60221586A (en
Inventor
Masakatsu Kimizuka
Kazuo Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6342285A priority Critical patent/JPS60221586A/en
Publication of JPS60221586A publication Critical patent/JPS60221586A/en
Publication of JPS6345469B2 publication Critical patent/JPS6345469B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体集積回路などにおける微細な
薄膜パタンの形成において、薄膜パタンの側壁を
テーパ状に作製するに適したプラズマエツチング
方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a plasma etching method suitable for forming a tapered side wall of a thin film pattern in the formation of fine thin film patterns in semiconductor integrated circuits, etc. be.

(従来の技術) 近年、半導体積集回路製作技術はますます微細
化の方向に進んでおり、薄膜パタンの高精度な加
工技術としてドライエツチング法が広く用いられ
つつある。このドライエツチング法により形製さ
れた薄膜パタンの断面形状はしばしば矩形の形状
をもつようになる。例えば、平行平板型プラズマ
エツチング装置を使用してエツチング反応ガスと
してCCl2F2を25SCCM流入し、反応室の真空度
を0.1Torrに保ち、400W(13.56MHz)の高周波電
力を印加し、多結晶シリコン膜をエツチングした
場合には、エツチングされた多結晶シリコン膜の
側壁は垂直になつている。このような矩形断面形
状をもつ薄膜パタンの側壁は鋭い段差となるため
に、金属配線などを薄膜パタンに交又して被着形
成する場合には断線事故を起こす問題が生じる。
(Prior Art) In recent years, semiconductor integrated circuit manufacturing technology has been progressing in the direction of further miniaturization, and dry etching is becoming widely used as a highly accurate processing technology for thin film patterns. The cross-sectional shape of the thin film pattern formed by this dry etching method often has a rectangular shape. For example, using a parallel plate plasma etching apparatus, 25 SCCM of CCl 2 F 2 is injected as an etching reaction gas, the vacuum degree of the reaction chamber is maintained at 0.1 Torr, and a high frequency power of 400 W (13.56 MHz) is applied to remove polycrystalline crystals. When a silicon film is etched, the sidewalls of the etched polycrystalline silicon film are vertical. Since the side walls of such a thin film pattern having a rectangular cross-sectional shape have sharp steps, when a metal wiring or the like is deposited across the thin film pattern, there is a problem of disconnection.

この問題を解決するために薄膜パタンの側壁を
なだらかな傾斜状いわゆるテーパ状にするための
種々の方策が提案されている。しかしこれらの方
策には、エツチングガスの組成を調節してマスク
材のエツチング量を変化させることにより被エツ
チング材のテーパ角を制御する方法や被エツチン
グ材に不純物濃度勾配をつけ、その増速エツチ効
果を利用する方法、側壁の段差を被覆するように
形成された薄膜を異方性エツチングし、側壁のみ
薄膜が残留するようにする方法など高度な制御性
が要求されたり、複雑な工程を追加する方法が多
く、必ずしも再現性よく安定性のある方法とは言
えないものである。
In order to solve this problem, various methods have been proposed for making the side walls of the thin film pattern gently sloped, so-called tapered. However, these methods include a method of controlling the taper angle of the material to be etched by adjusting the etching amount of the mask material by adjusting the composition of the etching gas, and a method of increasing the etching speed by creating an impurity concentration gradient in the material to be etched. Methods that require a high degree of controllability or add complex processes, such as methods that utilize the effect, or methods that anisotropically etch the thin film formed to cover the steps on the sidewalls so that the thin film remains only on the sidewalls. There are many methods to do this, and these methods cannot necessarily be said to be highly reproducible or stable.

(問題点を解決するための手段) 本発明はこれらの問題点に着目してなされたも
ので、反応ガスとして、CCl4、CCl3F、CCl2F2
CClF3、およびCF4のうち少なくとも1種を含み、
かつ炭素数が8以下の炭化水素系ガスの少なくと
も1種を含む混合ガスを使用することを特徴と
し、簡便に且つ安定性よく側壁面をテーパ状に形
製せしめることを目的とする。以下に本発明を詳
細に説明する。
(Means for Solving the Problems) The present invention has been made by focusing on these problems, and uses CCl 4 , CCl 3 F, CCl 2 F 2 ,
Contains at least one of CClF 3 and CF 4 ,
The present invention is characterized in that a mixed gas containing at least one kind of hydrocarbon gas having carbon number of 8 or less is used, and the purpose is to easily and stably form the side wall surface into a tapered shape. The present invention will be explained in detail below.

第1図は本発明に使用するプラズマエツチング
装置の断面図の一例である。図において1は反応
室、2は反応室内に互に平行に設置された電極板
の一つで試料を載置する試料電極、3は試料電極
2に対向して設置されている対向電極、4は試料
電極2に付設されエツチング用反応ガスを試料電
極2、対向電極3間に導入するガス導入管、5は
反応室1に取り付けられ反応室内のガス体を外部
に排気するガス排気管、6は試料電極2に載置さ
れてエツチングされる被エツチング材、7は一方
を試料電極2に、他方を対向電極3に接続されエ
ツチング用反応ガスのプラズマを発生するための
高周波電源である。なお、両電極2,3の間隔は
2〜10cmが一般的である。
FIG. 1 is an example of a sectional view of a plasma etching apparatus used in the present invention. In the figure, 1 is a reaction chamber, 2 is a sample electrode on which a sample is placed, which is one of the electrode plates installed parallel to each other in the reaction chamber, 3 is a counter electrode installed opposite the sample electrode 2, and 4 5 is a gas inlet pipe attached to the sample electrode 2 to introduce the reaction gas for etching between the sample electrode 2 and the counter electrode 3; 5 is a gas exhaust pipe attached to the reaction chamber 1 to exhaust the gas in the reaction chamber to the outside; 6; 7 is a material to be etched placed on the sample electrode 2, and 7 is a high frequency power source connected to the sample electrode 2 on one side and to the counter electrode 3 on the other side for generating a plasma of an etching reaction gas. Note that the distance between both electrodes 2 and 3 is generally 2 to 10 cm.

このように構成されたプラズマエツチング装置
を用いて被エツチング材6をエツチングするに
は、反応室1内に反応ガスを導入しながら真空ポ
ンプによりガス排気管5より排気して、反応室1
内を10-3〜数Torrの真空度に保ちつつ、試料電
極2、対向電極3間に400V〜1KV、13.56MHzの
高周波電圧を印加し、高周波グロー放電によるプ
ラズマを発生させる。このプラズマ中に存在する
活性な化学種が、単結晶シリコンや多結晶シリコ
ンからなる被エツチング材6と反応して揮発性化
合物を生成し、これが排気管5からエツチング室
外へ排気除去されることによつてエツチングが進
行する。
In order to etch the material to be etched 6 using the plasma etching apparatus configured as described above, a reaction gas is introduced into the reaction chamber 1 and exhausted from the gas exhaust pipe 5 using a vacuum pump.
A high frequency voltage of 400 V to 1 KV and 13.56 MHz is applied between the sample electrode 2 and the counter electrode 3 while maintaining a vacuum of 10 -3 to several Torr inside to generate plasma by high frequency glow discharge. The active chemical species present in this plasma react with the material to be etched 6 made of single-crystal silicon or polycrystalline silicon to generate volatile compounds, which are exhausted and removed from the etching chamber through the exhaust pipe 5. Etching then progresses.

(実施例) 本発明のプラズマエツチング方法を以下実施例
によつて詳細に説明する。
(Example) The plasma etching method of the present invention will be explained in detail below with reference to Examples.

反応室1内の試料電極2上に被エツチング材6
を載置する。第2図は被エツチング材6の構成を
示す断面図で、8はマスク材であるレジスト膜、
9はエツチングの主対象物であるAsドーブ多結
晶シリコン膜、10は下層の二酸化シリコン膜、
11は下地の単結晶シリコンである。次に反応室
1内を真空ポンプを用いて排気し、ガス導入管4
からエツチング用反応ガスとして例えばCCl2F2
を50SCCM、C2H6を10SCCMそれぞれ導入し、
反応室内の真空度を0.18Torrに保つた。800Wの
高周波電力を両電極間に印加し、プラズマを生じ
させエツチングを行う。
A material to be etched 6 is placed on the sample electrode 2 in the reaction chamber 1.
Place. FIG. 2 is a cross-sectional view showing the structure of the material to be etched 6, in which 8 is a resist film which is a mask material;
9 is the As-doped polycrystalline silicon film which is the main object of etching, 10 is the underlying silicon dioxide film,
11 is the underlying single crystal silicon. Next, the inside of the reaction chamber 1 is evacuated using a vacuum pump, and the gas introduction pipe 4 is
For example, CCl 2 F 2 as a reactive gas for etching from
Introduced 50SCCM of C 2 H 6 and 10SCCM of C 2 H 6, respectively.
The degree of vacuum in the reaction chamber was maintained at 0.18 Torr. 800W of high-frequency power is applied between both electrodes to generate plasma and perform etching.

第3図は上記のような条件でエツチングしたと
きの被エツチング材6の断面図で、レジスト膜
8、及びAsドープ多結晶シリコン膜9の側壁面
になだらかな傾斜が生じ且つ丸みをおびており、
特異な形状を呈している。このときのレジスト膜
(シツプレー社製、AZ1370を使用)8及びAsド
ープ多結晶シリコン膜9のエツチング速度はそれ
ぞれ360、1020Å/分であつた。図のような被エ
ツチング材6の特異な断面形状はエツチングガス
にCCl2F2のような単一ガスを使用するプラズマ
エツチングでは見られない。被エツチング材6の
側壁が特異な形状を呈する原因の詳細は不明であ
るがエツチングガスにCCl2F2とC2H6の混合ガス
を使用することにより、エツチング反応と並行し
てプラズマ重合反応が起り、エツチングの進行と
ともにレジスト膜8及びAsドープ多結晶シリコ
ン膜9の表面にプラズマ重合物12の堆積が生じ
ることに起因していると推測される。
FIG. 3 is a cross-sectional view of the material to be etched 6 when etched under the above conditions, and the sidewall surfaces of the resist film 8 and the As-doped polycrystalline silicon film 9 are gently sloped and rounded.
It has a unique shape. At this time, the etching rates of the resist film (AZ1370 manufactured by Shipley) 8 and the As-doped polycrystalline silicon film 9 were 360 and 1020 Å/min, respectively. The unique cross-sectional shape of the etched material 6 as shown in the figure cannot be seen in plasma etching using a single gas such as CCl 2 F 2 as the etching gas. Although the details of the reason why the side wall of the material to be etched 6 takes on a peculiar shape are unknown, by using a mixed gas of CCl 2 F 2 and C 2 H 6 as the etching gas, a plasma polymerization reaction occurs in parallel with the etching reaction. This is presumed to be due to the fact that plasma polymer 12 is deposited on the surfaces of resist film 8 and As-doped polycrystalline silicon film 9 as etching progresses.

第4図は上記混合ガスでエツチングした被エツ
チング材6に酸素プラズマ処理を施し、レジスト
膜8及び重合物12を除去した後のAsドープ多
結晶シリコン膜9の断面形状を示すものであり、
Asドープ多結晶シリコン膜9の側壁にはなだら
かなテーパ状が生じている。上記の実施例ではこ
のテーパ角は約60度であつた。
FIG. 4 shows the cross-sectional shape of the As-doped polycrystalline silicon film 9 after the resist film 8 and polymer 12 have been removed by oxygen plasma treatment on the etched material 6 etched with the above-mentioned mixed gas.
The side wall of the As-doped polycrystalline silicon film 9 has a gentle taper shape. In the above example, this taper angle was about 60 degrees.

上述のようにエツチング反応ガスとして
CCl2F2とC2H6の混合ガスを使用することにより
被エツチング材の側壁をテーパ状に形製できるこ
とが明らかである。また、上記実施例ではテーパ
角が約60度であつたが、CCl2F2とC2H6の混合比
や真空度を変化させプラズマ重合物の生成速度を
増減させることによりテーパ角が制御される。尚
炭化水素系ガスの混合比はCCl2F2に対して重量
比で5〜50%が好ましい。
As an etching reaction gas as mentioned above.
It is clear that by using a gas mixture of CCl 2 F 2 and C 2 H 6 the side walls of the material to be etched can be shaped into a tapered shape. In addition, in the above example, the taper angle was approximately 60 degrees, but the taper angle can be controlled by changing the mixing ratio of CCl 2 F 2 and C 2 H 6 and the degree of vacuum to increase or decrease the production rate of plasma polymer. be done. The mixing ratio of the hydrocarbon gas to CCl 2 F 2 is preferably 5 to 50% by weight.

以上は、エツチング用反応ガスとしてCCl2F2
とC2H6の混合ガスを使用した場合の一実施例で
あるが、他のフレオン系ガス(CCl3F、CClF3
CF4)あるいはCCl4と他の炭素数が8以下の炭化
水素系ガス(例えばCH4、C2H2、C2H4)を使用
しても同様に行うことができる。
The above uses CCl 2 F 2 as the etching reaction gas.
This is an example in which a mixed gas of
CF 4 ) or CCl 4 and other hydrocarbon gases having 8 or less carbon atoms (for example, CH 4 , C 2 H 2 , C 2 H 4 ) can be used in the same manner.

例えば、エツチング用反応ガスとしてCCl2F2
を50SCCM、CH4を20SCCMそれぞれ反応室内に
導入し、真空度を0.2Torrに保ち、電極間に高周
波電力を800W印加し、被エツチング材をエツチ
ングした。被エツチング材は上述実施例と同様に
Asドープ多結晶シリコン膜を使用した。エツチ
ング後および酸素プラズマ処理を施した後のAs
ドープ多結晶シリコン膜の断面形状は上記第3図
および第4図に示したものと同様であつた。
For example, CCl 2 F 2 as a reaction gas for etching.
50 SCCM of CH 4 and 20 SCCM of CH 4 were introduced into the reaction chamber, the degree of vacuum was maintained at 0.2 Torr, and high frequency power of 800 W was applied between the electrodes to etch the material to be etched. The material to be etched is the same as in the above example.
An As-doped polycrystalline silicon film was used. As after etching and oxygen plasma treatment
The cross-sectional shape of the doped polycrystalline silicon film was similar to that shown in FIGS. 3 and 4 above.

上記の実施例では被エツチング材としてAsド
ープ多結晶シリコン膜について述べたが、Pある
いはBのようなドーピング原子を含んだ多結晶シ
リコン膜、不純物を含まない多結晶シリコン膜お
よび単結晶シリコンなどにも適用できる。
In the above embodiment, an As-doped polycrystalline silicon film was used as the material to be etched, but polycrystalline silicon films containing doping atoms such as P or B, polycrystalline silicon films containing no impurities, single crystal silicon, etc. can also be applied.

以上説明したように、本発明はエツチング反応
ガスとして、CCl4、CCl3F、CCl2F2、CCLF3
よびCF4のうちの少なくとも1種を含み、かつ炭
素数8以下の炭化水素系ガスの少なくとも1種を
含む混合ガスを使用し、プラズマ反応を利用して
被エツチング材をエツチングすることにより、被
エツチング材にテーパ状の側壁面を形製するもの
で、工程数の増加が全くなく簡便で、再現性の良
いプラズマエツチング方法であり、半導体素子製
造における歩留り向上に寄与するものである。
As explained above, the present invention uses a hydrocarbon gas containing at least one of CCl 4 , CCl 3 F, CCl 2 F 2 , CCLF 3 and CF 4 and having a carbon number of 8 or less as an etching reaction gas. A tapered side wall surface is formed on the material to be etched by etching the material using a plasma reaction using a mixed gas containing at least one of the following, and there is no increase in the number of steps. This plasma etching method is simple and has good reproducibility, and contributes to improving yields in semiconductor device manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用するプラズマエツチング
装置の断面図、第2図はエツチング前の被エツチ
ング材の断面図、第3図はエツチング後の被エツ
チング材の断面図、第4図はエツチング後酸素プ
ラズマ処理後の被エツチング材の断面図である。 1……反応室、2……試料電極、3……対向電
極、4……ガス導入管、5……ガス排出管、6…
…被エツチング材、7……高周波電源、8……レ
ジスト膜、9……Asドープ多結晶シリコン膜、
10……二酸化シリコン、11……単結晶シリコ
ン、12……プラズマ重合物。
Fig. 1 is a sectional view of the plasma etching apparatus used in the present invention, Fig. 2 is a sectional view of the material to be etched before etching, Fig. 3 is a sectional view of the material to be etched after etching, and Fig. 4 is after etching. FIG. 3 is a cross-sectional view of the material to be etched after oxygen plasma treatment. DESCRIPTION OF SYMBOLS 1...Reaction chamber, 2...Sample electrode, 3...Counter electrode, 4...Gas introduction tube, 5...Gas exhaust tube, 6...
... Material to be etched, 7 ... High frequency power supply, 8 ... Resist film, 9 ... As-doped polycrystalline silicon film,
10...Silicon dioxide, 11...Single crystal silicon, 12...Plasma polymer.

Claims (1)

【特許請求の範囲】[Claims] 1 被エツチング試料を載置する試料電極と該試
料電極に対向する対向電極を備えたエツチング室
内に反応ガスを流入させつつ排気し、該エツチン
グ室内を一定範囲内の真空度に保つて、前記両電
極に高周波電圧を印加して発生させたガスプラズ
マを利用して前記被エツチング試料をエツチング
する方法において、前記反応ガスとして、CCl4
CCl3F、CCl2F2、CClF2およびCF4のうちの少な
くとも1種を含み、かつ炭素数が8以下の炭化水
素系ガスの少なくとも1種を含む混合ガスを使用
することを特徴とするプラズマエツチング方法。
1. An etching chamber equipped with a sample electrode on which the sample to be etched is placed and a counter electrode facing the sample electrode is evacuated while flowing a reaction gas, and the etching chamber is maintained at a vacuum level within a certain range, and both of the above-mentioned etching chambers are In the method of etching the sample to be etched using gas plasma generated by applying a high frequency voltage to an electrode, the reaction gas may include CCl 4 ,
A mixed gas containing at least one of CCl 3 F, CCl 2 F 2 , CClF 2 and CF 4 and at least one hydrocarbon gas having a carbon number of 8 or less is used. Plasma etching method.
JP6342285A 1985-03-29 1985-03-29 Plasma etching method Granted JPS60221586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6342285A JPS60221586A (en) 1985-03-29 1985-03-29 Plasma etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6342285A JPS60221586A (en) 1985-03-29 1985-03-29 Plasma etching method

Publications (2)

Publication Number Publication Date
JPS60221586A JPS60221586A (en) 1985-11-06
JPS6345469B2 true JPS6345469B2 (en) 1988-09-09

Family

ID=13228833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6342285A Granted JPS60221586A (en) 1985-03-29 1985-03-29 Plasma etching method

Country Status (1)

Country Link
JP (1) JPS60221586A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943844A (en) * 1972-09-01 1974-04-25
JPS5269831A (en) * 1975-12-10 1977-06-10 Tokyo Shibaura Electric Co Etching device
JPS5623752A (en) * 1979-08-01 1981-03-06 Matsushita Electronics Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943844A (en) * 1972-09-01 1974-04-25
JPS5269831A (en) * 1975-12-10 1977-06-10 Tokyo Shibaura Electric Co Etching device
JPS5623752A (en) * 1979-08-01 1981-03-06 Matsushita Electronics Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS60221586A (en) 1985-11-06

Similar Documents

Publication Publication Date Title
US5310454A (en) Dry etching method
US5302236A (en) Method of etching object to be processed including oxide or nitride portion
US5643838A (en) Low temperature deposition of silicon oxides for device fabrication
US5201994A (en) Dry etching method
JPS627268B2 (en)
JPH05102107A (en) Manufacture of semiconductor device
KR102563633B1 (en) Etching methods and plasma etching materials
JPH06338479A (en) Etching method
JP3649650B2 (en) Substrate etching method and semiconductor device manufacturing method
JPS58204537A (en) Plasma etching method
JPH0312454B2 (en)
US4554047A (en) Downstream apparatus and technique
JPS6345469B2 (en)
JPH08330278A (en) Surface processing method and surface processing device
JPH0626199B2 (en) Etching method
JPH0121230B2 (en)
JPH04298035A (en) Plasma etching method
JPH0251987B2 (en)
EP0052227A1 (en) Method for forming a self-aligned contact and a plasma especially applicable in performing said method
JPS6316467B2 (en)
JPH0467777B2 (en)
JPS6255692B2 (en)
JPS58197820A (en) Plasma etching method
JPH1050680A (en) Dry etching platinum thin film
JPH10189535A (en) Manufacture of semiconductor device