JPS627268B2 - - Google Patents

Info

Publication number
JPS627268B2
JPS627268B2 JP6313179A JP6313179A JPS627268B2 JP S627268 B2 JPS627268 B2 JP S627268B2 JP 6313179 A JP6313179 A JP 6313179A JP 6313179 A JP6313179 A JP 6313179A JP S627268 B2 JPS627268 B2 JP S627268B2
Authority
JP
Japan
Prior art keywords
workpiece
etching
gas plasma
sio
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6313179A
Other languages
Japanese (ja)
Other versions
JPS55154582A (en
Inventor
Hiroyasu Toyoda
Hideaki Itakura
Hiroyoshi Komya
Mineto Tobinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Original Assignee
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHO ERU ESU AI GIJUTSU KENKYU KUMIAI filed Critical CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority to JP6313179A priority Critical patent/JPS55154582A/en
Publication of JPS55154582A publication Critical patent/JPS55154582A/en
Publication of JPS627268B2 publication Critical patent/JPS627268B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は多層構造からなる被加工物を平行平板
形ガスプラズマ食刻装置で食刻する方法およびそ
の装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for etching a workpiece having a multilayer structure using a parallel plate type gas plasma etching apparatus.

酸化シリコン被膜等の材料をガスプラズマで食
刻する場合、より精密な加工が可能であることか
ら平行平板形ガスプラズマ食刻装置が用いられて
おり、その電極材料にはステンレススチール、石
英、アルミニウムまたは酸化アルミニウム等が採
用されている。一方、多層構造からなる被加工物
の被食刻層をガスプラズマで食刻する場合、被食
刻層の食刻速度E(E)が実用上十分な大きさで
あり、かつ、下地層の食刻速度E(u)との比R
(E/u)=E(E)/E(u)が十分大きいこと
が要求される。しかも、平行平板形ガスプラズマ
食刻装置の場合、通常、被加工物の周縁の方が中
央より速く食刻され、結果として食刻は被食刻物
の周縁から中央へと進んでいくことが多い。従つ
て、下地層の食刻速度が大きいと被加工物の周縁
の方が中央より深く食刻され、下地層への損傷等
が大きくなり好ましくない。
When etching materials such as silicon oxide films with gas plasma, a parallel plate type gas plasma etching device is used because more precise processing is possible, and the electrode materials include stainless steel, quartz, and aluminum. Alternatively, aluminum oxide, etc. are used. On the other hand, when etching a layer to be etched of a workpiece having a multilayer structure with gas plasma, the etching speed E (E) of the layer to be etched is sufficiently large for practical use, and Ratio R to etching speed E(u)
(E/u)=E(E)/E(u) is required to be sufficiently large. Moreover, in the case of a parallel plate type gas plasma etching apparatus, the periphery of the workpiece is usually etched faster than the center, and as a result, the etching progresses from the periphery to the center of the workpiece. many. Therefore, if the etching speed of the base layer is high, the periphery of the workpiece will be etched more deeply than the center, which is undesirable as it will cause greater damage to the base layer.

本発明の目的は、多層構造からなる被加工物を
平行平板形ガスプラズマ食刻装置で食刻する場合
の上記の要求、すなわちR(E/u)を大きくす
ることならびに上述の欠点すなわち被加工物内の
食刻速度の不均一性を改善するための改良手段を
提供することにある。
The purpose of the present invention is to meet the above-mentioned requirements when etching a workpiece having a multilayer structure using a parallel plate type gas plasma etching apparatus, that is, to increase R(E/u), and to solve the above-mentioned drawbacks, namely, to The object of the present invention is to provide an improved means for improving the non-uniformity of etching rate within a product.

次に、本発明の内容を被食刻層が酸化シリコン
(SiO2)被膜、下地層がシリコン(Si)からなる多
層構造の被加工物を例にとつて、より具体的に説
明する。
Next, the content of the present invention will be explained in more detail by taking as an example a workpiece having a multilayer structure in which the layer to be etched is a silicon oxide (SiO 2 ) film and the underlying layer is silicon (Si).

文献(Solid State Electronics;vol 18、
pp1146〜1147、1975)等から推察すれば、従
来、ガスプラズマ食刻に使用されているフツ素化
合物、例えば四フツ化炭素(CF4)ガスのプラズ
マ状態においてフツ素ラジカル(F*)や三フツ
化炭素ラジカル(CF3 *)等が解離されるが、該
フツ素ラジカルはSiとの反応性が大きく、該三フ
ツ化炭素ラジカルはSiO2との反応性が大きい。
従つて、フツ素ラジカルを何らかの方法で減少さ
せればSiの食刻速度は低下し、結果としてSiO2
Siとの食刻速度比R(SiO2/Si)が大きくなり、
SiO2被膜の選択食刻が可能となる。
Literature (Solid State Electronics; vol 18,
pp. 1146-1147, 1975 ), etc., it is assumed that fluorine radicals (F * ) and Carbon fluoride radicals (CF 3 * ) and the like are dissociated, but the fluorine radicals have a high reactivity with Si, and the carbon trifluoride radicals have a high reactivity with SiO 2 .
Therefore, if fluorine radicals are reduced in some way, the etching rate of Si will decrease, and as a result, SiO 2 and
The etching rate ratio R (SiO 2 /Si) with Si increases,
Selective etching of the SiO 2 film becomes possible.

このような考察のもとに種々の方法が提案され
ているが、含水素フツ素化合物や水素とフツ素化
合物ガスとの混合ガスのガスプラズマを用いる方
法もその1つである。しかし、これらの食刻ガス
を用いても前記ステンレススチール製平板状電極
等を用いた平行平板形ガスプラズマ食刻装置で食
刻した場合にはSiO2とSiとの食刻速度比R
(SiO2/Si)はあまり大きな値は得られず、高々
R(SiO2/Si)=10程度である。
Various methods have been proposed based on such considerations, and one of them is a method using gas plasma of a hydrogen-containing fluorine compound or a mixed gas of hydrogen and fluorine compound gas. However, even if these etching gases are used, when etching is performed using a parallel plate type gas plasma etching apparatus using the stainless steel flat plate electrodes, etc., the etching rate ratio R of SiO 2 and Si is low.
(SiO 2 /Si) does not have a very large value, and R(SiO 2 /Si) is about 10 at most.

しかるに、本発明による平行平板形ガスプラズ
マ食刻装置およびガスプラズマ食刻法を用いれ
ば、SiO2の食刻速度E(SiO2)は実用上十分に大
きな値が得られ、SiO2とSiとの食刻速度比R
(SiO2/Si)も非常に大きく、かつ、被加工物内
における各々の食刻速度の不均一性も改善され、
本発明の目的を達成することができる。
However, if the parallel plate type gas plasma etching apparatus and gas plasma etching method according to the present invention are used, the etching rate E (SiO 2 ) of SiO 2 can be obtained at a sufficiently large value for practical use, and SiO 2 and Si The etching speed ratio R of
(SiO 2 /Si) is also very large, and the non-uniformity of each etching rate within the workpiece is also improved.
The purpose of the present invention can be achieved.

以下実施例によつて詳細に説明するが、本発明
はその要旨を越えない限り、以下の実施例に限定
されるものではない。
EXAMPLES The present invention will be explained in detail below using examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例 1 第1図にその一例を示した平行平板形ガスプラ
ズマ食刻装置の反応槽1内に設置した平板状の
上、下電極2,3の表面材料4,5を多結晶シリ
コンとし、該下部電極3の表面材料5上に、Si基
板6の表面に選択的に形成したSiO2被膜7を有
する被加工物8を設置し、真空ポンプ9で該反応
槽1内を排気してガス圧を0.1mTorr以下にした
後、ガス導入管10を通してCHF3ガスを一定の
流量で導入、反応槽1と真空ポンプ9の途中にあ
る排気速度調節弁11を用いて反応槽1内のガス
圧を20から100mTorrの間で調節する。高周波電
源12の高圧側を被加工物8が配置してある下部
電極3に接続し、対向電極(上部電極2)は接地
した後、下部電極3側から高周波電力を印加して
該CHF3ガスをプラズマ化して食刻処理を行つ
た。その結果、被加工物8において表出している
Si基板6部分およびSi基板上のSiO2被膜7部分
は、それぞれ第2図に示すようなSiの食刻速度曲
線13およびSiO2の食刻速度曲線14をもつて
食刻された。また、一枚の被加工物8中のSiおよ
びSiO2の食刻速度分布をガス圧50mTorrにおけ
る結果で例示すると、それぞれ、第3図の食刻速
度分布曲線15および16となる。
Example 1 The surface materials 4 and 5 of the flat upper and lower electrodes 2 and 3 installed in the reaction chamber 1 of a parallel plate type gas plasma etching apparatus, an example of which is shown in FIG. 1, are made of polycrystalline silicon. A workpiece 8 having a SiO 2 film 7 selectively formed on the surface of a Si substrate 6 is placed on the surface material 5 of the lower electrode 3, and the inside of the reaction tank 1 is evacuated with a vacuum pump 9 to release gas. After reducing the pressure to 0.1 mTorr or less, CHF 3 gas is introduced at a constant flow rate through the gas introduction pipe 10, and the gas pressure in the reaction tank 1 is adjusted using the exhaust speed control valve 11 located between the reaction tank 1 and the vacuum pump 9. Adjust between 20 and 100 mTorr. After connecting the high-voltage side of the high-frequency power source 12 to the lower electrode 3 on which the workpiece 8 is placed and grounding the counter electrode (upper electrode 2), high-frequency power is applied from the lower electrode 3 side to remove the CHF 3 gas. was converted into plasma and etched. As a result, it is exposed in the workpiece 8.
Six portions of the Si substrate and seven portions of the SiO 2 film on the Si substrate were etched with Si etching rate curves 13 and SiO 2 etching rate curves 14 as shown in FIG. 2, respectively. Further, when the etching rate distribution of Si and SiO 2 in one workpiece 8 is illustrated by the results at a gas pressure of 50 mTorr, the etching rate distribution curves 15 and 16 shown in FIG. 3 are obtained, respectively.

一方、第1図に示した平行平板形ガスプラズマ
食刻装置において、上、下電極2,3の表面材料
4,5をアルミニウムにかえ、以下上記と同様な
方法で被加工物8をCHF3ガスプラズマで食刻し
た結果、それぞれ、第2図のSiの食刻速度曲線1
7およびSiO2の食刻速度曲線18、および第3
図のSiの食刻速度分布曲線19およびSiO2の食刻
速度分布曲線20を得た。
On the other hand, in the parallel plate type gas plasma etching apparatus shown in FIG. 1, the surface materials 4 and 5 of the upper and lower electrodes 2 and 3 are changed to aluminum, and the workpiece 8 is treated with CHF 3 in the same manner as described above. As a result of etching with gas plasma, the etching rate curve 1 of Si in Fig. 2 is obtained.
7 and SiO 2 etching rate curve 18, and the third
An etching rate distribution curve 19 for Si and an etching rate distribution curve 20 for SiO 2 shown in the figure were obtained.

これらの結果から明瞭なように、平板状電極の
表面材料4,5に多結晶シリコンを用いるとSiの
食刻速度が抑えられ、結果としてSiO2とSiとの食
刻速度比R(SiO2/Si)の値が非常に大きくな
り、かつ、一枚の被加工物中の食刻速度分布も改
良され、より均一となることがわかる。
As is clear from these results, when polycrystalline silicon is used for the surface materials 4 and 5 of the flat electrode, the etching rate of Si is suppressed, and as a result, the etching rate ratio R of SiO 2 and Si (SiO 2 It can be seen that the value of /Si) becomes very large, and the etching rate distribution in a single workpiece is also improved and becomes more uniform.

実施例 2 実施例1で用いた平行平板形ガスプラズマ食刻
装置で、表面材料4,5が多結晶シリコンからな
る上、下電極2,3のうち、上部電極2の表面材
料4をステンレススチールにかえたのち、実施例
1と同じ方法で被加工物8をCHF3ガスでプラズ
マ食刻した結果、第2図に示したSiおよびSiO2
食刻速度曲線13および14と同様な曲線を得
た。これに反し、下部電極3の表面材料5もステ
ンレススチールにかえて食刻した結果は、第2図
に示したSiおよびSiO2の食刻速度曲線17および
18とほぼ同じであつた。
Example 2 In the parallel plate type gas plasma etching apparatus used in Example 1, the surface material 4 of the upper electrode 2 was made of stainless steel among the upper and lower electrodes 2 and 3 whose surface materials 4 and 5 were made of polycrystalline silicon. As a result of plasma etching the workpiece 8 with CHF 3 gas in the same manner as in Example 1, curves similar to the etching rate curves 13 and 14 of Si and SiO 2 shown in FIG. 2 were obtained. Obtained. On the other hand, when the surface material 5 of the lower electrode 3 was also etched instead of stainless steel, the results were almost the same as the etching rate curves 17 and 18 for Si and SiO 2 shown in FIG.

その他、第4図乃至第7図に示すように構成し
ても実施例1と類似の結果を得た。即ち、第4図
は下部電極3表面の被加工物に覆われていない部
分の一部をシリコンからなる表面材料5で形成し
たものである。第5図は下部電極3表面の被加工
物で覆われていない部分の、一部をシリコンから
なる表面材料5で形成し、他の一部を酸化シリコ
ンからなる表面材料5aで形成したものである。
第6図は実施例1に於ける多結晶シリコンからな
る表面材料5の一部を、酸化シリコンからなる表
面材料5aで覆つたものである。第7図は下部電
極3表面を酸化シリコンからなる表面材料5aで
形成し、この表面材料5aの被加工物で覆われて
いない部分の一部をシリコンからなる表面材料5
で被覆したものである。
In addition, results similar to those of Example 1 were obtained even with the configurations shown in FIGS. 4 to 7. That is, in FIG. 4, a part of the surface of the lower electrode 3 that is not covered with the workpiece is formed with a surface material 5 made of silicon. In FIG. 5, a part of the surface of the lower electrode 3 that is not covered with the workpiece is formed with a surface material 5 made of silicon, and the other part is formed with a surface material 5a made of silicon oxide. be.
FIG. 6 shows a part of the surface material 5 made of polycrystalline silicon in Example 1 covered with a surface material 5a made of silicon oxide. In FIG. 7, the surface of the lower electrode 3 is formed with a surface material 5a made of silicon oxide, and a part of the surface material 5a that is not covered with the workpiece is covered with a surface material 5a made of silicon.
It is coated with

上、下電極2,3の表面材料4,5を多結晶シ
リコン環や多結晶シリコンと石英を交互に配列し
た板等にかえたり、石英板上に多数の小孔を有す
る多結晶シリコンを配置したりして実施例1およ
び2と同様な方法で食刻してみたが、すべて実施
例1と類似の結果を得た。また、食刻ガスとして
CF4とH2の混合ガスを用いて実施例1および2と
同様な方法で食刻したところ、実施例1と類似の
結果を得た。なお、CF4とH2の混合ガスにおい
て、CF4ガスに対するH2の添加量は5〜20%の範
囲が好ましい。添加量が5%以下の場合は、Siの
食刻速度があまり小さくならず、20%以上になる
とプラズマ重合反応がおこり易く、プラズマ重合
による反応生成物が被加工物表面に堆積し、プラ
ズマによる食刻作用を妨害する。
The surface materials 4 and 5 of the upper and lower electrodes 2 and 3 may be replaced with polycrystalline silicon rings or plates in which polycrystalline silicon and quartz are alternately arranged, or polycrystalline silicon having many small holes is placed on the quartz plate. Etching was performed in the same manner as in Examples 1 and 2, but results similar to those in Example 1 were obtained. Also, as an etching gas
When etching was performed in the same manner as in Examples 1 and 2 using a mixed gas of CF 4 and H 2 , results similar to those in Example 1 were obtained. In addition, in the mixed gas of CF 4 and H 2 , the amount of H 2 added to the CF 4 gas is preferably in the range of 5 to 20%. If the amount added is less than 5%, the etching rate of Si will not decrease so much, and if it is more than 20%, plasma polymerization reaction will easily occur, and reaction products due to plasma polymerization will be deposited on the surface of the workpiece. Interferes with phagocytosis.

以上のように下地層6の食刻速度が低下するの
はプラズマ中の活性ラジカルが下地層6と同一材
料からなる表面材料5と反応し、下地層6との反
応を抑制するためと考えられる。従つて表面材料
5の少なくとも一部を下地層6と同一材料で形成
すれば、他の材料からなる被加工物8に適用して
も同等の効果を奏し得る。
The reason why the etching rate of the base layer 6 decreases as described above is thought to be because the active radicals in the plasma react with the surface material 5 made of the same material as the base layer 6 and suppress the reaction with the base layer 6. . Therefore, if at least a portion of the surface material 5 is made of the same material as the base layer 6, the same effect can be achieved even when applied to the workpiece 8 made of another material.

以上詳述したように、本発明によれば平行平板
形ガスプラズマ食刻装置の平板状電極のうち、少
なくとも被加工物を配置する側の電極表面物質と
して、被食刻層の下地層の物質と同じ物質を用
い、含水素フツ素化合物ガスまたは水素とフツ素
化合物ガスの混合ガスを食刻ガスとして使用し、
該被加工物を配置した電極側から高周波電力を印
加してプラズマを発生させ、食刻処理を行うこと
により被食刻層の食刻速度を実用上十分な大きさ
で保ちながら、被食刻層と下地層の食刻速度比を
大きくし、かつ、均一に食刻できることは明らか
である。なお、実施例では含水素フツ素化合物ガ
スとしてCHF3、水素とフツ素化合物ガスの混合
ガスとしてH2/CF4を用いたが、上記主旨に反し
ないガスであれば他のガスも適用できることは云
うまでもない。
As described in detail above, according to the present invention, among the flat electrodes of a parallel plate type gas plasma etching apparatus, at least the surface material of the electrode on the side where the workpiece is placed is the material of the underlying layer of the layer to be etched. Using the same substance as above, using a hydrogen-containing fluorine compound gas or a mixed gas of hydrogen and fluorine compound gas as the etching gas,
Plasma is generated by applying high-frequency power from the electrode side where the workpiece is placed, and etching processing is performed to keep the etching rate of the layer to be etched at a level sufficient for practical use. It is clear that the etching speed ratio between the layer and the underlying layer can be increased and uniform etching can be achieved. In the examples, CHF 3 was used as the hydrogen-containing fluorine compound gas, and H 2 /CF 4 was used as the mixed gas of hydrogen and fluorine compound gas, but other gases may also be used as long as they do not contradict the above concept. Needless to say.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を説明するために
用いた平行平板形ガスプラズマ食刻装置の概略図
第2図は上、下電極の表面材料に多結晶シリコン
およびアルミニウムを用い、食刻ガスとして
CHF3ガスを用いた時のSiおよびSiO2食刻速度の
CHF3動作ガス圧依存性を示す図、第3図は、同
じく、上、下電極の表面材料に多結晶シリコンお
よびアルミニウムを用いた時のCHF3動作ガス圧
50mTorrにおける被加工物一枚中のSiおよび
SiO2食刻速度分布を示す図、第4図乃至第7図
は本発明の他の実施例を示す部分構成図である。 1……反応槽、2,3……平板状電極、4,5
……平板状電極の表面材料、6……下地層、7…
…被食刻層、8……被加工物、9……真空ポン
プ、10……ガス導入管、11……排気速度調節
弁、12……高周波電源、13,17……Siの食
刻速度曲線、14,18……SiO2の食刻速度曲
線、15,19……Siの食刻速度分布曲線、1
6,20……SiO2の食刻速度分布曲線。
FIG. 1 is a schematic diagram of a parallel plate type gas plasma etching apparatus used to explain an embodiment of the present invention. FIG. As chopped gas
Si and SiO2 etching rate using CHF3 gas
Figure 3 shows the CHF 3 operating gas pressure dependence when polycrystalline silicon and aluminum are used as the surface materials of the upper and lower electrodes.
Si and
The diagrams showing the SiO 2 etching rate distribution and FIGS. 4 to 7 are partial configuration diagrams showing other embodiments of the present invention. 1... Reaction tank, 2, 3... Flat electrode, 4, 5
...Surface material of flat electrode, 6... Base layer, 7...
...Layer to be etched, 8...Workpiece, 9...Vacuum pump, 10...Gas introduction pipe, 11...Exhaust speed control valve, 12...High frequency power supply, 13, 17...Si etching speed Curve, 14, 18... SiO 2 etching rate curve, 15, 19... Si etching rate distribution curve, 1
6,20... SiO 2 etching rate distribution curve.

Claims (1)

【特許請求の範囲】 1 反応槽内に一対の平板状電極を互いに並行に
設け、上記電極間に於ける一方の電極の表面上に
被加工物を設置し、上記反応槽内を所定ガス圧に
し上記電極間に高周波電力を印加してガスプラズ
マを発生させ、上記被加工物を食刻するものに於
て、上記被加工物として下地層と、この下地層上
に形成された被食刻層とを有する多層構造のもの
を使用し、少なくとも被加工物を設置する側の電
極表面に於ける少なくとも一部を上記下地層と同
一材料で形成したことを特徴とするガスプラズマ
食刻法。 2 被加工物を設置する側の電極表面全体を被加
工物の下地層と同一材料で形成したことを特徴と
する特許請求の範囲第1項記載のガスプラズマ食
刻法。 3 被加工物を設置する側の電極表面に於ける他
の一部を被加工物の被食刻層と同一材料で形成し
たことを特徴とする特許請求の範囲第1項記載の
ガスプラズマ食刻法。 4 被加工物を設置する側の電極に高周波電力の
高圧側を接続することを特徴とする特許請求の範
囲第1項乃至第3項の何れかに記載のガスプラズ
マ食刻法。 5 被加工物の下地層がシリコン、被食刻層が酸
化シリコンからなることを特徴とする特許請求の
範囲第1項乃至第4項の何れかに記載のガスプラ
ズマ食刻法。
[Claims] 1. A pair of flat electrodes are provided in parallel to each other in a reaction tank, a workpiece is placed on the surface of one electrode between the electrodes, and the inside of the reaction tank is maintained at a predetermined gas pressure. In the method of etching the workpiece by applying high-frequency power between the electrodes to generate gas plasma, the workpiece is a base layer, and the workpiece is etched on the base layer. A gas plasma etching method characterized in that at least a part of the electrode surface on the side on which the workpiece is placed is made of the same material as the base layer. 2. The gas plasma etching method according to claim 1, wherein the entire surface of the electrode on the side where the workpiece is placed is made of the same material as the base layer of the workpiece. 3. The gas plasma etching according to claim 1, characterized in that the other part of the electrode surface on the side where the workpiece is installed is formed of the same material as the etching layer of the workpiece. Engraving method. 4. The gas plasma etching method according to any one of claims 1 to 3, characterized in that the high voltage side of high frequency power is connected to the electrode on the side where the workpiece is installed. 5. The gas plasma etching method according to any one of claims 1 to 4, wherein the base layer of the workpiece is made of silicon and the layer to be etched is made of silicon oxide.
JP6313179A 1979-05-21 1979-05-21 Gas plasma etching method Granted JPS55154582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6313179A JPS55154582A (en) 1979-05-21 1979-05-21 Gas plasma etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6313179A JPS55154582A (en) 1979-05-21 1979-05-21 Gas plasma etching method

Publications (2)

Publication Number Publication Date
JPS55154582A JPS55154582A (en) 1980-12-02
JPS627268B2 true JPS627268B2 (en) 1987-02-16

Family

ID=13220401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6313179A Granted JPS55154582A (en) 1979-05-21 1979-05-21 Gas plasma etching method

Country Status (1)

Country Link
JP (1) JPS55154582A (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100683A (en) * 1981-12-12 1983-06-15 Nippon Telegr & Teleph Corp <Ntt> Plasma etching method
JPS58209111A (en) * 1982-05-31 1983-12-06 Toshiba Corp Plasma generator
US4451349A (en) * 1983-04-20 1984-05-29 International Business Machines Corporation Electrode treatment for plasma patterning of polymers
JPS60201632A (en) * 1984-03-27 1985-10-12 Anelva Corp Dry etching apparatus
DE3677659D1 (en) * 1985-07-25 1991-04-04 Texas Instruments Inc METHOD AND DEVICE FOR TREATING PLASMA.
JPH089787B2 (en) * 1987-07-24 1996-01-31 日本電信電話株式会社 Plasma etching device
US6068784A (en) * 1989-10-03 2000-05-30 Applied Materials, Inc. Process used in an RF coupled plasma reactor
JP2797667B2 (en) * 1990-07-13 1998-09-17 住友金属工業株式会社 Plasma etching equipment
US6251792B1 (en) 1990-07-31 2001-06-26 Applied Materials, Inc. Plasma etch processes
US6444137B1 (en) 1990-07-31 2002-09-03 Applied Materials, Inc. Method for processing substrates using gaseous silicon scavenger
US6165311A (en) 1991-06-27 2000-12-26 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6238588B1 (en) 1991-06-27 2001-05-29 Applied Materials, Inc. High pressure high non-reactive diluent gas content high plasma ion density plasma oxide etch process
US6090303A (en) * 1991-06-27 2000-07-18 Applied Materials, Inc. Process for etching oxides in an electromagnetically coupled planar plasma apparatus
US6488807B1 (en) 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US5888414A (en) * 1991-06-27 1999-03-30 Applied Materials, Inc. Plasma reactor and processes using RF inductive coupling and scavenger temperature control
US5477975A (en) * 1993-10-15 1995-12-26 Applied Materials Inc Plasma etch apparatus with heated scavenging surfaces
US6514376B1 (en) 1991-06-27 2003-02-04 Applied Materials Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6518195B1 (en) 1991-06-27 2003-02-11 Applied Materials, Inc. Plasma reactor using inductive RF coupling, and processes
US6036877A (en) * 1991-06-27 2000-03-14 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
US6063233A (en) 1991-06-27 2000-05-16 Applied Materials, Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US6077384A (en) * 1994-08-11 2000-06-20 Applied Materials, Inc. Plasma reactor having an inductive antenna coupling power through a parallel plate electrode
US6074512A (en) 1991-06-27 2000-06-13 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners
US6024826A (en) * 1996-05-13 2000-02-15 Applied Materials, Inc. Plasma reactor with heated source of a polymer-hardening precursor material
JP2997142B2 (en) * 1992-01-24 2000-01-11 アプライド マテリアルズ インコーポレイテッド Highly selective oxide etching process for integrated circuit structures
TW279240B (en) 1995-08-30 1996-06-21 Applied Materials Inc Parallel-plate icp source/rf bias electrode head
US6036878A (en) * 1996-02-02 2000-03-14 Applied Materials, Inc. Low density high frequency process for a parallel-plate electrode plasma reactor having an inductive antenna
US6054013A (en) * 1996-02-02 2000-04-25 Applied Materials, Inc. Parallel plate electrode plasma reactor having an inductive antenna and adjustable radial distribution of plasma ion density
US6132551A (en) * 1997-09-20 2000-10-17 Applied Materials, Inc. Inductive RF plasma reactor with overhead coil and conductive laminated RF window beneath the overhead coil
US6589437B1 (en) 1999-03-05 2003-07-08 Applied Materials, Inc. Active species control with time-modulated plasma
US6401652B1 (en) 2000-05-04 2002-06-11 Applied Materials, Inc. Plasma reactor inductive coil antenna with flat surface facing the plasma

Also Published As

Publication number Publication date
JPS55154582A (en) 1980-12-02

Similar Documents

Publication Publication Date Title
JPS627268B2 (en)
GB2069936A (en) Two-step plasma etching process
JPS5813625B2 (en) gas plasma etching
EP0004285B1 (en) A method of plasma etching silica at a faster rate than silicon in an article comprising both
WO2003056617A1 (en) Etching method and plasma etching device
US4341593A (en) Plasma etching method for aluminum-based films
JP3002496B2 (en) Dry etching method for semiconductor wafer
JPS59222933A (en) Etching method
JPH09275092A (en) Plasma processor
JPS60126835A (en) Plasma etching device
JPH0770514B2 (en) Dry etching method
JPS6328995B2 (en)
JP3124599B2 (en) Etching method
JPH01241126A (en) Low temperature dry etching
JP2594967B2 (en) Plasma cleaning method
JPS5855568A (en) Reactive ion etching method
JPS6316467B2 (en)
JPH0241167B2 (en)
JPS6030098B2 (en) Spatsuta etching method
JPS5511167A (en) Dry etching method
JPS6032972B2 (en) Etching device
JPH02281730A (en) Plasma etching method
JP2516099B2 (en) Dry etching method
JPS61150336A (en) Manufacture of semiconductor device
JPH0653191A (en) Dry etching method