JPS6345101A - Reactor for hydrogen occlusion alloy - Google Patents

Reactor for hydrogen occlusion alloy

Info

Publication number
JPS6345101A
JPS6345101A JP61186784A JP18678486A JPS6345101A JP S6345101 A JPS6345101 A JP S6345101A JP 61186784 A JP61186784 A JP 61186784A JP 18678486 A JP18678486 A JP 18678486A JP S6345101 A JPS6345101 A JP S6345101A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
heat
heat transfer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61186784A
Other languages
Japanese (ja)
Inventor
Yasuo Odai
尾台 保生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Filter Manufacturing Co Ltd
Original Assignee
Fuji Filter Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Filter Manufacturing Co Ltd filed Critical Fuji Filter Manufacturing Co Ltd
Priority to JP61186784A priority Critical patent/JPS6345101A/en
Publication of JPS6345101A publication Critical patent/JPS6345101A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PURPOSE:To utilize the generation and absorption of heat caused by the occlusion and release of hydrogen for the heating and cooling use in high efficiency, by putting a hydrogen-occlusion alloy in a container having a definite shape and divided with heat-conductive partition walls and placing a path of thermal medium in contact with the container. CONSTITUTION:Heat-conductive partition walls 2 thermally connected with the inner wall of a reaction column 1 are arranged in a manner to divide the reaction column along the length. A formed material 6 of porous hydrogen- occlusion alloy is put in each space between the partition walls. A hydrogen gas channel 4 connected to a hydrogen gas feeding and discharging pipe 5 is formed outside of r at the center of the formed material 6 and a channel 8 of a thermal medium is formed outside of or at the center of the reaction tube 1. The heat generated or absorbed in the occlusion or release of hydrogen by the hydrogen-occlusion alloy 6 can be transferred to the thermal medium and effectively utilized for heating and cooling use.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱交換器、蓄熱器、水素ガス供給タンク等と
して用いられる水素吸蔵合金の反応装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydrogen storage alloy reaction device used as a heat exchanger, a heat storage device, a hydrogen gas supply tank, etc.

〔発明の背景〕[Background of the invention]

近年、水素貯蔵用金属水素化物すなわち水素吸蔵合金の
水素ガスを吸蔵、放出する際の発熱、吸熱反応を熱交換
器や蓄熱器に利用することや、比較的低圧、高温で多量
の水素ガスを吸蔵する性質を水素ガス燃料エンジン等の
燃料供給タンクに利用することが試みられている。
In recent years, metal hydrides for hydrogen storage, that is, hydrogen storage alloys, have been developed to utilize the exothermic and endothermic reactions that occur when storing and releasing hydrogen gas in heat exchangers and heat storage devices, and to store large amounts of hydrogen gas at relatively low pressures and high temperatures. Attempts have been made to utilize this occlusion property in fuel supply tanks for hydrogen gas fueled engines and the like.

水素吸蔵合金は、水素ガスを吸蔵した状態と放出した状
態で体積が10〜25%程度変化すること、水素ガスの
吸蔵、放出が迅速に行われるようにすること、単位重量
当たりの水素ガスの吸蔵量を大とすること等の理由から
、微粒子として用いられる。したがって、熱交換器に限
らず、蓄熱器や燃料タンクにおいても、水素吸蔵合金の
偏在や放出水素ガスへの混入の防止対策を必要とする。
The hydrogen storage alloy must have a volume that changes by about 10 to 25% between the state in which hydrogen gas is stored and the state in which it is released, the hydrogen gas storage and release to occur quickly, and the hydrogen gas per unit weight. It is used as fine particles for reasons such as increasing storage capacity. Therefore, not only in heat exchangers but also in heat storage units and fuel tanks, measures are required to prevent the uneven distribution of hydrogen storage alloys and their contamination with released hydrogen gas.

さらに、水素吸蔵合金は熱伝導率が比較的小さいと言う
こともあるから、水素吸蔵合金の発熱や吸熱を効率よく
反応容器壁に伝達する対策も必要とする。この対策は、
熱交換器において特に必要であるが、蓄熱器や燃料供給
タンクにおいても水素ガス吸蔵、放出の速度や効率を高
めるために利用される。
Furthermore, since the hydrogen storage alloy has a relatively low thermal conductivity, measures are required to efficiently transfer heat generation and heat absorption from the hydrogen storage alloy to the walls of the reaction vessel. This measure is
Although it is particularly necessary in heat exchangers, it is also used in heat storage units and fuel supply tanks to increase the speed and efficiency of hydrogen gas storage and release.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の対策を備えた効率のよい熱交換器や燃
料供給タンク等として利用される水素吸蔵合金の反応装
置の提供を目的とする。
An object of the present invention is to provide a hydrogen storage alloy reaction device that is equipped with the above-mentioned measures and can be used as an efficient heat exchanger, fuel supply tank, or the like.

〔発明の構成〕[Structure of the invention]

本発明は、一定の形状に成形されている水素吸蔵合金を
収納する反応筒が反応筒と熱的に接続している伝熱隔壁
によって水素吸蔵合金の収納室を長さ方向に仕切られて
おり、伝熱隔壁を貫通して各収納室に臨む水素ガス通路
と外部と各収納室とを連絡する水素ガス給排管とが設け
られていることを特徴とする水素ガス吸蔵合金の反応装
置にあり、この構成によって上記目的を達成する。
In the present invention, a reaction tube housing a hydrogen storage alloy molded into a certain shape is partitioned in the length direction by a heat transfer partition that is thermally connected to the reaction tube. , a hydrogen gas storage alloy reaction device characterized by being provided with a hydrogen gas passageway penetrating a heat transfer partition wall and facing each storage chamber, and a hydrogen gas supply/discharge pipe communicating between the outside and each storage chamber. This configuration achieves the above objective.

〔実施例〕〔Example〕

第1図及び第2図はそれぞれ本発明反応装置の一例を示
し、第1図及び第2図のそれぞれAは縦断面図、BはA
のx−x矢視図、Cは合金収納室3に収納される一定の
形状に成形されている水素吸蔵合金6である。
FIGS. 1 and 2 each show an example of the reactor of the present invention, and in each of FIGS. 1 and 2, A is a longitudinal cross-sectional view, and B is A.
In the x-x arrow view of FIG.

図においてlは反応筒、2は反応筒1の内壁と熱的に接
続して反応筒1の内部を長さ方向に区分している伝熱隔
壁、3は伝熱隔壁2によって区分されてそれぞれに、一
定の形状に成形されている水素吸蔵合金6を収納してい
る収納室、4は伝熱隔壁2を貫通して反応筒1の長さ方
向に伸び、各収納室に臨んでいる水素ガス通路である。
In the figure, l is a reaction tube, 2 is a heat transfer partition that is thermally connected to the inner wall of reaction tube 1 and divides the inside of reaction tube 1 in the length direction, and 3 is a partition partitioned by heat transfer partition 2, respectively. A storage chamber 4 houses a hydrogen storage alloy 6 molded into a certain shape, and a hydrogen storage chamber 4 extends in the length direction of the reaction tube 1 through the heat transfer partition wall 2 and faces each storage chamber. It is a gas passage.

本発明で用いられる一定の形状に成形された水素吸蔵合
金6は、例えば合金微粒子を多孔性金属被膜内に封じ込
めるマイクロカプセル化を施したものを圧縮成形したも
ののように水素の吸蔵−放出を繰り返しても一定の形状
を保つという特徴を有している。
The hydrogen storage alloy 6 molded into a certain shape used in the present invention repeatedly absorbs and releases hydrogen, for example, by compressing and molding micro-encapsulated alloy particles in a porous metal film. It has the characteristic that it maintains a constant shape even when it is used.

水素ガスは給排管5から反応筒1内に送り込まれ、水素
ガス通路4を通って各収納室3の水素吸蔵合金6に吸蔵
され、水素吸蔵合金6から放出される水素ガスは上記と
同じ通路を逆に通って水素ガス給排管5に排出されるよ
うにしている。第2図Aに示されるように安全のため水
素ガス給排管5にフィルター7を挿入しても第1図Aの
ように挿入しなくてもよい、水素吸蔵合金6と反応筒1
の間の熱の伝達は、一部は水素吸蔵合金6内の熱伝導の
みで行なわれるが、伝熱隔壁2によって効率よく行なわ
れる。水素吸蔵合金6に水素ガスを吸蔵、放出されると
きは、反応が温度律速であることから、それらが効率よ
く迅速に行なわれるように1反応筒1の外側をそれぞれ
吸蔵、放出して適当な温度の水等で冷却、加熱する。第
2図に示す反応装置では、中心に熱媒油′N18を配設
して、伝熱面積を増加させると共に反応装置内の温度勾
配を増加させて、反応熱の伝熱の向上を図っている。
Hydrogen gas is sent into the reaction tube 1 from the supply/discharge pipe 5, passes through the hydrogen gas passage 4, and is stored in the hydrogen storage alloy 6 in each storage chamber 3, and the hydrogen gas released from the hydrogen storage alloy 6 is the same as above. The hydrogen gas is discharged into the hydrogen gas supply/discharge pipe 5 by passing through the passage in the opposite direction. As shown in FIG. 2A, a filter 7 may be inserted into the hydrogen gas supply/discharge pipe 5 for safety, but it does not need to be inserted as shown in FIG. 1A. Hydrogen storage alloy 6 and reaction tube 1
The heat transfer between the hydrogen absorbing alloy 6 and the hydrogen absorbing alloy 6 is carried out in part by heat conduction only, but is efficiently carried out by the heat transfer partition wall 2. When hydrogen gas is stored and released into the hydrogen storage alloy 6, the reaction rate is determined by temperature. Therefore, in order to ensure that the reaction occurs efficiently and quickly, the outside of each reaction column 1 is used to store and release hydrogen gas at an appropriate rate. Cool or heat with hot water, etc. In the reactor shown in Fig. 2, heat transfer oil 'N18 is placed in the center to increase the heat transfer area and increase the temperature gradient within the reactor to improve the heat transfer of reaction heat. There is.

以上いずれの反応装置においても、一定の形状に成形さ
れた水素吸蔵合金6を用いているため水素吸蔵合金が、
水素ガスへ混入することがないことから水素吸蔵合金の
偏在が起らず合金が外部に流出することも起らない。
In any of the above reactors, since the hydrogen storage alloy 6 formed into a certain shape is used, the hydrogen storage alloy is
Since it is not mixed into hydrogen gas, uneven distribution of the hydrogen storage alloy does not occur, and the alloy does not leak to the outside.

伝熱隔壁2に微細な水素ガスの流通孔を設けて、隣合う
収納室30間を水素ガスが流通し得るようにしてもよい
し、伝9J%隔壁2が水素ガスの流通を許さないもので
あってもよい。
Fine hydrogen gas flow holes may be provided in the heat transfer partition 2 to allow hydrogen gas to flow between adjacent storage chambers 30, or the heat transfer partition wall 2 may not allow hydrogen gas to flow. It may be.

第2図の伝熱隔壁2は外周端面で反応筒1の内壁と熱的
にvc続しており、第1図の伝熱隔壁2は、外周に設け
たフランジ部の外周面での反応筒1の内壁と熱的に接続
しているが、第2図の反応装置に第1図のような伝熱隔
壁2を用いるようにしても、:51図の反応装置に第2
図のような伝熱隔壁2を用いるようにしてもよい。
The heat transfer partition wall 2 shown in FIG. 2 is thermally connected to the inner wall of the reaction tube 1 at the outer peripheral end surface, and the heat transfer partition wall 2 shown in FIG. However, even if the heat transfer partition wall 2 as shown in Fig. 1 is used in the reactor shown in Fig. 2, the
A heat transfer partition wall 2 as shown in the figure may be used.

一定の形状に成形した水素吸蔵合金6の厚さは伝熱隔壁
2の間隔を決定するが、水素吸蔵合金6が水素を吸蔵す
るとき膨張する性質を有するとき、外径や内径は膨張を
考慮して、反応筒に過大な力を与えない寸法にするのが
好ましい、また水素吸蔵合金6の軸方向の膨張による反
応筒1や伝熱隔壁2に働く軸方向の圧縮力が一定値を越
えないようにするため、一部の合金収納室3に水素吸蔵
合金6を収納する代りに軸方向に変形するバネを挿入し
てもよい。
The thickness of the hydrogen storage alloy 6 formed into a certain shape determines the spacing between the heat transfer partition walls 2, but when the hydrogen storage alloy 6 has the property of expanding when storing hydrogen, the outer diameter and inner diameter should take expansion into account. It is preferable to use dimensions that do not apply excessive force to the reaction tube, and also to ensure that the axial compressive force acting on the reaction tube 1 and the heat transfer partition wall 2 due to the axial expansion of the hydrogen storage alloy 6 exceeds a certain value. In order to prevent this, instead of storing the hydrogen storage alloy 6 in some of the alloy storage chambers 3, a spring that deforms in the axial direction may be inserted.

〔発明の効果〕〔Effect of the invention〕

本9.1JIの反応装こは、水素吸蔵合金の偏在や放出
水素ガスへの水素吸蔵合金の混入が生じることなく、反
応筒と水素吸蔵合金の間の熱伝達効率が優れ、反応筒の
長さが長くなっても吸蔵、放出反応の効率が殆んど変ら
ないという優れた効果を奏する。
The reaction equipment of this 9.1JI has excellent heat transfer efficiency between the reaction tube and the hydrogen storage alloy without uneven distribution of the hydrogen storage alloy or mixing of the hydrogen storage alloy into the released hydrogen gas, and has a long reaction tube length. This has an excellent effect in that the efficiency of the occlusion and desorption reactions remains almost unchanged even if the length of the reaction becomes longer.

【図面の簡単な説明】[Brief explanation of the drawing]

5S1図、第2図はそれぞれ本発明反応装置の一例を示
し、第1図、第2図のAは縦断面図、BはAのx−x矢
視図、Cは水素吸蔵合金6の形状である。 l・・Φ反応筒 2會・・伝熱隔壁 3・・・水素吸蔵合金収納室 4・・・水素ガス通路 5争拳・水素ガス給排管 6・拳・一定の形状に成形された水素吸蔵合金7・・・
フィルター 8・・・熱媒通路
5S1 and 2 each show an example of the reactor of the present invention, where A in FIGS. 1 and 2 is a longitudinal sectional view, B is a xx-x arrow view of A, and C is the shape of the hydrogen storage alloy 6. It is. l... Φ reaction tube 2... heat transfer partition 3... hydrogen storage alloy storage chamber 4... hydrogen gas passage 5 fist, hydrogen gas supply and discharge pipe 6, fist, hydrogen molded into a certain shape Storage alloy 7...
Filter 8...heat medium path

Claims (1)

【特許請求の範囲】[Claims] 1、一定の形状に成形されている水素吸蔵合金を収納す
る反応筒が反応筒と熱的に接続している伝熱隔壁によっ
て水素吸蔵合金の収納室を長さ方向に仕切られており、
伝熱隔壁を貫通して各収納室に臨む水素ガス通路と外部
と各収納室とを連絡する水素ガス給排管とが設けられて
いることを特徴とする水素ガス吸蔵合金の反応装置
1. A reaction tube that houses a hydrogen storage alloy formed into a certain shape is partitioned in the length direction by a heat transfer partition that is thermally connected to the reaction tube.
A reaction device for a hydrogen gas storage alloy, characterized in that it is provided with a hydrogen gas passage that penetrates a heat transfer partition wall and faces each storage chamber, and a hydrogen gas supply and discharge pipe that communicates the outside and each storage chamber.
JP61186784A 1986-08-11 1986-08-11 Reactor for hydrogen occlusion alloy Pending JPS6345101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61186784A JPS6345101A (en) 1986-08-11 1986-08-11 Reactor for hydrogen occlusion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61186784A JPS6345101A (en) 1986-08-11 1986-08-11 Reactor for hydrogen occlusion alloy

Publications (1)

Publication Number Publication Date
JPS6345101A true JPS6345101A (en) 1988-02-26

Family

ID=16194533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61186784A Pending JPS6345101A (en) 1986-08-11 1986-08-11 Reactor for hydrogen occlusion alloy

Country Status (1)

Country Link
JP (1) JPS6345101A (en)

Similar Documents

Publication Publication Date Title
ES2377272T3 (en) Hydrogen storage tank
JP4705251B2 (en) MH tank
US5661986A (en) Chemical reactor, refrigerating machine and container provided therewith and reagent cartridge therefor
KR20120104182A (en) Tank for storing and withdrawing hydrogen and/or heat
RU81568U1 (en) HYDROGEN EXTERNAL SURFACE METAL HYDROGEN CARTRIDGE
US4756163A (en) Containers for storing and/or transporting fluids
KR102634450B1 (en) Solid hydrogen storage apparatus
JPS6345101A (en) Reactor for hydrogen occlusion alloy
JPS5848480Y2 (en) Hydrogen storage device using metal hydride
JPS5925956B2 (en) metal hydride container
JP2005336040A (en) Hydrogen storage alloy container
US20110094897A1 (en) Hydrogen Storage Device
JPS58182087A (en) Heat accumulating device by metal hydride
JPS6335401A (en) Container for hydrogen-occlusion alloy
JPS63225799A (en) Manufacture of reactor for hydrogen absorption alloy
JPH0253362B2 (en)
JP2015096745A (en) Hydrogen storage device
Gupta et al. Experimental studies on novel multi tubular reactor with shell having integrated buffer storage
JP2007333158A (en) Hydrogen storage tank
CN114352924B (en) Diffusion type hydrogen storage bottle
JPH07286794A (en) Heat exchanger
Meng et al. Experimental study on phase-change cooling of the gain generator of chemical lasers
JPS6159192A (en) Heat accumulator
JPH073250Y2 (en) Hydrogen storage / desorption heat exchanger
JP2020133696A (en) Hydrogen storage container