JPS6344949B2 - - Google Patents

Info

Publication number
JPS6344949B2
JPS6344949B2 JP57071431A JP7143182A JPS6344949B2 JP S6344949 B2 JPS6344949 B2 JP S6344949B2 JP 57071431 A JP57071431 A JP 57071431A JP 7143182 A JP7143182 A JP 7143182A JP S6344949 B2 JPS6344949 B2 JP S6344949B2
Authority
JP
Japan
Prior art keywords
water level
container
turbine
air chamber
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57071431A
Other languages
Japanese (ja)
Other versions
JPS58190582A (en
Inventor
Satoru Shibuya
Koichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP57071431A priority Critical patent/JPS58190582A/en
Publication of JPS58190582A publication Critical patent/JPS58190582A/en
Publication of JPS6344949B2 publication Critical patent/JPS6344949B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

【発明の詳細な説明】 本発明は、波高発電設備において発電機を作動
させるため、波の有するエネルギを回転エネルギ
に変換するための波エネルギ一次変換装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wave energy primary conversion device for converting energy possessed by waves into rotational energy in order to operate a generator in wave height power generation equipment.

海洋の自然現象をエネルギ源としてこれを利用
した発電形態の一つにいわゆる波高発電があり、
波高発電設備はエネルギ源である波エネルギを回
転エネルギに変換する一次変換装置と前記回転エ
ネルギを電気エネルギに変換する二次変換装置と
を備える。
One form of power generation that uses natural phenomena in the ocean as an energy source is so-called wave height power generation.
The wave height power generation equipment includes a primary conversion device that converts wave energy, which is an energy source, into rotational energy, and a secondary conversion device that converts the rotational energy into electrical energy.

従来、一次変換装置は、タービンが配置された
堤体と、開放端部が静水面下に位置するように前
記堤体に支持され、静水面上に空気室を形成する
容器と、空気室とタービンとの間に配置された通
風管とを含み、容器底部の開放端部から波が入射
すると、波の変動に応じ、容器内において水位が
上昇しあるいは下降し、これにより前記通風管内
に空気流動を生じさせるべく空気室内の空気が圧
縮または膨張状態におかれ、このときの空気流動
によりタービンが駆動される。
Conventionally, a primary conversion device includes an embankment in which a turbine is disposed, a container supported by the embankment so that its open end is located below the still water surface and forming an air chamber above the still water surface, and an air chamber. When waves enter the vessel from the open end of the bottom of the vessel, the water level rises or falls within the vessel according to wave fluctuations, and this causes air to flow into the ventilation pipe. Air within the air chamber is compressed or expanded to create a flow, and the air flow at this time drives a turbine.

ところで、前記一次変換装置は有義波高で1〜
3mの波に適合するようにその性能が設定される
のが通常であるが、前記有義波高を超える大きな
エネルギを有する波が一次変換装置に作用したと
きの該一次変換装置の耐久性および安全性の点で
十分でない。
By the way, the primary conversion device has a significant wave height of 1 to
Normally, its performance is set to suit waves of 3 m, but the durability and safety of the primary converter when waves with large energy exceeding the above-mentioned significant wave height act on the primary converter. Not sexual enough.

すなわち、台風やしけのような暴風雨時におい
ては波高が10mを超える大波となることがまれで
はなく、このような大波が前記一次変換装置に作
用した場合、前記容器内において水位の上昇が著
しく、前記空気室内の異常高圧化に伴つてタービ
ンの許容負荷容量を超える高速の空気流が発生す
ると共に海水が容器上揚に当つて堤体を含む一次
変換装置を倒壊させるように作用する。さらに、
海水が前記流動空気と共にタービン内へ侵入す
る。
In other words, during storms such as typhoons and storms, it is not uncommon for large waves to exceed 10 meters in height, and when such large waves act on the primary conversion device, the water level within the container will rise significantly. With the abnormally high pressure in the air chamber, a high-speed air flow exceeding the allowable load capacity of the turbine is generated, and when the seawater lifts up the container, it acts to collapse the primary conversion device including the embankment body. moreover,
Seawater enters the turbine together with the flowing air.

前記したような一次変換装置に作用する負の現
象を回避するべく、大波の襲来時に通風管の通路
を遮断しかつ空気室内の空気を室外に排出するこ
とが考えられる。しかし、この場合はタービンの
過負荷運転とタービン内への海水の流入を避ける
ことは可能であつても、容器内を上昇する海水の
該容器およびこれを支持する堤体に作用する破壊
力を軽減することができない。したがつて、一次
変換装置の安全性を確保することができない。
In order to avoid the negative phenomenon that acts on the primary conversion device as described above, it is conceivable to block the passage of the ventilation pipe and discharge the air in the air chamber to the outside when a large wave attacks. However, in this case, although it is possible to avoid overload operation of the turbine and the inflow of seawater into the turbine, the destructive force of rising seawater acting on the container and the embankment supporting it can be avoided. cannot be reduced. Therefore, the safety of the primary conversion device cannot be ensured.

実際、大波の有するエネルギは莫大であつて、
これを無視することができない。
In fact, the energy contained in large waves is enormous,
This cannot be ignored.

本発明は、異常気象時あるいは平常時に突発的
に発生する大波による波高発電設備におけるエネ
ルギの一次変換装置に対する影響を緩和し、一次
変換装置の耐久性および安全性を確保することを
目的とする。
The present invention aims to alleviate the influence of large waves that suddenly occur during abnormal weather or during normal times on the primary energy conversion device in wave height power generation equipment, and to ensure the durability and safety of the primary conversion device.

本発明は、堤体に支持された空気室を形成する
容器内部に、排水管をその一端が静水面下におい
て開放し、また他端が静水面上方に設定された限
界水位位置において大気に開放するように設置す
ると共に、容器内において水面が前記限界水位を
超えたとき、空気室およびタービン間に配置され
た通風管内における空気の流通を阻止するべく作
動する遮断手段を設けたことを特徴とする。
In the present invention, a drain pipe is installed inside a container that forms an air chamber supported by an embankment, and one end of the drain pipe is opened below the still water surface, and the other end is opened to the atmosphere at a critical water level position set above the still water surface. It is characterized in that it is installed so that the water level within the container exceeds the limit water level, and is provided with a blocking means that operates to prevent the flow of air in the ventilation pipe arranged between the air chamber and the turbine. do.

本発明によれば、大波の影響を受けて容器内に
おける水位が上昇し水面が限界水位、すなわちタ
ービンの負荷容量に従つて設定された水位を超え
て上昇すると、通風管の通路が閉鎖されて空気室
およびタービン間の空気の流通が停止される。こ
の時、空気室内の空気は圧縮状態にありその空気
圧は大気圧よりも大きいことから、排水管を介し
て海水が容器外へ流出し、容器内における水位を
下げかつ空気室内の圧力を低下させる。また、水
位が限界水位を大巾に超えて上昇した場合でも、
それだけ空気圧が上昇し、排水管からの海水の流
水量も増大して空気圧を低下さすることができ
る。しかも海水が容器の上部に当ることがないた
め、堤体を含む一次変換装置を損傷させまたは倒
壊させるように作用する力を著しく軽減してその
安全性を高めると共にタービン内への海水の侵入
を阻止することができる。
According to the invention, when the water level in the vessel rises under the influence of large waves and rises above the critical water level, that is, the water level set according to the load capacity of the turbine, the passage of the ventilation pipe is closed. Air flow between the air chamber and the turbine is stopped. At this time, the air in the air chamber is in a compressed state and the air pressure is greater than atmospheric pressure, so seawater flows out of the container through the drain pipe, lowering the water level in the container and the pressure inside the air chamber. . Also, even if the water level rises far beyond the critical water level,
The air pressure increases accordingly, and the amount of seawater flowing from the drain pipe also increases, making it possible to lower the air pressure. Furthermore, since seawater does not hit the top of the vessel, the forces that would act to damage or collapse the primary converter, including the embankment body, are significantly reduced, increasing its safety and preventing seawater from entering the turbine. can be prevented.

本発明が特徴とするところは、図示の実施例に
ついての以下の説明により、さらに明らかとなろ
う。
The features of the invention will become clearer from the following description of the illustrated embodiments.

波の有するエネルギを回転エネルギに変換する
ためのエネルギの一次変換装置10は、第1図お
よび第2図に示すように、堤体12と、該堤体1
2に支持された一端開放の容器14と、堤体12
の上部に配置された機械室16内のタービン(図
示せず)とを含む。
As shown in FIGS. 1 and 2, a primary energy conversion device 10 for converting energy possessed by waves into rotational energy includes an embankment body 12 and an embankment body 1.
A container 14 with one end open supported by
a turbine (not shown) in a machine room 16 disposed on top of the engine.

堤体12は、例えばケーソンで構成し、海岸か
ら海へ向けて伸びる突堤として構築することがで
き、機械室16が配置される上方部分が静水面1
8上にあるように設置される。
The embankment body 12 is made of a caisson, for example, and can be constructed as a jetty extending from the coast toward the sea, and the upper part where the machine room 16 is arranged is above the still water surface 1.
It is installed as shown above.

堤体12に支持された容器14は、堤体12に
沿つて海側にかつ波の進行方向に対し直角に配置
されている。容器14は下端部を開放端部14a
とする全体に直方体形状の鉄筋コンクリート製構
造物で形成され、前記開放端部14aが前記静水
面18下に位置するように配置されている。これ
により、容器14内に、静水面18と容器14内
面とで規定される空気室20が形成され、また波
が開放端部14aから入射可能となる。
The container 14 supported by the embankment body 12 is arranged on the sea side along the embankment body 12 and perpendicular to the direction of wave propagation. The container 14 has an open end 14a at its lower end.
It is formed of a reinforced concrete structure having a rectangular parallelepiped shape as a whole, and is arranged so that the open end 14a is located below the still water surface 18. As a result, an air chamber 20 defined by the static water surface 18 and the inner surface of the container 14 is formed in the container 14, and waves can enter from the open end 14a.

空気室20を形成する容器14は、図示の例の
ように堤体12と別体とせず堤体12と一体に構
成し、また、堤体12の外部ではなく内部に設け
ることができる。但し後者の場合は、堤体の海側
の壁面の波の入射のための開口を設けかつ内部に
前記空気室に充当するための空間を設けることが
要件となるため、構造的に十分な強度を有するよ
うに配慮することが必要である。
The container 14 forming the air chamber 20 can be configured integrally with the embankment body 12 instead of being separate from the embankment body 12 as in the illustrated example, and can be provided inside the embankment body 12 instead of outside. However, in the latter case, it is necessary to provide an opening in the sea-side wall of the embankment body for the incidence of waves and a space inside for the air chamber, so it is necessary to have sufficient structural strength. It is necessary to take care to ensure that the

容器14の頂部にはノズル(図示せず)が設け
られており、該ノズルを介して空気室20と連通
しかつ前記タービンに接続された通風管22が配
置されている。波の容器14内への入射により該
波の挙動に従つて容器14内において水位が上昇
しあるいは下降するが、その際空気室20内の空
気が圧縮または膨張状態におかれ、同時に前記空
気が通風管22内を流動し、これにより前記ター
ビンが作動する。該タービンには、正逆両方向に
回転可能のいわゆるウエルズタービンが使用され
ている。タービンに接続される発電機(図示せ
ず)は、動力伝達の損失を最小限に抑える意味で
機械室16内に設置することが望ましい。
A nozzle (not shown) is provided at the top of the vessel 14, through which a ventilation pipe 22 is arranged, which communicates with the air chamber 20 and is connected to the turbine. When a wave enters the container 14, the water level rises or falls in the container 14 according to the behavior of the wave. At this time, the air in the air chamber 20 is compressed or expanded, and at the same time the air is It flows through the ventilation pipe 22, which causes the turbine to operate. The turbine uses a so-called Wells turbine that can rotate in both forward and reverse directions. A generator (not shown) connected to the turbine is preferably installed within the machine room 16 in order to minimize loss in power transmission.

容器14内にはまた、暴風雨時あるいは平常時
に突発的に発生する波高による一次変換装置10
の作動不能、耐久性の低下あるいはその破壊を回
避すべく複数の排水管24が配置され、さらに、
第3図に示すように、排水管24からの排水動作
と連動する、通風管22の通路遮断手段26が設
けられている。
Inside the container 14, there is also a primary conversion device 10 that uses wave heights that suddenly occur during storms or normal times.
A plurality of drain pipes 24 are arranged to avoid inoperability, reduction in durability, or destruction of the
As shown in FIG. 3, a passage blocking means 26 for the ventilation pipe 22 is provided which is interlocked with the drainage operation from the drain pipe 24.

排水管24はその下端部24aが静水面18下
において水中に開放し、またその上端部24bが
容器14の容器を経て大気に開放するように配置
されている。
The drain pipe 24 is arranged so that its lower end 24a is open to the water below the still water surface 18, and its upper end 24b is opened to the atmosphere through the container 14.

一般に、波の高さは刻々に変動し、しかも年間
を通じてその波高差が非常に大きく、定常的な波
高発電に最適な波高は有義波高1〜3mであると
されており、前記タービンの出力の上限および下
限は対象とする波の高さに基いて定められる。
In general, the height of waves fluctuates from moment to moment, and the difference in wave height is very large throughout the year.The optimal wave height for steady wave power generation is said to be a significant wave height of 1 to 3 meters, and the output of the turbine is The upper and lower limits of are determined based on the height of the waves of interest.

排水管24の上端部24bの高さ、さらに詳細
には上端部24bの内面下部の高さ位置は、ター
ビンの前記出力の上限に対応して設定された限界
水位と同高位置にある。上端部24bの開放面
は、大波の襲来時に前記開放面からの海水の流入
を防ぐために、上方以外の方向に向けられる。ま
た、排水管24の下端部24aは、発電効率の点
から容器14の開放端部14aの高さ位置より上
方にあることが望ましい。容器14の開放端部1
4aおよび海底間の距離すなわちゲート高さが比
較的小さい場合は排水管24の下端部24aが開
放端部14aよりも下方にあるように配置するこ
とも可能である。
The height of the upper end 24b of the drain pipe 24, more specifically, the lower part of the inner surface of the upper end 24b is at the same height as the limit water level set corresponding to the upper limit of the output of the turbine. The open surface of the upper end portion 24b is oriented in a direction other than upward in order to prevent seawater from flowing in from the open surface when a large wave hits. Further, the lower end 24a of the drain pipe 24 is desirably located above the height of the open end 14a of the container 14 from the viewpoint of power generation efficiency. Open end 1 of container 14
When the distance between the drain pipe 4a and the seabed, that is, the gate height is relatively small, the drain pipe 24 may be arranged so that the lower end 24a is below the open end 14a.

なお、前記下端部24aが静水面18よりも上
方位置で開放するときは、静水面18下の下方水
位面18aから静水面18上の上方水位面18b
へ向けて水面が上昇する際、排水管24から空気
が逃げ、タービンの駆動が不可能となり、あるい
はタービンの能率を著しく低下させることにな
る。
Note that when the lower end portion 24a opens at a position above the still water surface 18, from the lower water level surface 18a below the still water surface 18 to the upper water level surface 18b above the still water surface 18.
When the water level rises towards the water level, air escapes from the drain pipe 24, making it impossible to drive the turbine or significantly reducing its efficiency.

前記通路遮断手段26は、第3図に示すよう
に、容器14内に配置された浮子26aと、通風
管22の横断面と同形状で回転可能に支持された
弁26bと、浮子26aおよび弁26bとを連結
するリンク機構26cと、内部底面が前記限界水
位位置にあるように配置された、浮子26aの案
内部材26dとから成る。
As shown in FIG. 3, the passage blocking means 26 includes a float 26a disposed in the container 14, a valve 26b rotatably supported with the same shape as the cross section of the ventilation pipe 22, and the float 26a and the valve. 26b, and a guide member 26d for the float 26a, which is arranged so that the inner bottom surface is at the limit water level position.

前記リンク機構26cは、第4図に示すよう
に、浮子26aに固定されたアーム28と、アー
ム28および弁26bにその直径方向に固定され
かつ通風管22に枢着された枢軸32のそれぞれ
に回動可能にピン結合されたロツド30とで構成
されている。また、前記案内部材26dは有底半
円筒体から成り、弁26b下方において容器14
内の壁面上部および側部に接して固定され、該壁
面上部および側部と前記有底半円筒体の内面とで
浮子26aの移動空間を規定する。前記有底半円
筒体の底部および側部にはそれぞれ孔34および
孔36が穿たれており、容器14内において上方
水位面18bが前記限界水位を超えて上昇した
際、海水が孔34から侵入して浮子26aを押し
上げ、浮子26aの上方空間における空気は孔3
6を経て空気室20内に移動し、リンク機構26
cを介して弁26bを回転させる。これにより、
弁26bが通風管22の通路を閉鎖する。
The link mechanism 26c, as shown in FIG. The rod 30 is rotatably connected with a pin. Further, the guide member 26d is made of a semi-cylindrical body with a bottom, and is located below the valve 26b.
The float 26a is fixed in contact with the upper and side portions of the inner wall, and the upper and side portions of the wall and the inner surface of the bottomed semi-cylindrical body define a moving space for the float 26a. A hole 34 and a hole 36 are bored in the bottom and side of the bottomed semi-cylindrical body, respectively, and when the upper water level surface 18b rises above the limit water level in the container 14, seawater enters through the hole 34. The float 26a is pushed up, and the air in the space above the float 26a is removed from the hole 3.
6 into the air chamber 20, and the link mechanism 26
Rotate valve 26b via c. This results in
Valve 26b closes the passage of ventilation pipe 22.

前記孔36下方近傍には、アーム28の挿通用
孔を有する抑止板38が固定されている。
A restraining plate 38 having a hole through which the arm 28 is inserted is fixed near the bottom of the hole 36 .

次に、波エネルギ一次変換装置10の能力を有
義波高が1〜3mの波に対応するように設定した
場合、一次変換装置10は最大波高の上限が8m
すなわち有義波高が4.5mの波に対しこれが有す
るエネルギを回転エネルギに変換することができ
る。したがつて、前記した容器14内における限
界水位面は前記8mの最大波高の波が入射した場
合の容器14内における上方水位面18bであ
る。但し、この場合の最大波高の下限は1mであ
る。
Next, when the ability of the wave energy primary conversion device 10 is set to correspond to waves with a significant wave height of 1 to 3 m, the primary conversion device 10 has a maximum wave height of 8 m.
That is, the energy of a wave with a significant wave height of 4.5 m can be converted into rotational energy. Therefore, the critical water level surface in the container 14 described above is the upper water level surface 18b in the container 14 when the wave with the maximum wave height of 8 m is incident. However, the lower limit of the maximum wave height in this case is 1 m.

一次変換装置10の能力を前記したように設定
したときの通風管22の空気の流通状況および排
水管24からの排水状況を第5図ないし第7図を
参照して説明する。
The air circulation condition through the ventilation pipe 22 and the drainage condition from the drain pipe 24 when the capacity of the primary conversion device 10 is set as described above will be explained with reference to FIGS. 5 to 7.

まず、第5図A,Bに示すように、最大波高が
1〜8mの波の場合、容器14内における上方水
位面18bは前記限界水位まで上昇せず、入射す
る波に従つて水面が上方水位面18b位置と下方
水位面18a位置との間で変動することにより空
気室20内の空気が圧縮または膨張されて通風管
22内を流動しタービンを正逆両方向に交互に回
転させる。また、排水管24から容器14外への
排水はない。
First, as shown in FIGS. 5A and 5B, in the case of waves with a maximum wave height of 1 to 8 m, the upper water level surface 18b in the container 14 does not rise to the above-mentioned limit water level, and the water surface rises upward according to the incident wave. By varying between the water level surface 18b position and the lower water level surface 18a position, the air in the air chamber 20 is compressed or expanded and flows through the ventilation pipe 22, causing the turbine to alternately rotate in both forward and reverse directions. Further, there is no drainage from the drain pipe 24 to the outside of the container 14.

最大波高が8mの波の場合の第6図A,Bの状
態から最大波高が8mを超える波の場合は第7図
A,Bに示すように上方水位面18bが前記限界
水位を超えて上昇するため、容器14内から容器
14外へ排水管24を介して排水され、同時に浮
子26aの上昇に伴つて弁26bが空気の流路を
狭めるように回転し、最後に通風管22の通路が
完全に遮断され空気室20およびタービン間の空
気の流動が停止する。
In the case of waves with a maximum wave height of 8 m, the upper water level surface 18b rises above the limit water level as shown in Fig. 6 A, B. In the case of waves with a maximum wave height exceeding 8 m, as shown in Fig. 7 A, B. Therefore, water is drained from the inside of the container 14 to the outside of the container 14 via the drain pipe 24, and at the same time, as the float 26a rises, the valve 26b rotates to narrow the air flow path, and finally the passage of the ventilation pipe 22 is closed. It is completely shut off and the flow of air between the air chamber 20 and the turbine stops.

前記第7図A,Bの状況においては、空気室2
0内が密閉空間もしくはこれに近い状態となるた
め、室内圧力が高くなつて大気圧と圧力差が大き
くなり、容器14内からその外部へいわゆるサイ
ホン効果によつて排水され、上方水位面18bを
限界水位より下方へ短時間で戻すことができ、一
次変換装置10の稼動を再開することができる。
また、空気室20が高圧状態となつているため、
上方水位面18bが容器14内の上面に達して一
次変換装置10に損傷を与えまたは倒壊させるよ
うな力が堤体12および容器14に作用すること
がない。さらに、限界水位したがつてタービンの
最大負荷容量を超えた過負荷運転を防止しかつタ
ービン内への海水への侵入を阻止することができ
るため、タービンの耐久性を確保することができ
る。
In the situations shown in FIG. 7A and B, the air chamber 2
Since the inside of the container 14 becomes a closed space or a state close to this, the indoor pressure increases and the pressure difference from the atmospheric pressure increases, and water is drained from the inside of the container 14 to the outside by a so-called siphon effect, causing the upper water level surface 18b to rise. The water level can be returned below the critical water level in a short time, and the operation of the primary conversion device 10 can be restarted.
In addition, since the air chamber 20 is in a high pressure state,
There is no force acting on the embankment body 12 and the vessel 14 that would cause the upper water level surface 18b to reach the upper surface within the vessel 14 and damage or collapse the primary conversion device 10. Furthermore, since it is possible to prevent overload operation in which the water limit exceeds the maximum load capacity of the turbine and to prevent seawater from entering the turbine, durability of the turbine can be ensured.

本発明によれば、暴風雨時あるいは平常時に発
生する突発的な大波の影響下にあつても、波高発
電設備における波エネルギ一次変換装置の耐久性
および安全性を損うことなくこれらの性能を維持
することができる。
According to the present invention, even under the influence of sudden large waves that occur during storms or during normal times, the performance of wave energy primary conversion devices in wave height power generation equipment can be maintained without impairing the durability and safety. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一次変換装置の正面図、
第2図は第1図の線2−2に沿つて得た部分縦断
面図、第3図は第1図の線3−3に沿つて得た部
分縦断面図、第4図は通路遮断手段の部分的な斜
視図、第5図A,Bはそれぞれ、上方水位面が限
界水位面より下方にあるときの一次変換装置の作
動状況を示す第2図および第3図に対応する部分
縦断面図、第6図A,Bは、それぞれ、上方水位
面が限界水位面と同一面上に達したときの一次変
換装置の作動状況を示す、第2図および第3図に
対応する部分縦断面図、第7図A,Bは、それぞ
れ、上方水位面が限界水位面を超えて上方にある
ときの一次変換装置の作動状況を示す、第2図お
よび第3図に対応する部分縦断面図である。 10:波エネルギ一次変換装置、12:堤体、
14:容器、16:機械室、18:静水面、2
0:空気室、22:通風管、24:排水管、2
6:通路遮断手段、26a:浮子、26b:弁、
26c:リンク機構、26d:有底半円筒体。
FIG. 1 is a front view of a primary conversion device according to the present invention;
FIG. 2 is a partial longitudinal sectional view taken along line 2-2 of FIG. 1, FIG. 3 is a partial longitudinal sectional view taken along line 3-3 of FIG. 1, and FIG. The partial perspective view of the means, FIGS. 5A and 5B, corresponds in partial longitudinal section to FIGS. 2 and 3, respectively, showing the operating situation of the primary converter when the upper water level is below the critical water level. The top view and Figures 6A and 6B are partial longitudinal sections corresponding to Figures 2 and 3, respectively, showing the operating status of the primary conversion device when the upper water level surface reaches the same plane as the limit water level surface. The plan view and FIGS. 7A and 7B are partial longitudinal sections corresponding to FIGS. 2 and 3, respectively, showing the operating situation of the primary conversion device when the upper water level is above the critical water level. It is a diagram. 10: Wave energy primary conversion device, 12: Embankment body,
14: Container, 16: Machine room, 18: Still water surface, 2
0: Air chamber, 22: Ventilation pipe, 24: Drain pipe, 2
6: Passage blocking means, 26a: Float, 26b: Valve,
26c: Link mechanism, 26d: Bottomed semi-cylindrical body.

Claims (1)

【特許請求の範囲】 1 タービンが配置された堤体と、開放端部が静
水面下に没するように前記堤体に支持され、前記
静水面上方に空気室を形成する容器と、前記ター
ビンと前記空気室との間に配置された通風管と、
前記容器内に配置された両端開放の排水管であつ
て、一端が前記静水面下にありまた他端が前記静
水面上方に設定された限界水位位置において大気
に開放する排水管と、前記容器内において水面が
前記限界水位を越えたときに前記通風管の通路を
遮断する手段とを含む、波エネルギの一次変換装
置。 2 前記遮断手段は、前記限界水位位置上方へ移
動可能に前記容器内に配置された浮子と、前記通
風管内に配置された弁と、該弁と前記浮子とを連
結して前記浮子の上下運動を前記弁の開閉運動に
変換するためのリンク機構とを備える、特許請求
の範囲第1項に記載の波エネルギの一次変換装
置。
[Scope of Claims] 1. An embankment body in which a turbine is disposed, a container supported by the embankment body so that its open end is submerged below the still water surface and forming an air chamber above the still water surface, and the turbine. and a ventilation pipe disposed between the air chamber and the air chamber;
a drain pipe with both ends open disposed within the container, one end of which is below the still water surface and the other end of which is open to the atmosphere at a critical water level position set above the still water surface; and the container. and means for blocking the passage of said ventilation pipe when the water level exceeds said critical water level in said wave energy primary conversion device. 2. The blocking means connects a float disposed in the container so as to be movable above the limit water level position, a valve disposed in the ventilation pipe, and the valve and the float to prevent vertical movement of the float. 2. The wave energy primary conversion device according to claim 1, further comprising a link mechanism for converting the wave energy into an opening/closing motion of the valve.
JP57071431A 1982-04-30 1982-04-30 Primary converting device of wave energy Granted JPS58190582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57071431A JPS58190582A (en) 1982-04-30 1982-04-30 Primary converting device of wave energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57071431A JPS58190582A (en) 1982-04-30 1982-04-30 Primary converting device of wave energy

Publications (2)

Publication Number Publication Date
JPS58190582A JPS58190582A (en) 1983-11-07
JPS6344949B2 true JPS6344949B2 (en) 1988-09-07

Family

ID=13460323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57071431A Granted JPS58190582A (en) 1982-04-30 1982-04-30 Primary converting device of wave energy

Country Status (1)

Country Link
JP (1) JPS58190582A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215907A (en) * 1984-04-10 1985-10-29 Unyusho Kowan Gijutsu Kenkyusho Protector for caisson-type wave power generator
JPS63168284U (en) * 1987-04-24 1988-11-01
JPH0879934A (en) * 1994-08-30 1996-03-22 Daiden Co Ltd Insulation end cap for wire
JP2002285750A (en) * 2001-03-23 2002-10-03 Okamura Corp Mobile panel support device
EP3526467A4 (en) * 2016-10-17 2020-06-03 Wave Swell Energy Limited Apparatus and method for extracting energy from a fluid

Also Published As

Publication number Publication date
JPS58190582A (en) 1983-11-07

Similar Documents

Publication Publication Date Title
US7199483B2 (en) Tidal power generation
US20080206077A1 (en) Wave Pump Device
JPH0116993B2 (en)
WO2004003379A1 (en) Oscillating water column wave energy converter incorporated into caisson breakwater.
US7432612B2 (en) Water power generator
JP2013512389A (en) Wave-based buoyancy control system for floating wave power plants.
US6747363B2 (en) Floating platform harvesting sea wave energy for electric power generation
JPS6344949B2 (en)
JP5714463B2 (en) Flap breakwater
CN210562060U (en) Tide height adjusting device and tidal power generation system
JPH0419362A (en) Wave power energy converter
JP2007211459A (en) Derricking gate
JPS60129313A (en) Wave spending device
CN208762949U (en) A kind of breakwater system of integrated oscillating water column and float power generation
CN111335250A (en) Pile-guiding type floating breakwater and wave energy conversion integrated system and working method thereof
JPH0320548Y2 (en)
JPH0461126B2 (en)
JP2524211B2 (en) Seawater AC device
JP4440222B2 (en) Undulating gate
JP3111198B2 (en) Inundation prevention device for submerged water level
JPH10246171A (en) Wave-activated generating device
JP2007211458A (en) Derricking gate
KR100221980B1 (en) Wave power generation method and system thereof
US7827788B1 (en) Water power generator
JP5015022B2 (en) Pump equipment and flap equipment flap prevention method for pump equipment