JPH0461126B2 - - Google Patents

Info

Publication number
JPH0461126B2
JPH0461126B2 JP59070131A JP7013184A JPH0461126B2 JP H0461126 B2 JPH0461126 B2 JP H0461126B2 JP 59070131 A JP59070131 A JP 59070131A JP 7013184 A JP7013184 A JP 7013184A JP H0461126 B2 JPH0461126 B2 JP H0461126B2
Authority
JP
Japan
Prior art keywords
turbine
duct
caisson
valve
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59070131A
Other languages
Japanese (ja)
Other versions
JPS60215907A (en
Inventor
Akifumi Kojima
Yoshimi Aida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNYUSHO KOWAN GIJUTSU KENKYUSHOCHO
Original Assignee
UNYUSHO KOWAN GIJUTSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNYUSHO KOWAN GIJUTSU KENKYUSHOCHO filed Critical UNYUSHO KOWAN GIJUTSU KENKYUSHOCHO
Priority to JP59070131A priority Critical patent/JPS60215907A/en
Publication of JPS60215907A publication Critical patent/JPS60215907A/en
Publication of JPH0461126B2 publication Critical patent/JPH0461126B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/08Tide or wave power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

【発明の詳細な説明】 本発明は、ケーソンに搭載した空気タービン式
波力発電装置を強大な波エネルギーから保護する
とともに、ケーソン自体の安定性と消波性を増大
できる、ケーソン型波力発電装置における防護装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a caisson-type wave power generation device that can protect an air turbine type wave power generation device mounted on a caisson from powerful wave energy and increase the stability and wave dissipation performance of the caisson itself. It relates to protective devices in equipment.

従来、波浪のエネルギーを利用した発電方式と
して、浮遊型及びケーソン型のものが実用化され
ており、なかでも、ケーソン型のものは、ケーソ
ン自体が海底に固定され、防波堤や護岸などの構
造物として用いられるものであるため、有望なも
のとされている。
Conventionally, floating and caisson-type power generation systems have been put into practical use that utilize the energy of waves. Among these, the caisson-type system has the caisson itself fixed to the seabed, and is used to power structures such as breakwaters and seawalls. It is considered to be a promising product because it is used as a

ケーソンを利用した波力発電方式は、一般的に
第1図に示すように、通常のコンクリートケーソ
ン1の前面にこれと一体として没水部を開口した
遊水室2を設け、この遊水室2の上部に空気孔3
が設けられ、これに接続してダクト4とタービン
6及び発電機7とがケーソン上部室5内に設けら
れている。この方式においては、波の峰が来襲す
ると、それにともなつて遊水室2内の水位が上昇
し、遊水室2の上部にある空気が空気孔3及びダ
クト4を通して排出されるようになり、その空気
流によつて空気タービン6が回転し、これに接続
の発電機が回転して発電されることになる。ま
た、波の谷がくるときは、前記とは逆の空気流と
なるので、空気流の方向に係わりなく一方向に回
転できる空気タービンを利用するか整流弁で空気
流を一方向に制御するかして、、継続して発電力
が得られるような方法が採られている。
As shown in Fig. 1, the wave power generation system using a caisson generally includes a water retarding chamber 2 with an open submerged part on the front side of an ordinary concrete caisson 1. 3 air holes at the top
A duct 4, a turbine 6, and a generator 7 are provided in the caisson upper chamber 5 and connected thereto. In this method, when the crest of a wave hits, the water level in the water retarding chamber 2 rises, and the air in the upper part of the water retarding chamber 2 is discharged through the air hole 3 and the duct 4. The air turbine 6 is rotated by the air flow, and a generator connected thereto is rotated to generate electricity. Also, when a wave trough comes, the air flow is opposite to the above, so it is necessary to use an air turbine that can rotate in one direction regardless of the direction of the air flow, or to control the air flow in one direction with a rectifier valve. In this way, a method is adopted that allows continuous generation of power.

通常の直立ケーソンでは、入射する波のエネル
ギーはほとんど反射してしまうのに対し、波力発
電装置を組入れたケーソンでは、入射波のエネル
ギーを電気エネルギーに変換して取出すため、そ
の発電したエネルギー分だけ消波することができ
る。このため、この波力発電ケーソンは発電と同
時に消波ケーソンとしての機能を発揮することが
できるとともにケーソンとしての安定性も増大さ
れるという優れた特徴を有している。
In a normal upright caisson, most of the energy of the incident wave is reflected, whereas in a caisson incorporating a wave power generation device, the energy of the incident wave is converted into electrical energy and extracted, so the generated energy is can only be dissipated. Therefore, this wave power generation caisson has the excellent feature that it can function as a wave-dissipating caisson at the same time as generating electricity, and its stability as a caisson is also increased.

しかしながら、波力発電ケーソンにおいては、
大波浪時には遊水室2の水位変動も大きくなり、
過大な空気流速によつて空気タービン6が過回転
したり、或は水塊自体がダクト4に侵入して空気
タービン6や発電機7を破壊するおそれがある。
その対策としては、従来、逃気弁による方法或は
閉鎖弁による方法が考えられてきた。逃気弁によ
る方法は、タービン孔3とは別に遊水室2上部に
孔を設け、遊水室内の空気圧が異常に高くなると
逃気弁が開放されて圧力を低下させるようにした
ものであるが、この方法ではかえつて遊水室2内
の水位が上昇しやすくなり、タービンダクト4が
浸水する危険が増大するという欠点がある。ま
た、閉鎖弁による方法は、孔3やダクト4に閉鎖
弁を設けて、異常時にこれを閉鎖させるようにし
たものであるが、この方法は、遊水室2内の圧力
が増大するが空気タービン6や発電機7を防護す
るのに有効と考えられる。しかし、この方法では
波浪のエネルギーをほとんど消費しないため、ケ
ーソンとしての消波性能及びケーソンの安定性と
いう点での向上は全く期待できないという欠点が
ある。
However, in wave power generation caissons,
When there are large waves, the water level in water chamber 2 will fluctuate greatly.
Excessive air velocity may cause the air turbine 6 to overspeed, or the water mass itself may enter the duct 4 and destroy the air turbine 6 or the generator 7.
Conventionally, as a countermeasure against this problem, a method using an escape valve or a method using a closing valve has been considered. In the method using a relief valve, a hole is provided in the upper part of the water retarding chamber 2 in addition to the turbine hole 3, and when the air pressure in the water retarding chamber becomes abnormally high, the relief valve is opened to reduce the pressure. This method has the disadvantage that the water level in the water retarding chamber 2 tends to rise, increasing the risk that the turbine duct 4 will be flooded. In addition, the method using a shutoff valve is a method in which a shutoff valve is provided in the hole 3 or the duct 4 and is closed in the event of an abnormality. This is considered effective for protecting the generator 6 and the generator 7. However, since this method consumes almost no wave energy, there is a drawback that no improvement can be expected in terms of the wave-dissipating performance of the caisson and the stability of the caisson.

本発明は、上記のようなケーソン型波力発電方
式による問題点を解決し、荒天時における過大な
波エネルギーから空気タービン及び発電機を防護
するとともに、ケーソン堤としての消波性能及び
安定性の向上を図ることを目的としたものであ
る。
The present invention solves the problems with the caisson-type wave power generation system as described above, protects the air turbine and generator from excessive wave energy in stormy weather, and improves the wave-dissipating performance and stability of the caisson embankment. The purpose of this is to improve the performance.

以下、図面に基づいて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第2図は基本的な一実施例を示したもので、ケ
ーソンの本体部分については記載を省略してい
る。以下第3図乃至第6図の実施例においても同
様である。この第2図にいて、2はケーソンの前
面に設けられた遊水室で、その上部は水面との間
に所要の広さの空気連通室9が形成される大きさ
となつている。空気連通室9に接続してタービン
ダクト10が設けられ、その内部に空気流の方向
によらず一方向に回転するタービン6及び発電機
7が設置されている。タービン6に至る前のター
ビンダクト10には外気に連通する迂回ダクト1
1が接続分岐され、その接続部には、図示を略し
た駆動装置により、タービンダクト10または迂
回ダクトのいずれか一方を開とし他方を閉とする
ことのできる保護弁12が設けられているととも
に、迂回ダクトの中間部には絞り部13が設けら
れている。
FIG. 2 shows a basic embodiment, and the description of the main body of the caisson is omitted. The same applies to the embodiments shown in FIGS. 3 to 6 below. In FIG. 2, reference numeral 2 denotes a water retarding chamber provided at the front of the caisson, the upper part of which is sized to form an air communication chamber 9 of a required size between it and the water surface. A turbine duct 10 is provided connected to the air communication chamber 9, and a turbine 6 and a generator 7 that rotate in one direction regardless of the direction of air flow are installed inside the turbine duct 10. The turbine duct 10 before reaching the turbine 6 includes a detour duct 1 that communicates with the outside air.
1 is connected and branched, and the connection part is provided with a protection valve 12 that can open either the turbine duct 10 or the detour duct and close the other by a drive device (not shown). A constriction part 13 is provided in the middle part of the detour duct.

この実施例の装置は、発電時には保護弁12を
図の破線位置に固定して迂回ダクト11を閉とし
タービンダクト10を開の状態とする。それによ
り、遊水室2内の水位の昇降にともなつてタービ
ンダクト10を出入する空気流により、タービン
6が回転されこれに直結している発電機7が駆動
されることになる。そして、荒天などにより発電
出力が発電機7の定格値を著しく越える危険性が
あるときは、保護弁12を作動して図の実線の位
置に固定し、タービンダクト10を閉とし、迂回
ダクト11を開とする。それによつて遊水室2よ
りの過大なエネルギーを持つ空気流はタービン6
を通過することなく外気に連通することになり、
また、迂回ダクト11を通過することによつてエ
ネルギーの吸収が行われることになり、消波効果
が生じるとともにケーソンの安定性が向上される
ことになる。この迂回ダクト11によるエネルギ
ーの吸収効果は、絞り部13を設けたり或は絞り
部13を設けなくとも迂回ダクト11の径をター
ビンダクト10の径より適宜小さく定めることに
より任意に得られる。
In the device of this embodiment, during power generation, the protection valve 12 is fixed at the position indicated by the broken line in the figure, the detour duct 11 is closed, and the turbine duct 10 is opened. As a result, the air flow flowing in and out of the turbine duct 10 as the water level in the water retarding chamber 2 rises and falls rotates the turbine 6 and drives the generator 7 directly connected thereto. When there is a risk that the power generation output significantly exceeds the rated value of the generator 7 due to rough weather, etc., the protection valve 12 is activated and fixed at the position shown by the solid line in the figure, the turbine duct 10 is closed, and the bypass duct 11 is closed. Let's open. As a result, the air flow with excessive energy from the water retarding chamber 2 is transferred to the turbine 6.
It communicates with the outside air without passing through the
Furthermore, energy is absorbed by passing through the detour duct 11, producing a wave-dissipating effect and improving the stability of the caisson. This energy absorption effect by the detour duct 11 can be obtained arbitrarily by providing the constriction part 13 or without providing the constriction part 13 by appropriately setting the diameter of the detour duct 11 to be smaller than the diameter of the turbine duct 10.

第3図は1枚弁方式による他の実施例を示した
もので、一方向の空気流により回転するタービン
8の前面に固定翼14を設けるとともに、この固
定翼14と保護弁12との間のタービンダクト1
0に整流弁16を設けた点が第2図の実施例と異
なるところである。この場合には、発電時におい
て遊水室2内の水面の降下中は整流弁16が開か
れて吸気が行われるようになる。
FIG. 3 shows another embodiment using a single-valve system, in which a fixed blade 14 is provided in front of a turbine 8 that rotates due to a unidirectional air flow, and a space between the fixed blade 14 and a protection valve 12 is shown. turbine duct 1
This embodiment differs from the embodiment shown in FIG. 2 in that a rectifying valve 16 is provided at 0. In this case, during power generation, while the water level in the water retarding chamber 2 is falling, the rectifier valve 16 is opened and air is taken in.

第4図の実施例は2枚弁方式の場合の適用例を
示したもので、2個の遊水室2,2′を連設し、
それらを保護弁12,12′を介してタービンダ
クト10により連通し、その中間部にタービン8
と発電機及び固定翼14を設置している。そし
て、タービンダクト10の両端は外気に連通さ
せ、そこに内方に開くようにした整流弁16と、
外方に開くようにした整流弁16′を設けるとと
もに、各遊水室2,2′には保護弁12,12′に
より開閉される迂回ダクト11,11′を設けた
構造となつている。この実施例における保護弁1
2,12′の動作は前記各実施例の場合と同様で
ある。この実施例の装置では、遊水室2,2′内
の水面の上昇時には、実線矢印のように一方の遊
水室2よりの空気流がタービン8に働き、また水
面の下降時には鎖線矢印のように他方の遊水室
2′内へ吸入される空気流がタービン8に働くこ
とになる。
The embodiment shown in Fig. 4 shows an example of application in the case of a two-valve system, in which two water retarding chambers 2 and 2' are arranged in series,
These are communicated by a turbine duct 10 via protection valves 12, 12', and a turbine 8 is placed in the middle of the duct 10.
A generator and fixed wings 14 are installed. Both ends of the turbine duct 10 are connected to the outside air, and a rectifier valve 16 that opens inward thereto is connected to the outside air.
A rectifying valve 16' that opens outward is provided, and each water retarding chamber 2, 2' is provided with a detour duct 11, 11' that is opened and closed by a protection valve 12, 12'. Protection valve 1 in this embodiment
The operations of 2 and 12' are the same as in each of the embodiments described above. In the device of this embodiment, when the water level in the water retarding chambers 2, 2' rises, the airflow from one of the water retarding chambers 2 acts on the turbine 8 as shown by the solid line arrow, and when the water level falls, the airflow acts on the turbine 8 as shown by the chain line arrow. The air flow sucked into the other water retarding chamber 2' acts on the turbine 8.

第5図の実施例は4枚弁方式の場合の適用例を
示したもので、タービンダクト10内に、互いに
内方に開く一対の整流弁16,16と、互いに外
方に開く一対の整流弁16′,16′により囲まれ
た区画室17を設け、この中にタービン8と発電
機7及び固定翼14を設置している。そして各一
対の整流弁16,16,16′,16′のそれぞれ
一方は外気と連通し、他方はタービンダクト10
と連通した構造となつている。この実施例におけ
る保護弁12の取付状態及び動作は前記第2図、
第3図の実施例と同様である。この実施例の装置
では、遊水室2内の水面の上昇時には実線矢印の
ような空気流となり、また水面の下降時には鎖線
矢印のような空気流となつて、いずれの場合もタ
ービン8を作動する空気流は一方向となつて働く
ことになる。
The embodiment shown in FIG. 5 shows an example of application in the case of a four-valve system, in which a pair of rectifier valves 16, 16 that open inwardly to each other and a pair of rectifier valves that open to each other outwards are provided in the turbine duct 10. A compartment 17 surrounded by valves 16', 16' is provided, in which a turbine 8, a generator 7, and a fixed blade 14 are installed. One of each pair of rectifying valves 16, 16, 16', 16' communicates with the outside air, and the other communicates with the turbine duct 10.
The structure is connected to the The mounting state and operation of the protection valve 12 in this embodiment are shown in FIG.
This is similar to the embodiment shown in FIG. In the device of this embodiment, when the water level in the water retarding chamber 2 rises, the air flow is as shown by the solid line arrow, and when the water level is falling, the air flow is as shown by the chain line arrow, and in either case, the turbine 8 is operated. The airflow will work in one direction.

以上説明したように本発明の装置は、コンクリ
ートケーソンの前面に没水部を開口して形成した
遊水室の上部に、これと接続して、タービンに連
通するタービンダクトと、タービンを迂回して外
気に連通する迂回ダクトとを設けるとともに、そ
れら両ダクトのうちいずれか一方を開放すると他
方を閉鎖する保護弁を設けた構成としたので、発
電時には保護弁によつてタービンダクトを開とし
迂回ダクトを閉として効率のよい発電が行え、ま
た、荒天時等のように、大きな波浪の来襲により
遊水室内の水位が激しく変動して、過大なエネル
ギーを持つ空気流が発生するようなときには、迂
回ダクトを開くとともにタービンダクトを閉じて
その空気流を迂回ダクトから大気に逃して、過大
な波エネルギーからタービンや発電機を防護する
ことができ、しかも、その過大なエネルギーの空
気流が迂回ダクトを経て大気に抜けることによ
り、そのエネルギーの吸収が行われ、その結果、
消波効果が向上されるとともに、ケーソンの安定
性の確保も図れる等、、多くの優れた効果を発揮
するものである。
As explained above, the device of the present invention has a turbine duct connected to the upper part of the water retarding chamber formed by opening the submerged part in the front of the concrete caisson and communicating with the turbine, and a turbine duct that bypasses the turbine. In addition to providing a detour duct that communicates with the outside air, the structure also includes a protection valve that closes the other when either one of the two ducts is opened.When generating power, the protection valve opens the turbine duct and connects the detour duct. In addition, when the water level in the water retarding chamber fluctuates rapidly due to the arrival of large waves, such as during stormy weather, a bypass duct can be used to generate airflow with excessive energy. The turbine and generator can be protected from excessive wave energy by closing the turbine duct and allowing the airflow to escape through the bypass duct to the atmosphere. By passing into the atmosphere, the energy is absorbed, and as a result,
It exhibits many excellent effects, such as improving the wave-dissipating effect and ensuring the stability of the caisson.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のケーソン型波力発電装置を例示
した側断面図、第2図乃至第6図はそれぞれ本発
明の各実施例を示した側断面図で、第2図は整流
弁を備えない場合に適用した例の側断面図、第3
図は1枚弁方式のものに適用した例の側断面図、
第4図は同じく2枚弁方式においての例、第5図
は同じく4枚弁方式においての例である。 1…コンクリートケーソン、2…遊水室、6…
タービン、7…発電機、8…タービン、9…空気
連通室、10…タービンダクト、11…迂回ダク
ト、12…保護弁、14…固定翼、16,16′
…整流弁。
Fig. 1 is a side sectional view illustrating a conventional caisson type wave power generation device, and Figs. 2 to 6 are side sectional views illustrating each embodiment of the present invention. Side sectional view of an example applied when there is no
The figure is a side sectional view of an example applied to a single valve type.
FIG. 4 shows an example of the two-valve system, and FIG. 5 shows an example of the four-valve system. 1... Concrete caisson, 2... Water retarding room, 6...
Turbine, 7... Generator, 8... Turbine, 9... Air communication chamber, 10... Turbine duct, 11... Detour duct, 12... Protection valve, 14... Fixed blade, 16, 16'
...Rectifier valve.

Claims (1)

【特許請求の範囲】[Claims] 1 コンクリートケーソンの全面に没水部を開口
して形成した遊水室の上部に、遊水室に接続し
て、タービンに連通するタービンダクトを有する
波力発電装置において、上記タービンダクトの遊
水室の上部に形成される空気連通室と接続する端
部に、絞り部を有する迂回ダクトを外気に連通し
て設けるとともに、タービンダクトと迂回ダクト
との接続部には、それらの両ダクトのうちいずれ
か一方を解放すると他方を閉鎖する保護弁を設け
たことを特徴とする、ケーソン型波力発電装置に
おける防護装置。
1. In a wave power generation device having a turbine duct connected to the water retarding chamber and communicating with the turbine at the upper part of the water retarding chamber formed by opening a submerged part on the entire surface of a concrete caisson, the upper part of the water retarding chamber of the turbine duct A detour duct having a constriction part is provided in communication with the outside air at the end connecting to the air communication chamber formed in the turbine duct. A protection device for a caisson-type wave power generation device, characterized in that a protection valve is provided that closes the other when one is released.
JP59070131A 1984-04-10 1984-04-10 Protector for caisson-type wave power generator Granted JPS60215907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070131A JPS60215907A (en) 1984-04-10 1984-04-10 Protector for caisson-type wave power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070131A JPS60215907A (en) 1984-04-10 1984-04-10 Protector for caisson-type wave power generator

Publications (2)

Publication Number Publication Date
JPS60215907A JPS60215907A (en) 1985-10-29
JPH0461126B2 true JPH0461126B2 (en) 1992-09-30

Family

ID=13422698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070131A Granted JPS60215907A (en) 1984-04-10 1984-04-10 Protector for caisson-type wave power generator

Country Status (1)

Country Link
JP (1) JPS60215907A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222833A (en) * 1991-05-08 1993-06-29 Northeastern University Shutter for hydro-pneumatic current flow harnessing system
GB2411928B (en) 2004-03-08 2006-09-27 Orecon Ltd Wave energy device
WO2013034636A1 (en) * 2011-09-06 2013-03-14 Electric Waves, S.L. Caisson breakwater module
US10161379B2 (en) * 2013-10-16 2018-12-25 Oceanlinx Ltd. Coastal protection and wave energy generation system
SG11201903397XA (en) * 2016-10-17 2019-05-30 Wave Swell Energy Ltd Apparatus and method for extracting energy from a fluid
IT202200001349A1 (en) * 2022-01-27 2023-07-27 Ylenia Composto Device for generating electricity from wave motion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58588A (en) * 1981-06-12 1983-01-05 アンスチチュ フランセ ドュ ペトロール Riser for deep water
JPS58190582A (en) * 1982-04-30 1983-11-07 Kumagai Gumi Ltd Primary converting device of wave energy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58588A (en) * 1981-06-12 1983-01-05 アンスチチュ フランセ ドュ ペトロール Riser for deep water
JPS58190582A (en) * 1982-04-30 1983-11-07 Kumagai Gumi Ltd Primary converting device of wave energy

Also Published As

Publication number Publication date
JPS60215907A (en) 1985-10-29

Similar Documents

Publication Publication Date Title
US6402477B1 (en) Adjustable blade turbines
US5951249A (en) Self governing fluid energy turbine
US4182123A (en) Hydraulic power plant
JPH0116993B2 (en)
JPH0461126B2 (en)
JPH0156269B2 (en)
JPH0419362A (en) Wave power energy converter
JPS5830484A (en) Detection system for overspeed of hydraulic turbine
JPS6344949B2 (en)
WO1986003261A1 (en) Air flow check valve and check valve device
JPS6318782Y2 (en)
JPS58588B2 (en) Wave power generator overspeed prevention device
JPS6214379Y2 (en)
JPH08134882A (en) Preventive device against inundation in generator room in caisson-type wave power generating plant
KR101944738B1 (en) Current Power Generation System
NO153542B (en) VAESKEBOELGEENERGIABSORBATOR.
JPH0322557Y2 (en)
SU1265382A1 (en) Safety switch of system protecting turbine from excess of rotor maximum rotational speed
JPS6343581B2 (en)
JPS5770958A (en) Power generation with use of sea water reservoir
SU1645355A1 (en) Device for protecting water area against rising wave
JPS6157471B2 (en)
JPS61160580A (en) Hydropower generation utilizing ship speed
JPS6021354Y2 (en) Ship thruster tunnel opening shutter device
JPS6192372A (en) Safety valve in air chamber of wave power generation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term