JPS6344882A - Production of nad(p)h oxidase - Google Patents

Production of nad(p)h oxidase

Info

Publication number
JPS6344882A
JPS6344882A JP18882486A JP18882486A JPS6344882A JP S6344882 A JPS6344882 A JP S6344882A JP 18882486 A JP18882486 A JP 18882486A JP 18882486 A JP18882486 A JP 18882486A JP S6344882 A JPS6344882 A JP S6344882A
Authority
JP
Japan
Prior art keywords
oxidase
nad
culture
enzyme
arthrobacter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18882486A
Other languages
Japanese (ja)
Inventor
Yoshio Yoshihama
吉浜 義雄
Asuka Kagaya
加賀谷 あすか
Susumu Matsui
侑 松井
Akira Obayashi
晃 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Shuzo Co Ltd
Original Assignee
Takara Shuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Shuzo Co Ltd filed Critical Takara Shuzo Co Ltd
Priority to JP18882486A priority Critical patent/JPS6344882A/en
Priority to DE3725851A priority patent/DE3725851A1/en
Priority to US07/083,921 priority patent/US4954445A/en
Publication of JPS6344882A publication Critical patent/JPS6344882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To obtain the titled substance from a culture mixture, by cultivating a bacterium belonging to the genus Brevibacterium, Corynebacterium, Arthrobacter, etc., capable of producing NAD(D)H oxidase and to use the substance to measure NAKH or NADPH. CONSTITUTION:A bacterium such as Brevibacterium ammoniagenes, Corynacterium flaccumfaciens, etc., belonging to the genus Brevibacterium, Corynebacterium, Arthrobacter, Micrococcus, Pseudomonas, Achromobacter, Agrobacterium, Flavobacterium or Streptomyces, capable of producing NAD(P) H, is cultivated. The culture is carried out at about 20-40 deg.C at pH about 6-8, a cell-free extracted solution is obtained from the mold, from which the aimed substance is obtained by chromatography, gel filtration, etc., industrially.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、還元型ニコチンアミドアデニンジヌクレオチ
ド(以下NADHと略丁)および還元型ニコチンアミド
アデニンジヌクレオチドリン酸(以下NA:[)PHと
略す)を酸化し、過酸化木葉な生成するMAD(P)H
オキシダーゼな微生物を用いて製造する方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to reduced nicotinamide adenine dinucleotide (hereinafter abbreviated as NADH) and reduced nicotinamide adenine dinucleotide phosphate (hereinafter NA: [)PH and MAD(P)H produced by oxidation of peroxide
This invention relates to a method for producing oxidase using microorganisms.

〔従来の技術〕[Conventional technology]

ニコチンアミドアデニンジヌクレオチド(以下NADと
略す)およびニコチンアミドアデニンジヌクレオチドリ
ン酸(以下NムDPと略T)は、種々の脱水素酵素の補
酵素であり、脱水素酵素の作用により生じるNADHお
よびNADPHを定置することにより、脱水素酵素活性
またはその基質量を測定することが可能であり、その測
定方法は臨床分析、食品分析などにおいて広く用いられ
ている。
Nicotinamide adenine dinucleotide (hereinafter abbreviated as NAD) and nicotinamide adenine dinucleotide phosphate (hereinafter abbreviated as DP and T) are coenzymes of various dehydrogenases, and NADH and By fixing NADPH, it is possible to measure dehydrogenase activity or the amount of its substrate, and this measurement method is widely used in clinical analysis, food analysis, etc.

NADHまたはNADPHを測定する方法としては一搬
にNADHおよびNADPI(の特有な吸収である34
0nmの増加より測定する方法、あるいはテトラゾリウ
ム塩と反応させて生じたホルマザン色素を比色定置する
方法がある。しかし、340n!11の吸光度より測定
する方法は、NADHおよびNADPHの分子吸光係数
がさほど大きくないことから感度の点で問題があった。
One way to measure NADH or NADPH is to use the unique absorption of NADH and NADPI (34).
There is a method of measuring the increase in 0 nm, or a method of colorimetrically fixing a formazan dye produced by reacting with a tetrazolium salt. But 340n! The method of measuring from the absorbance of No. 11 had a problem in sensitivity because the molecular extinction coefficients of NADH and NADPH were not very large.

またホルマザン色素の生成に導く方法では、ホルマザン
色票が卸溶性   ゛のため、色票が沈殿したり、セル
やチューブに付着するなどの欠点があった。
Furthermore, in the method that leads to the production of formazan dye, because the formazan color patch is totally soluble, there are drawbacks such as the color chart precipitating or adhering to cells and tubes.

一方NADHおよびNADPHを酸化して過酸化水素を
生成するNAD(P)Hオキシダ□−ゼが知られており
、この酵素を用いれば、NADHまたはNADPHから
過酸化水素を生成させ、感度の高い比色法、螢光法に導
くことができ、前記の二つの方法における欠点を解消し
た測定が可能となる。従来より過酸化水素を生成するN
AD(P)Hオキシダーゼには、ラクトバチルス・プラ
ンタラム由来(アグリカルチュラル・アンド・バイオロ
ジカル・ケミストリー、第25巻、第876頁、196
1年)、アコレプラズマ・ライドラライ由来(ヨーロピ
アン・ジャーナル・オブ拳バイオケミストリー、第12
0巻、第329頁、1981年)、バチルス・メガテリ
ウム由来(ジャーナル拳オプ・バイオケミストリー、第
98巻、第1433頁、1985年)の酵素などが報告
されている。
On the other hand, NAD(P)H oxidase □-ase, which oxidizes NADH and NADPH to generate hydrogen peroxide, is known. If this enzyme is used, hydrogen peroxide can be generated from NADH or NADPH, and a highly sensitive ratio can be obtained. The method can be applied to the color method and the fluorescence method, making it possible to perform measurements that eliminate the drawbacks of the above two methods. Conventionally, N generates hydrogen peroxide.
AD(P)H oxidase is derived from Lactobacillus plantarum (Agricultural and Biological Chemistry, Vol. 25, p. 876, 196
1 year), from Acholeplasma leiderai (European Journal of Fist Biochemistry, No. 12)
0, p. 329, 1981) and an enzyme derived from Bacillus megaterium (Journal Kenop Biochemistry, vol. 98, p. 1433, 1985).

〔発明が解決しようとする一問題点〕 しかしながら、これらの微生物は酵素生産性が低い欠点
を有していた。そして酵素生産性が高く、容易に安定な
NAD(PIHオキシダーゼを取得する方法については
、全く報告がなかった。
[One problem to be solved by the invention] However, these microorganisms have a drawback of low enzyme productivity. There has been no report on a method for easily obtaining stable NAD (PIH oxidase) with high enzyme productivity.

従って本発明の目的は、上記現状に鑑み、安定でしかも
容易に取得されうるNAD(P)Hオキシダーゼの製造
方法を提供することにある。
Therefore, in view of the above-mentioned current situation, an object of the present invention is to provide a method for producing NAD(P)H oxidase that is stable and easily obtainable.

〔問題点を解決するための手段〕[Means for solving problems]

木発明者らは、工業的生産に有利なNAつ(P) Hオ
キシダーゼについて鋭意検討した結果、ブレビバクテリ
ウム属(Urevibacterium )、コリネバ
クテリウム属(Oorynebaoterium )−
、アースロバクター属(Arthrobacter )
、ミクロコツカス属(Miorooocous )、シ
ュードモナス属(Pgeudomonag )、アクロ
モバクタ−属(Aohromobacter )、アグ
ロバクテリウム属(Agrobaoterium )、
フラボバクテリウムjig (Flavobaator
ium ) 、またはストレプトミセス属(Strep
tomyoes )に属する微生物が安定なNAD(P
)Hオキシダーゼを生産することを見出し、本発明を完
成した。
As a result of intensive study on NA(P)H oxidase which is advantageous for industrial production, the inventors of the tree discovered that the genus Brevibacterium and the genus Corynebaoterium -
, Arthrobacter spp.
, Miorooocous, Pseudomonas, Aohromobacter, Agrobaoterium,
Flavobacterium jig
ium), or Streptomyces (Strep
microorganisms belonging to P. tomyoes) have produced stable NAD (P
) H oxidase was discovered, and the present invention was completed.

□従って本発明は、ブレビバクテリウム属、コリネバク
テリウム属、アースロバクター属、ミクロフッカス属、
シュードモナス属、アクロモバクタ−属、アグロバクテ
リウム属、フラボバクテリウム属またはストレプトミセ
ス属に属するNAD(P)Hオキシダーゼ生産菌を培養
し、培養物よりNAD(P)Hオキシダーゼを採取する
ことからなるNAD(P)Hオキシダーゼの製造法であ
る。
□Therefore, the present invention relates to the genus Brevibacterium, the genus Corynebacterium, the genus Arthrobacter, the genus Microfuccus,
NAD consists of culturing NAD(P)H oxidase-producing bacteria belonging to the genus Pseudomonas, Achromobacter, Agrobacterium, Flavobacterium, or Streptomyces, and collecting NAD(P)H oxidase from the culture. This is a method for producing (P)H oxidase.

本発明によるNAD(P)Hオキシダーゼ生産には、上
記属に属し、NAD(P)Hオキシダーゼ生産能を有す
る菌株であれば、すべて使用することができるが、生産
に好適な菌株の例としては、ブレビバクテリウム・アン
モニアゲネス(Brevibaoteriumammo
niageneo )■AM 1645、コリネバクテ
リウム・フラカムファシエンス(Q)rynebact
θriumflacaumfac1ens )AHU 
1622 、アースロバクター・アトロシアーネウス(
Arthrobacteratrocyaneus )
工AM 12339 、ミクロコツカス・フラバス(M
icroooccua fravus  )工FO32
42、シュードモナス、@1アエルギノサ(Pseud
omonas aeruginosa )工AM115
6、アクロモバクタ−・バルブラス(Aohromob
aoter(5I ) parvulus )1F013182、アグロバクテ
リウム・ラジオバクター(Agrobaoteriu+
n radiobaat@r)1F012664、フラ
ボバクテリウム・ニステロアロマティカム(Flavo
bacterium eeteroaromatiau
m )工FO3751、 ストレプトミセス・アウレウス(Streptmyot
9aureus )■AM OO92が挙げられる。
For the production of NAD(P)H oxidase according to the present invention, any strain belonging to the above genus and having the ability to produce NAD(P)H oxidase can be used. Examples of strains suitable for production include: , Brevibaoteriumammo
niageneo ) ■ AM 1645, Corynebacterium fracumfaciens (Q) rynebact
θriumflacaumfac1ens )AHU
1622, Arthrobacter atrocyaneus (
Arthrobacteratocyaneus)
Engineering AM 12339, Micrococcus flavus (M
icroooccua fravus ) engineering FO32
42, Pseudomonas @1 Aeruginosa (Pseud
omonas aeruginosa) AM115
6. Achromobacter bulbulas (Aohromob)
aoter (5I) parvulus) 1F013182, Agrobacterium radiobacter (Agrobaoteriu+
n radiobaat@r) 1F012664, Flavobacterium nisteroaromaticum (Flavo
bacterium eeteroaromatic
m) Engineering FO3751, Streptomyces aureus
9aureus) ■AM OO92.

本発明で使用する培地は、使用培株がNAD(P)Hオ
キシダーゼを生産するものであれば良く、窒素源・とじ
ては例えば酵母エキス、ペプトン、肉エキス、コーンス
テイープリカー、硫安、塩化アンモニウムなどが挙げら
れ、炭素源としては、例えばグルコース、糖蜜、グリ七
四−ル、シュクp−ス、ソルビトールなどが使用できる
。その他にリン酸塩、カルシウム塩、マグネシウム塩な
どの無機塩および金属塩を加えても良く、更にはビタミ
ン類、生長促進因子などを加えても良い。
The culture medium used in the present invention may be one that produces NAD(P)H oxidase, and the nitrogen source may include yeast extract, peptone, meat extract, cornstarch liquor, ammonium sulfate, chloride, etc. Examples of the carbon source include glucose, molasses, glycerol, sucrose, and sorbitol. In addition, inorganic salts and metal salts such as phosphates, calcium salts, and magnesium salts may be added, and further vitamins, growth promoting factors, etc. may be added.

NAD(P)Hオキシダーゼ生産菌を培養するにあたり
、培養温度は通常20℃〜40℃の範囲で、好適には3
0℃付近で行われる。初発pHは、通常pu6〜8の範
囲で、好適にはpH7付近で行われ、通温lO〜30時
間の、通気攪拌培養によりNAD(P)Hオキシダーゼ
の生産は最高に達する。培養条件は使用する菌株、培地
組成などに応じ、NAD(P)Hオキシダーゼの生産量
が最大になるよう設定するのは当然である。
When culturing NAD(P)H oxidase-producing bacteria, the culture temperature is usually in the range of 20°C to 40°C, preferably 3°C.
It is carried out at around 0℃. The initial pH is usually in the range of pu 6 to 8, preferably around pH 7, and the production of NAD(P)H oxidase reaches its maximum by aeration and agitation culture for 10 to 30 hours. It goes without saying that culture conditions should be set to maximize the production of NAD(P)H oxidase depending on the strain used, medium composition, etc.

かくして生産されたNAD(P)Hオキシダーゼは大部
分菌体内に存在するので、培養物を固液分離し、得られ
た菌体を通常用いられる超音波処理、酵素処理、ホモジ
ナイズ処理等により破壊し、無細胞抽出液を得る。次い
で、この抽出液から通常用いらiする1′i#製手段に
より、精製酵素標品を得ることができる。例えば、塩析
、有機溶媒沈殿、イオン゛交換カラムクロマトグラフィ
ー、吸着剤によるカラムクロマトグラフィー、ゲルPJ
、凍結乾燥等により精製を行い、ポリアクリルアミドゲ
ルディスク電気泳動的に劃−な1iAD、(P)Hオキ
シダーゼの標品を得ることができる。
Since most of the NAD(P)H oxidase produced in this way exists within the bacterial cells, the culture is solid-liquid separated and the resulting bacterial cells are destroyed by commonly used ultrasonication, enzyme treatment, homogenization, etc. , obtain a cell-free extract. Next, a purified enzyme preparation can be obtained from this extract by a commonly used 1'i# production method. For example, salting out, organic solvent precipitation, ion exchange column chromatography, column chromatography using an adsorbent, gel PJ
By performing purification by , freeze-drying, etc., it is possible to obtain a specimen of 1iAD, (P)H oxidase, which is stable in polyacrylamide gel disk electrophoresis.

本発明のNAD(P)Hオキシダーゼの酵素化学的性質
は次のとおりである。
The enzymatic chemical properties of NAD(P)H oxidase of the present invention are as follows.

(1)作用:本酵素は以下の反・座式で示される如くN
ADHおよびNADPHな酸化してNADまたはNAD
Pと過酸化水素を生成する。
(1) Action: This enzyme has N
ADH and NADPH oxidize to NAD or NAD
Generates P and hydrogen peroxide.

NAD(P)H十H十”Or−一1AD(P)  + 
HxOt(2)至適pH% PH安定性:プリトンーロ
ビンソン緩衝液を用いて測定したところ、本酵素は10
.0付近に至適pHを有していた(第1因)。また同緩
衝液を用い、各pHにおいて37℃で60分間処理後、
その残存活性を測定したところ、1)H6〜10.5で
安定であった(第3図)。
NAD(P)H 10H 1”Or-1AD(P) +
HxOt (2) Optimum pH% PH stability: When measured using Priton-Robinson buffer, this enzyme has a
.. The optimum pH was around 0 (first factor). In addition, using the same buffer, after treatment at 37°C for 60 minutes at each pH,
When its residual activity was measured, it was found to be 1) stable at H6 to 10.5 (Figure 3);

(3)至適温度、熱安定性ニリン酸カリウム緩衝液(1
)H7,0)を用いて測定した。ところ、本酵素は約4
5℃に至適温度を有しており(第2図)、また、同緩液
を用い各温度で10分間処理後、その残存活性を測定し
たところ55℃まで安定であった(第4図)。
(3) Optimal temperature, thermostable potassium diphosphate buffer (1
)H7,0). However, this enzyme has approximately 4
It has an optimal temperature at 5°C (Figure 2), and when the residual activity was measured after treatment at each temperature for 10 minutes using the same loosening solution, it was stable up to 55°C (Figure 4). ).

本酵素の活性測定は次のごとく行う。The activity of this enzyme is measured as follows.

0.3Mリン酸カリウム緩衝液(TIH7,O)1.O
m!、6mM  NADHQ、1 meおよび蒸留水1
.9dよりなる反応液を予め37℃で保持後、酵素液0
.1−を加え、37℃で反応を行い、340nmにおけ
る吸光度の減少を測定Tる。。酵素活性は1分間に1 
/’ molのNADHを酸化1°る酵素鮎を1単位と
した。
0.3M potassium phosphate buffer (TIH7,O)1. O
m! , 6mM NADHQ, 1 me and distilled water 1
.. After keeping the reaction solution consisting of 9d at 37°C in advance, the enzyme solution was
.. 1- is added, the reaction is carried out at 37°C, and the decrease in absorbance at 340 nm is measured. . Enzyme activity is 1 per minute
The enzyme sweetfish that oxidizes /' mol of NADH by 1 degree was defined as 1 unit.

〔実施例〕〔Example〕

次に実施例をあげて本発明によるNAD(P)Hオキシ
ダーゼの製造方法を説明するが本発明は以下の実施例に
限定されるものではない。
Next, the method for producing NAD(P)H oxidase according to the present invention will be explained with reference to Examples, but the present invention is not limited to the following Examples.

実施例 1 グルコース1.0%、肉エキス1.0%、ペプトン1.
0%、KH雪PO40,1%、Mg5Oa” 7 H2
O0,05%、pH7,0からなる培地100−を50
〇−容三角フラスコに分注し、120℃で15分間殺菌
後、ブレビバクテリウム・アンモニアゲネスエAM 1
645 f:接種し、30℃で24時間振とり培養した
ものを種培養液とした。
Example 1 Glucose 1.0%, meat extract 1.0%, peptone 1.
0%, KH Snow PO40, 1%, Mg5Oa” 7 H2
50% of medium 100-50% O, pH 7.0
Dispense into 〇-volume Erlenmeyer flasks, sterilize at 120°C for 15 minutes, and then remove Brevibacterium ammoniagenesae AM 1.
645f: Inoculated and cultured with shaking at 30°C for 24 hours, which was used as a seed culture solution.

同組成培地500−を2を容三角フラスコに分注し、1
20℃で15分間殺菌後、前記種培養液Tt20al’
接種し、30℃で15時間振とり培養した。培養終了後
、遠心分離により固液分離を行い培養液5tより湿菌体
68fを得た。
Dispense 2 volumes of the same composition medium 500- into Erlenmeyer flasks, and
After sterilizing at 20°C for 15 minutes, the seed culture solution Tt20al'
The cells were inoculated and cultured with shaking at 30°C for 15 hours. After completion of the culture, solid-liquid separation was performed by centrifugation to obtain 68 f of wet bacterial cells from 5 t of culture solution.

この菌体を39mMリン酸カリウム緩衝液(pH7,0
)150献に懸濁後、超音波処理により菌体を破壊し、
遠心分離して得られた゛上澄を粗酵索液とした。この粗
酵素を10mMグリシン−NaOH緩衝液(pH9,0
)で透析後、予め同緩衝液で緩衝化したDIOAIC−
セファロース(OL −6B ) (ファルマミア製)
のカラムに通したところ、活性は通過液に認められた。
This bacterial cell was added to 39mM potassium phosphate buffer (pH 7.0).
) After suspending in 150 centimeters of water, the bacterial cells were destroyed by ultrasonication,
The supernatant obtained by centrifugation was used as a crude fermentation solution. This crude enzyme was dissolved in 10mM glycine-NaOH buffer (pH 9,0).
), then DIOAIC- buffered in advance with the same buffer.
Sepharose (OL-6B) (manufactured by Pharmamia)
When passed through a column, activity was observed in the filtered solution.

次にこの通過液のpH’E NaOHにより10.0に
調整後、予めlQmMグリシン−NaOH緩衝液(pH
10,0)で緩衝化したQ−セファロース(1’?)(
ファルマシア製)のカラムに通したところNAD(P)
Hオキシダーゼは吸着した。そこで10mM〜1.0M
のMailの直線濃度勾配により溶出を行い、活性画分
を集め、コロジオンバッグ濃濃縮後、loomMリン酸
カリウム綬衝液(pH7,O)で平衡化したセファクリ
ルS−300(ファルマシア製]のカラムでゲルr過を
行い、活性画分を回収し、NAD(P)Hオキシダーゼ
50M9を得た。この比活性は2.1・単位/′I9で
あり、粗酵素液からの収率42%であった。
Next, the pH'E of this flow-through solution was adjusted to 10.0 with NaOH, and then 1QmM glycine-NaOH buffer (pH
Q-Sepharose (1'?) buffered with 10,0) (
When passed through a column (manufactured by Pharmacia), NAD(P)
H oxidase was adsorbed. Therefore, 10mM to 1.0M
Elution was performed using a linear concentration gradient of Mail, the active fractions were collected, and after concentration in a collodion bag, gel was applied to a column of Sephacryl S-300 (manufactured by Pharmacia) equilibrated with roomM potassium phosphate buffer solution (pH 7, O). The active fraction was collected to obtain NAD(P)H oxidase 50M9.The specific activity was 2.1 units/'I9, and the yield from the crude enzyme solution was 42%. .

実施例 2 実施例1と同様の培地100−を500m1′#三角フ
ラスコに分注し、120℃で15分間殺薗後、第1表に
示す菌株をスラントより接種し、24時間、30℃で振
とう培養した。培養物を遠心分離で固液分離し、得られ
た菌体を30nMリン酸カリウム緩衝液(pH7,0)
20mlに懸濁した。次に懸濁液を超音波処理後、遠心
分離して」1澄を得た。得られた上澄のそれぞれのNA
D(P)Hオキシダーゼ活性を測定したところ、第1表
のような結果を得た。
Example 2 The same medium 100 as in Example 1 was dispensed into a 500 m 1'# Erlenmeyer flask, and after killing at 120°C for 15 minutes, the strains shown in Table 1 were inoculated through a slant and incubated at 30°C for 24 hours. Cultured with shaking. The culture was separated into solid and liquid by centrifugation, and the resulting bacterial cells were added to 30 nM potassium phosphate buffer (pH 7.0).
It was suspended in 20 ml. Next, the suspension was subjected to ultrasonication and then centrifuged to obtain a clear solution. Each NA of the resulting supernatant
When the D(P)H oxidase activity was measured, the results shown in Table 1 were obtained.

〔発明の効果〕〔Effect of the invention〕

本発ゆIによりNADHおよびNADPHの測定に有用
なNAD(P)Hオキシダーゼの工業的生産に有利な製
造法が提供された。
The present invention provides an advantageous manufacturing method for industrial production of NAD(P)H oxidase useful for measuring NADH and NADPH.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明により得られるNAD(P)Hオキシ
ダーゼの活性とpHの関係を示すグ27で、第2図は本
酵素の活性と温度の関係を示すグラス、第3図は本酵素
のp)1安定領域を示すグラフ、第4図は本酵素の熱安
定性を示すグラフである。
Figure 1 is a graph showing the relationship between the activity and pH of NAD(P)H oxidase obtained by the present invention, Figure 2 is a glass showing the relationship between the activity of this enzyme and temperature, and Figure 3 is a glass showing the relationship between the activity of this enzyme and temperature. Figure 4 is a graph showing the thermostability of this enzyme.

Claims (1)

【特許請求の範囲】[Claims] 1、ブレビバクテリウム属、コリネバクテリウム属、ア
ースロバクター属、ミクロコッカス属、シユードモナス
属、アクロモバクター属、アグロバクテリウム属、フラ
ボバクテリウム属またはストレプトミセス属に属するN
AD(P)Hオキシダーゼ生産菌を培養し、培養物より
NAD(P)Hオキシダーゼを採取することを特徴とす
るNAD(P)Hオキシダーゼの製造法。
1. N belonging to the genus Brevibacterium, Corynebacterium, Arthrobacter, Micrococcus, Pseudomonas, Achromobacter, Agrobacterium, Flavobacterium or Streptomyces
A method for producing NAD(P)H oxidase, which comprises culturing AD(P)H oxidase-producing bacteria and collecting NAD(P)H oxidase from the culture.
JP18882486A 1986-08-12 1986-08-12 Production of nad(p)h oxidase Pending JPS6344882A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18882486A JPS6344882A (en) 1986-08-12 1986-08-12 Production of nad(p)h oxidase
DE3725851A DE3725851A1 (en) 1986-08-12 1987-08-04 NAD (P) H-OXIDASE, METHOD FOR ITS INSULATION AND APPLICATION
US07/083,921 US4954445A (en) 1986-08-12 1987-08-11 Novel NAD(P)H oxidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18882486A JPS6344882A (en) 1986-08-12 1986-08-12 Production of nad(p)h oxidase

Publications (1)

Publication Number Publication Date
JPS6344882A true JPS6344882A (en) 1988-02-25

Family

ID=16230463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18882486A Pending JPS6344882A (en) 1986-08-12 1986-08-12 Production of nad(p)h oxidase

Country Status (1)

Country Link
JP (1) JPS6344882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091054A1 (en) * 2008-01-17 2009-07-23 Keio University Novel hydrogen peroxide-forming nadh oxidase, and dna encoding the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091054A1 (en) * 2008-01-17 2009-07-23 Keio University Novel hydrogen peroxide-forming nadh oxidase, and dna encoding the same
JP2009165417A (en) * 2008-01-17 2009-07-30 Keio Gijuku New hydrogen peroxide-forming type nadh oxidase and dna encoding the same
US8546113B2 (en) 2008-01-17 2013-10-01 Keio University Hydrogen peroxide-forming NADH oxidase and DNA encoding the same

Similar Documents

Publication Publication Date Title
JPH0671425B2 (en) Uricase and method for producing the same
JP2769992B2 (en) Glucosamine-6-phosphate deaminase
US5068190A (en) N-acetylhexosamine-dehydrogenase, process for producing same, method for the quantitative analysis of N-acetylglucosamine or N-acetylgalactosamine using same and kit for use in the quantitative analysis
US5614374A (en) Glycerol dehydrogenase, process for its production and its use
EP0229219B1 (en) Urease and process for preparation thereof
JP4511655B2 (en) Sorbitol dehydrogenase, microorganism producing the same, and method for producing the same
JPS5910190B2 (en) Novel method for producing lactate oxidase
JPS6344882A (en) Production of nad(p)h oxidase
JPH02268679A (en) Production of 1,5-anhydroglycitol dehydrogenase
JP2926249B2 (en) Method for producing alginate lyase
JP2768473B2 (en) Method for producing NADH oxidase
Chiyonobu et al. Distribution of 2-ketogluconate reductase and 5-ketogluconate reductase in acetic acid bacteria
EP0079792B1 (en) Process for production of urease
JP3156832B2 (en) Ammonia measurement reagent composition
US4579822A (en) Process for producing dihydroxyacetone kinase
JP3102543B2 (en) Glutamate dehydrogenase and method for producing the same
JPH05236954A (en) Heat-resistant adenosine-5'-phosphosulfate kinase and its production
JP2801694B2 (en) New enzyme
JPS6033472B2 (en) D-fructose; ferritytochrome oxidoreductase and its production method
JPH099960A (en) New pyruvic oxidase, its production and analysis of pyruvic acid
JPH04316496A (en) Production of (r)-(+)-halolactic acid
JPH04179479A (en) Thermostable glucose dehydrogenase and its production
JPS62107784A (en) Production of glutamic acid dehydrogenase
DK148360B (en) PROCEDURE FOR URICASE PREPARATION
JPS6128386A (en) Novel lactate oxidase, analytical method using it, and kit for analysis