JPH04316496A - Production of (r)-(+)-halolactic acid - Google Patents

Production of (r)-(+)-halolactic acid

Info

Publication number
JPH04316496A
JPH04316496A JP17156191A JP17156191A JPH04316496A JP H04316496 A JPH04316496 A JP H04316496A JP 17156191 A JP17156191 A JP 17156191A JP 17156191 A JP17156191 A JP 17156191A JP H04316496 A JPH04316496 A JP H04316496A
Authority
JP
Japan
Prior art keywords
acid
halolactic
halolactic acid
genus
chlorolactic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17156191A
Other languages
Japanese (ja)
Other versions
JP2936551B2 (en
Inventor
Kiyoshi Nakayama
清 中山
Tadashi Wada
正 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO-LE KK
Original Assignee
BIO-LE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO-LE KK filed Critical BIO-LE KK
Priority to JP17156191A priority Critical patent/JP2936551B2/en
Publication of JPH04316496A publication Critical patent/JPH04316496A/en
Application granted granted Critical
Publication of JP2936551B2 publication Critical patent/JP2936551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To industrially and advantageously obtain the subject compound useful as a synthetic raw material, etc., for optically active physiologically active substance such as a medicine by reacting a (+ or -)-3 halolactic acid with a microorganism of the genus Pseudomonas, etc., and specifically metabolizing the (-)-3-halolactic acid. CONSTITUTION:A microorganism (e.g. Pseudomonas.aureofaciens ATCC13986), belonging to the genus Pseudomonas, Arthrobacter, Escherichia, Saccharomyces, Schwanniomyces or Torulopsis and having the ability to produce an (R)-(+)-3-halolactic acid from a (+ or -)-3-halolactic acid or its treated substance is catalytically reacted with a (+ or -)-3-halolactic acid to specifically metabolize the (-)-3-halolactic acid. The formed (R)-(+)-3-halolactic acid is then collected from a mixture of the (R)-3-halolactic acid with (S)-(-)-3-halolactic acid and the residual (R)-(+)-3-halolactic acid to afford the objective (R)-(+)-3-halolactic acid in high yield.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、(R)−(+)−3−
ハロ乳酸の製造法に関する。(R)−(+)−3−ハロ
乳酸は医薬品等の光学活性な生理活性物質の合成原料と
して有用な物質である。
[Industrial Application Field] The present invention relates to (R)-(+)-3-
This invention relates to a method for producing halo-lactic acid. (R)-(+)-3-halolactic acid is a substance useful as a raw material for the synthesis of optically active physiologically active substances such as pharmaceuticals.

【0002】0002

【従来の技術】光学活性な(R)−(+)−3−クロロ
乳酸の生化学的な調製法に関しては、乳酸脱水素酵素を
用いて、クロロピルビン酸の不斉還元法による製法が知
られている(Journal  of  Americ
an  Chemical  Society,104
巻,4452頁、1982年)。この方法では、反応時
に補酵素としてNADHを必要とするので何らかの方法
でNADHを連続的に供給する必要があり、NADH再
生系と組み合せる方法がとられるが、この種のNADH
再生系を組み合せる酵素的還元反応は、工業的実施に困
難な問題が多い。第2の方法として、(±)−3−ハロ
−1,2−プロパンジオールの微生物的不斉酸化反応に
より光学活性な(R)−(+)−3−ハロ乳酸を製造す
る方法が知られている(特公開昭59−220193号
:特公開昭61−268197号:Journal  
of  Fermentation  Technol
ogy,64巻,251−254頁,1986年)。微
生物としてゲオトリカム属、トリコスポロン属、エンド
ミセス属、ハンゼヌラ属、キャンジタ属、スポリジオボ
ルス属、ロデロミセス属の微生物が用いられている。こ
の方法では収率が低い難点がある。第3の方法として、
(±)−3−ハロ乳酸に微生物を作用させて(R)−(
+)−3−ハロ乳酸をえる方法(特公開昭61−268
197号)が知られている。微生物としては、キャンジ
ダ、クリプトコッカス、エンドミセス、ハンゼヌラ、ロ
デロミセス、ピチヤ、スポリジオボルス、トリコスポロ
ン、アルカリゲネス、バチルス、コリネバクテリウム、
アファノアスカス、オーレオバシディウム、バクジェラ
、バクジア、ビソシラミス、フロリディウム、クラドス
ポリウム、コニオケティデウム、ユーロティウムおよび
グリオクラディウムの各属に属する微生物が使用されて
いる。この方法では、収率のよい場合は光学純度が低く
、光学純度の高い場合は収量が低い難点がある。第4の
方法として、2,3−ジハロプロピオン酸に2−ハロ酸
デハロゲナーゼを作用させる方法((特公開平2−11
3890)が知られている。この方法では、原料である
2,3−ジハロプロピオン酸のコストに難点がある。
[Prior Art] Regarding the biochemical preparation of optically active (R)-(+)-3-chlorolactic acid, there is a known method for producing optically active (R)-(+)-3-chlorolactic acid by asymmetric reduction of chloropyruvic acid using lactate dehydrogenase. Journal of America
a Chemical Society, 104
Vol. 4452, 1982). This method requires NADH as a coenzyme during the reaction, so it is necessary to continuously supply NADH by some means, and a method is used in which it is combined with an NADH regeneration system.
Enzymatic reduction reactions that combine regeneration systems have many problems that are difficult to implement industrially. The second method is known to produce optically active (R)-(+)-3-halolactic acid by a microbial asymmetric oxidation reaction of (±)-3-halo-1,2-propanediol. (Special Publication No. 59-220193: Publication No. 61-268197: Journal
of Fermentation Technology
ogy, vol. 64, pp. 251-254, 1986). Microorganisms of the genus Geotrichum, Trichosporon, Endomyces, Hansenula, Candida, Sporidiobolus, and Rhoderomyces are used as the microorganisms. This method has the disadvantage of low yield. As a third method,
(±)-3-Halolactic acid is treated with (R)-(
+) Method for obtaining -3-halolactic acid (Japanese Patent Publication No. 61-268
No. 197) is known. Microorganisms include Candida, Cryptococcus, Endomyces, Hansenula, Rhoderomyces, Pichia, Sporidiobolus, Trichosporon, Alcaligenes, Bacillus, Corynebacterium,
Microorganisms belonging to the genera Aphanoascus, Aureobasidium, Bacgela, Bacdia, Bysocilamis, Floridium, Cladosporium, Coniocetideum, Eurotium and Gliocladium have been used. This method has the disadvantage that when the yield is good, the optical purity is low, and when the optical purity is high, the yield is low. The fourth method is a method in which 2-halo acid dehalogenase is allowed to act on 2,3-dihalopropionic acid ((Japanese Patent Publication No. 2011-11)
3890) is known. This method has a drawback in terms of the cost of the raw material, 2,3-dihalopropionic acid.

【0003】0003

【発明が解決しようとする課題】上に述べたように従来
の技術が工業的実施になお難点をもっているため、より
効率的な(R)−(+)−3−ハロ乳酸の製造法を確立
するために研究を重ねた結果、本発明を完成するに至っ
た。
[Problems to be Solved by the Invention] As mentioned above, the conventional technology still has difficulties in industrial implementation, so a more efficient method for producing (R)-(+)-3-halolactic acid was established. As a result of repeated research, we have completed the present invention.

【0004】0004

【課題を解決するための手段】本発明によれば、シュー
ドモナス(Pseudomonas)属、アースロバク
ター(Arthrobacter)属、エッセリヒア(
Escherichia)属、サッカロミセス(Sac
charomyces)属、シュワニオミセス(Sch
wanniomyces)属、あるいはトルロプシス(
Torulopsis)属に属し、(±)−3−ハロ乳
酸から(R)−(+)−3−ハロ乳酸を生成する能力を
有する微生物の菌体、培養液またはそれらの処理物を(
±)−3−ハロ乳酸に接触させることにより、(R)−
(+)−3−ハロ乳酸を生成させ、これを採取すること
により(R)−(+)−3−ハロ乳酸を製造することが
できる。
[Means for Solving the Problems] According to the present invention, the genus Pseudomonas, the genus Arthrobacter, and the genus Esserichia (
Genus Escherichia, Saccharomyces
charomyces), Schwaniomyces (Sch
wanniomyces) or Torulopsis (
The cells, culture solution, or processed products of microorganisms belonging to the genus Torulopsis and having the ability to produce (R)-(+)-3-halolactic acid from (±)-3-halolactic acid (
±)-By contacting with 3-halolactic acid, (R)-
(R)-(+)-3-halolactic acid can be produced by producing (+)-3-halolactic acid and collecting it.

【0005】以下に本発明を詳細に説明する。本発明に
用いられる微生物は、シュードモナス属、アースロバク
ター属、エッセリヒア属、サッカロミセス属、シュワニ
オミセス属またはトルロプシス属に属し、(±)−3−
ハロ乳酸に作用して(−)−3−ハロ乳酸を消費変換し
て(R)−(+)−3−ハロ乳酸を残留させ、結果とし
て(R)−(+)−3−ハロ乳酸を生成する能力を有す
る微生物であればよい。具体的な例としては、シュード
モナス・オーレオファシエンス(Pseudomona
s  aureofaciens)ATCC  139
86、シュードモナス・デハロゲナンス(Pseudo
monas  dehalogenans)NCIB 
 9061、アースロバクター・シトレウス(Arth
robacter  citreus)ATCC  1
1624、アースロバクター・グロビホルミス(Art
hrobacter  globiformis)AT
CC  8010、エッセリヒア・コリ(Escher
ichia  coli)ATCC  11303、サ
ッカロミセス・シュバリエリ(Saccharamyc
es  chevalieri)IFO  0222、
シュワニオミセス・オキシデンタリス(Schwann
iomyces  occidentalis)ATC
C  26074、トルロプシス・スフェリカ(Tor
ulopsis  sphaerica)ATCC  
8549などが挙げられる。
The present invention will be explained in detail below. The microorganisms used in the present invention belong to the genus Pseudomonas, Arthrobacter, Esselichia, Saccharomyces, Schwaniomyces, or Torulopsis, and are (±)-3-
It acts on halo-lactic acid and consumes and converts (-)-3-halolactic acid to leave (R)-(+)-3-halolactic acid, resulting in (R)-(+)-3-halolactic acid. Any microorganism can be used as long as it has the ability to produce it. A specific example is Pseudomonas aureofaciens.
ATCC 139
86, Pseudomonas dehalogenans (Pseudo
monas dehalogenans) NCIB
9061, Arthlobacter citreus (Arth
robacter citreus) ATCC 1
1624, Arthrobacter globiformis (Art
hrobacter globiformis) AT
CC 8010, Escheria coli (Escher
ichia coli) ATCC 11303, Saccharomyces chevalieri (Saccharamyc
es chevalieri) IFO 0222,
Schwann
iomyces occidentalis) ATC
C 26074, Torulopsis spherica (Tor
ulopsis sphaerica) ATCC
Examples include 8549.

【0006】これらの菌株を人工的変異方法、たとえば
紫外線照射、X線照射、変異誘起剤処理などによって変
異させた変異株も用いることができる。
[0006] Mutant strains obtained by mutating these strains by artificial mutation methods such as ultraviolet irradiation, X-ray irradiation, mutagenic agent treatment, etc. can also be used.

【0007】本発明で用いられる微生物の培養において
は通常の微生物の培養法が一般に用いられる。培地とし
ては、微生物が資化可能な炭素源、窒素源、無機物およ
び微生物の生育に必要な物質をほどよく含有する培地で
あれば、合成培地、天然培地のいずれでも使用可能であ
る。炭素源としては、グルコース、でん粉、デキストリ
ン、マンノース、フラクトース、シュクロース、ラクト
ース、キシロース、アラビノース、マニトール、糖蜜な
どが単独または組み合わせて用いられる。さらに微生物
の資化能によっては、炭化水素、アルコール類、有機酸
なども用いられる。窒素源としては、塩化アンモニウム
、硫酸アンモニウム、硝酸アンモニウム、硝酸ナトリウ
ム、尿素、ペプトン、肉エキス、酵母エキス、乾燥酵母
、コーン・スチープ・リカー、大豆粉、カザミノ酸など
が単独あるいは組み合わせて用いられる。そのほか、必
要に応じて、食塩、塩化カリウム、硫酸マグネシウム、
炭酸カルシウム、リン酸二水素カリウム、リン酸水素二
カリウム、硫酸第一鉄、塩化カルシウム、硫酸マンガン
、硫酸亜鉛、硫酸銅などの無機塩類を加えることができ
る。  培養は、振とう培養または通気攪拌培養などの
好気条件下、温度4〜43℃、好ましくは20〜35℃
、pH4〜10、好ましくは6.0〜9.5で行われ、
通常1〜10日で終了する。培地のpHは水酸化ナトリ
ウムなどを用いて調整するのが好ましい。
[0007] In culturing the microorganisms used in the present invention, conventional microorganism culturing methods are generally used. As the medium, either a synthetic medium or a natural medium can be used as long as it contains a suitable amount of carbon sources, nitrogen sources, inorganic substances that can be assimilated by microorganisms, and substances necessary for the growth of microorganisms. As the carbon source, glucose, starch, dextrin, mannose, fructose, sucrose, lactose, xylose, arabinose, mannitol, molasses, etc. are used alone or in combination. Furthermore, depending on the assimilation ability of microorganisms, hydrocarbons, alcohols, organic acids, etc. may also be used. As the nitrogen source, ammonium chloride, ammonium sulfate, ammonium nitrate, sodium nitrate, urea, peptone, meat extract, yeast extract, dried yeast, corn steep liquor, soybean flour, casamino acid, etc. are used alone or in combination. In addition, salt, potassium chloride, magnesium sulfate,
Inorganic salts such as calcium carbonate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, ferrous sulfate, calcium chloride, manganese sulfate, zinc sulfate, copper sulfate, etc. can be added. The culture is carried out under aerobic conditions such as shaking culture or aerated agitation culture at a temperature of 4 to 43°C, preferably 20 to 35°C.
, carried out at pH 4-10, preferably 6.0-9.5,
Usually completed in 1 to 10 days. The pH of the medium is preferably adjusted using sodium hydroxide or the like.

【0008】使用微生物の(±)−3−ハロ乳酸との接
触は、このような微生物の生育培養中に行うこともでき
るし、また生育した培養に(±)−3−ハロ乳酸を加え
て反応させることもできる。さらに、培養から菌体を分
けてから、この菌体あるいは菌体処理物と(±)−3−
ハロ乳酸を適当な培地中、例えば緩衝液中で接触反応さ
せることもできる。培養液もしくは菌体の処理は、菌体
中の(−)−3−ハロ乳酸変換活性を損なうことなく、
酵素反応がより容易に進む方法を適宜選択しておこなわ
れる。具体的処理物としては、培養物の濃縮物、乾燥物
、界面活性剤および/または有機溶剤処理物、さらに培
養物を遠心分離してえられる菌体、菌体破砕物、菌体の
乾燥物、アセトン処理物、界面活性剤および/または有
機溶剤処理物、溶菌酵素処理物、固定化菌体あるいは菌
体からの抽出酵素標品などがあげられる。
[0008] The microorganism used can be brought into contact with (±)-3-halolactic acid during the growth and culture of such microorganisms, or it can be carried out by adding (±)-3-halolactic acid to the grown culture. It can also be reacted. Furthermore, after separating the bacterial cells from the culture, the bacterial cells or the treated bacterial cells and (±)-3-
Halolactic acids can also be reacted in a suitable medium, for example in a buffer. The culture solution or bacterial cells can be treated without impairing the (-)-3-halolactic acid converting activity in the bacterial cells.
A method that facilitates the enzymatic reaction is appropriately selected and carried out. Specific processed products include culture concentrates, dried products, products treated with surfactants and/or organic solvents, as well as bacterial cells obtained by centrifuging the culture, crushed bacterial cells, and dried bacterial cells. Examples include acetone-treated products, surfactant and/or organic solvent-treated products, lytic enzyme-treated products, immobilized bacterial cells, and enzyme preparations extracted from bacterial cells.

【0009】本発明で用いられる(±)−3−ハロ乳酸
は遊離もしくは塩酸塩のような塩の形で用いられる。 (±)−3−ハロ乳酸の濃度にはとくに制限はないが、
0.1〜10%(重量対容量)が好ましい。(+)−3
−ハロ乳酸を生成させる反応を実施するに際しては、微
生物またはその処理物と、(±)−3−ハロ乳酸を好適
条件下、温度10〜60℃、好ましくは20〜40℃、
pH4〜10、好ましくは7.0〜9.5で反応させる
。反応は通常1〜10日で終了する。反応中のpHは好
適pH(7.0〜9.5)に維持することが好ましい。 この為には反応媒体として緩衝液を用いたり、反応中p
Hを水酸化ナトリウムなどを用いて調整することが好ま
しい。
The (±)-3-halolactic acid used in the present invention is used in the form of free or salt such as hydrochloride. There is no particular limit to the concentration of (±)-3-halolactic acid, but
0.1-10% (weight to volume) is preferred. (+)-3
- When carrying out the reaction to produce halo-lactic acid, microorganisms or their processed material and (±)-3-halo-lactic acid are mixed under suitable conditions at a temperature of 10 to 60°C, preferably 20 to 40°C,
The reaction is carried out at a pH of 4 to 10, preferably 7.0 to 9.5. The reaction usually completes in 1 to 10 days. The pH during the reaction is preferably maintained at a suitable pH (7.0 to 9.5). For this purpose, a buffer solution may be used as the reaction medium, or p
It is preferable to adjust H using sodium hydroxide or the like.

【0010】反応はまた、微生物の培養中に(±)−3
−ハロ乳酸を培養液に添加すする方式によってもおこな
うことができる。この場合、(±)−3−ハロ乳酸の添
加量は、前記した菌体またはその処理物を用いた反応と
同様の濃度になるよう添加すればよい。さらに必要に応
じて微生物の増殖を阻害しない量の前記の界面活性剤を
培養液中に存在させることにより酵素反応を促進させる
ことができる。反応終了後、反応液中に生成(残存)し
た(+)−3−ハロ乳酸は、公知の方法、例えばイオン
交換樹脂への吸着、脱離、濃縮、結晶化などの手段によ
り単離される。
The reaction also occurs during the cultivation of microorganisms (±)-3
- It can also be carried out by adding halo-lactic acid to the culture solution. In this case, the amount of (±)-3-halolactic acid to be added may be the same concentration as in the reaction using the above-mentioned bacterial cells or a treated product thereof. Furthermore, if necessary, the enzymatic reaction can be promoted by making the above-mentioned surfactant present in the culture solution in an amount that does not inhibit the growth of microorganisms. After the reaction is completed, the (+)-3-halolactic acid produced (remaining) in the reaction solution is isolated by known methods such as adsorption to an ion exchange resin, desorption, concentration, and crystallization.

【0011】[0011]

【実施例】以下に本発明の実施例を示す。実施例におけ
る高速液体クロマトグラフィーによる(R)−(+)−
3−クロロ乳酸と、(S)−(−)−3−クロロ乳酸の
分別分析の条件は次のとおりである。 カラム:MCI  GEL  CRS  10W、4.
6×50mm(三菱化成製)、溶出液:マイクロモル硫
酸銅、流速:毎分1ml、サンプル量:10マイクロリ
ッター、検出:UV(254nm)。 実施例1 グルコース2%、りん酸2アンモニウム1%、りん酸1
カリウム1%、肉エキス1%、ペプトン1%、酵母エキ
ス0.5%、塩化ナトリウム0.1%、(±)−3−ク
ロロ乳酸0.2%、pH7.0の組成の滅菌培地10m
lをふくむ太型試験管に表1に示した微生物を植菌し、
26℃で48時間振とう培養してから、培養液から遠心
分離により菌体を集め、50ミリモルのりん酸緩衝液(
pH7.0)で洗浄後、菌体を再度遠心分離してから、
(±)−3−クロロ乳酸をふくむ50ミリモルりん酸緩
衝液(pH7.0)に菌体をけん濁して10mlとする
。(±)−3−クロロ乳酸の濃度は最終0.2%とした
。この反応混合物を26℃で48時間振とうして反応さ
せた後、遠心上清に含まれる3−クロロ乳酸を高速液体
クロマトグラフィーにより分析した。その結果は表1に
示した如くで、菌株により異なるが50〜80%の3−
クロロ乳酸が残留し、この残留する(R)−(+)−3
−クロロ乳酸の光学異性体過剰率(e.e.)は100
〜38%であった。収量は添加した(±)−3−クロロ
乳酸の重量に対する100分率で示した。
[Examples] Examples of the present invention are shown below. (R)-(+)- by high performance liquid chromatography in Examples
The conditions for the differential analysis of 3-chlorolactic acid and (S)-(-)-3-chlorolactic acid are as follows. Column: MCI GEL CRS 10W, 4.
6 x 50 mm (manufactured by Mitsubishi Kasei), eluent: micromolar copper sulfate, flow rate: 1 ml per minute, sample amount: 10 microliters, detection: UV (254 nm). Example 1 2% glucose, 1% diammonium phosphate, 1% phosphoric acid
10 m of sterile medium with the following composition: potassium 1%, meat extract 1%, peptone 1%, yeast extract 0.5%, sodium chloride 0.1%, (±)-3-chlorolactic acid 0.2%, pH 7.0
Inoculate the microorganisms shown in Table 1 into a large test tube containing
After culturing with shaking at 26°C for 48 hours, the bacterial cells were collected from the culture medium by centrifugation, and added to 50 mmol phosphate buffer (
After washing with pH 7.0), the bacterial cells were centrifuged again, and then
The bacterial cells are suspended in 50 mmol phosphate buffer (pH 7.0) containing (±)-3-chlorolactic acid to make 10 ml. The final concentration of (±)-3-chlorolactic acid was 0.2%. The reaction mixture was shaken and reacted at 26° C. for 48 hours, and then 3-chlorolactic acid contained in the centrifuged supernatant was analyzed by high performance liquid chromatography. The results are shown in Table 1, and although it varies depending on the strain, 50 to 80% of the 3-
Chlorolactic acid remains, and this residual (R)-(+)-3
-The optical isomer excess (ee) of chlorolactic acid is 100
It was ~38%. The yield was expressed as a percentage of the weight of (±)-3-chlorolactic acid added.

【表1】[Table 1]

【0012】実施例2 (±)−3−クロロ乳酸3%、硫酸アンモニウム0.2
%、りん酸2カリ0.2%、硫酸マグネシウム0.05
%、肉エキス0.5%、ペプトン1.0%、酵母エキス
0.5%、グリセロール2%、硫酸マンガン0.001
%、硫酸亜鉛0.001%の組成でpHを9.0に水酸
化ナトリウムで調整した滅菌培地10mlを含む太型試
験管に、シュードモナス属菌種H1−1(微工研菌寄第
  12128号)を植菌し、26℃で48時間振とう
培養したとき、培養液上清中に(+)−3−クロロ乳酸
が1mlあたり16mg濃度に生成し、その光学異性体
過剰率(e.e.)は78%であった。
Example 2 (±)-3-chlorolactic acid 3%, ammonium sulfate 0.2
%, dipotassium phosphate 0.2%, magnesium sulfate 0.05
%, meat extract 0.5%, peptone 1.0%, yeast extract 0.5%, glycerol 2%, manganese sulfate 0.001
%, zinc sulfate 0.001% and the pH was adjusted to 9.0 with sodium hydroxide in a large test tube containing Pseudomonas sp. ) was inoculated and cultured with shaking at 26°C for 48 hours, (+)-3-chlorolactic acid was produced in the culture supernatant at a concentration of 16 mg per ml, and the optical isomer excess rate (e.e. ) was 78%.

【0013】実施例3 シュードモナス・オーレオファシエンスATCC  1
3986を用いて実施例1と同様に実施してえた反応液
1800mlから菌体を遠心分離により除いた上清を2
0分の1の液量まで減圧濃縮し、濃縮液のpHを硫酸で
pH2.5として2倍量の酢酸エチルで3回抽出した。 抽出液を合わせて減圧濃縮して冷室に放置し、析出した
結晶を濾別して褐色の結晶1.2gをえた。この結晶を
5mlの酢酸エチルにとかし、シリカゲル(1.0×3
0cm)のカラムを通して吸着させた後、カラムにn−
ヘキサン50mlを流して洗った後、n−ヘキサンと酢
酸エチルの混合液(容積比で9:1)で溶出し、(R)
−(+)−3−クロロ乳酸の分画を集めて濃縮し、乾固
して180mgの白色結晶をえた。この結晶は融点(8
9℃)、〔α〕25D+4.33°(C=10、水)、
IR(Nujor)cm−1:3450,1722、元
素分析値(C  28.84、H3.85、Cl  2
8.36)のデータから文献値と一致し、(R)−(+
)−3−クロロ乳酸と同定された。
Example 3 Pseudomonas aureofaciens ATCC 1
3986 in the same manner as in Example 1, and the supernatant after removing the bacterial cells by centrifugation was
It was concentrated under reduced pressure to 1/0 of the liquid volume, and the pH of the concentrated liquid was adjusted to pH 2.5 with sulfuric acid, and extracted three times with twice the amount of ethyl acetate. The combined extracts were concentrated under reduced pressure and left in a cold room, and the precipitated crystals were filtered off to obtain 1.2 g of brown crystals. The crystals were dissolved in 5 ml of ethyl acetate, and silica gel (1.0 x 3
After adsorption through a column of 0 cm), the column was filled with n-
After washing with 50 ml of hexane, elution was carried out with a mixture of n-hexane and ethyl acetate (9:1 by volume), and (R)
The fractions of -(+)-3-chlorolactic acid were collected, concentrated, and dried to give 180 mg of white crystals. This crystal has a melting point (8
9℃), [α]25D+4.33° (C=10, water),
IR (Nujor) cm-1: 3450, 1722, elemental analysis value (C 28.84, H 3.85, Cl 2
8.36) agrees with the literature value, and (R)−(+
)-3-chlorolactic acid.

【0014】実施例4 実施例1において(±)−3−クロロ乳酸の代りに(±
)−3−ブロモ乳酸を用いる他は実施例1と同様に実施
した場合の結果は表2に示すとおりで、光学異性体過剰
率(e.e.)37〜100%の(+)−3−ブロモ乳
酸が生成した。
Example 4 In Example 1, (±)-3-chlorolactic acid was replaced with (±)-3-chlorolactic acid.
)-3-bromo lactic acid was used, and the results were shown in Table 2. (+)-3 with an optical isomer excess (ee) of 37 to 100% - Bromo lactic acid was produced.

【表2】[Table 2]

【0015】実施例5 実施例3において(±)−3−クロロ乳酸の代りに(±
)−3−ブロモ乳酸を用いる他は実施例3と同様に実施
して(R)−(+)−3−クロロ乳酸の結晶をえた。融
点78℃、〔α〕25D+1.8°(C=10、水)、
光学異性体過剰率(e.e.)100%であった。
Example 5 In Example 3, (±)-3-chlorolactic acid was replaced with (±)-3-chlorolactic acid.
)-3-bromo lactic acid was used in the same manner as in Example 3 to obtain crystals of (R)-(+)-3-chlorolactic acid. Melting point 78°C, [α]25D+1.8° (C=10, water),
The optical isomer excess (ee) was 100%.

【0016】[0016]

【発明の効果】本発明によれば(±)−3−ハロ乳酸か
ら、医薬品などの光学活性生理活性物の合成原料として
有用な(R)−(+)−3−ハロ乳酸を効率よく製造す
ることができる。
Effects of the Invention According to the present invention, (R)-(+)-3-halolactic acid, which is useful as a raw material for the synthesis of optically active physiologically active substances such as pharmaceuticals, can be efficiently produced from (±)-3-halolactic acid. can do.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  シュードモナス(Pseudomon
as)属、アースロバクター(Arthrobacte
r)属、エッセリヒア(Escherichia)属、
サッカロミセス(Saccharomyces)属、シ
ュワニオミセス(Schwanniomyces)属、
あるいはトルロプシス(Torulopsis)属に属
し、(±)−3−ハロ乳酸から(R)−(+)−3−ハ
ロ乳酸を生成する能力を有する微生物またはその処理物
を(±)−3−ハロ乳酸に接触反応させ、生成する(R
)−(+)−3−ハロ乳酸を採取することを特徴とする
(R)−(+)−3−ハロ乳酸の製造法。
[Claim 1] Pseudomonas
as) genus, Arthrobacter
r) genus Escherichia,
Genus Saccharomyces, Genus Schwanniomyces,
Alternatively, a microorganism belonging to the genus Torulopsis and having the ability to produce (R)-(+)-3-halolactic acid from (±)-3-halolactic acid or a processed product thereof may be used to produce (±)-3-halolactic acid. to produce (R
A method for producing (R)-(+)-3-halolactic acid, which comprises collecting )-(+)-3-halolactic acid.
【請求項2】  基質が(±)−3−クロロ乳酸であり
、生成物が(R)−(+)−3−クロロ乳酸である請求
項1の製造法。
2. The method of claim 1, wherein the substrate is (±)-3-chlorolactic acid and the product is (R)-(+)-3-chlorolactic acid.
【請求項3】  基質が(±)−3−ブロモ乳酸であり
、生成物が(R)−(+)−3−ブロモ乳酸である請求
項1の製造法。
3. The method of claim 1, wherein the substrate is (±)-3-bromo lactic acid and the product is (R)-(+)-3-bromo lactic acid.
JP17156191A 1991-04-15 1991-04-15 Method for producing (R)-(+)-3-halolactic acid Expired - Fee Related JP2936551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17156191A JP2936551B2 (en) 1991-04-15 1991-04-15 Method for producing (R)-(+)-3-halolactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17156191A JP2936551B2 (en) 1991-04-15 1991-04-15 Method for producing (R)-(+)-3-halolactic acid

Publications (2)

Publication Number Publication Date
JPH04316496A true JPH04316496A (en) 1992-11-06
JP2936551B2 JP2936551B2 (en) 1999-08-23

Family

ID=15925423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17156191A Expired - Fee Related JP2936551B2 (en) 1991-04-15 1991-04-15 Method for producing (R)-(+)-3-halolactic acid

Country Status (1)

Country Link
JP (1) JP2936551B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050251A (en) * 2007-05-14 2009-03-12 Sumitomo Chemical Co Ltd Method for producing lactic acid
WO2014017327A1 (en) * 2012-07-23 2014-01-30 旭硝子株式会社 Method for producing organic acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050251A (en) * 2007-05-14 2009-03-12 Sumitomo Chemical Co Ltd Method for producing lactic acid
WO2014017327A1 (en) * 2012-07-23 2014-01-30 旭硝子株式会社 Method for producing organic acid
JP5890905B2 (en) * 2012-07-23 2016-03-22 旭硝子株式会社 Method for producing organic acid
JPWO2014017327A1 (en) * 2012-07-23 2016-07-11 旭硝子株式会社 Method for producing organic acid

Also Published As

Publication number Publication date
JP2936551B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
JP3523285B2 (en) Production method for glycolytic enzymes
JPS59113896A (en) Preparation of pyrroloquinolinequinone
JP3858505B2 (en) Method for producing R-3-quinuclidinol
JP3014171B2 (en) Method for producing 4-halo-3-hydroxybutyramide
JPS62289A (en) Enzymatic production of l-alpha-amino acid from alpha-ketoic acid
EP0121444B1 (en) Biochemical method for preparation of optically active carnitine
EP0229219A2 (en) Urease and process for preparation thereof
JP3845912B2 (en) Method for producing erythritol
JPH04316496A (en) Production of (r)-(+)-halolactic acid
JP3587569B2 (en) Method for producing optically active 1- (3,4-dimethoxyphenyl) -2-propanol
US4463095A (en) Process for producing α-glycerophosphate oxidase
JPH0751069B2 (en) Method for producing D-glyceric acid
JP3245254B2 (en) Novel microorganism and method for producing nootkatone using the same
JPH0669381B2 (en) Carnitine manufacturing method
JP2926249B2 (en) Method for producing alginate lyase
EP0982406A2 (en) Microbial production of actinol
JPH0155879B2 (en)
JP3030916B2 (en) Method for producing β-glucooligosaccharide
JP2768473B2 (en) Method for producing NADH oxidase
US3920519A (en) Enzymatic hydrolysis of ribonucleic acid
JP3152855B2 (en) Novel sorbitol dehydrogenase, method for producing the same, reagent and method for quantifying sorbitol using the enzyme
WO1992018637A1 (en) Method for the production of d-gluconic acid
JPH0569512B2 (en)
US4003793A (en) Media containing molasses and soy flour for producing glucose isomerase and method
JP2563074B2 (en) Process for producing natural β-phenethyl alcohol

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees