JPS6344691Y2 - - Google Patents

Info

Publication number
JPS6344691Y2
JPS6344691Y2 JP8471087U JP8471087U JPS6344691Y2 JP S6344691 Y2 JPS6344691 Y2 JP S6344691Y2 JP 8471087 U JP8471087 U JP 8471087U JP 8471087 U JP8471087 U JP 8471087U JP S6344691 Y2 JPS6344691 Y2 JP S6344691Y2
Authority
JP
Japan
Prior art keywords
heat pipe
heat
working fluid
heating
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8471087U
Other languages
Japanese (ja)
Other versions
JPS6323567U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8471087U priority Critical patent/JPS6344691Y2/ja
Publication of JPS6323567U publication Critical patent/JPS6323567U/ja
Application granted granted Critical
Publication of JPS6344691Y2 publication Critical patent/JPS6344691Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は重力に対して加熱部が上方に位置する
トツプヒート用複合ヒートパイプに関するもので
ある。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a composite heat pipe for top heating in which the heating portion is located above gravity.

〔従来技術及びその問題点〕[Prior art and its problems]

一般にヒートパイプは内壁面にウイツクを設け
た管状体の内部を減圧して作動液を封入したもの
で、この一端を作動液が蒸発する加熱部、他端を
作動液が凝縮する放熱部として作動液の蒸発→凝
縮サイクルに伴なう急速な熱輸送を行う高性能な
熱伝達装置である。
In general, a heat pipe is a tubular body with a wick on its inner wall, which is sealed with a working fluid under reduced pressure.One end of this tube serves as a heating section where the working fluid evaporates, and the other end serves as a heat dissipation section where the working fluid condenses. It is a high-performance heat transfer device that performs rapid heat transport associated with the evaporation → condensation cycle of liquid.

このヒートパイプにおいてその熱輸送量の限界
はウイツクの最大毛細管力に依存する。即ち最大
熱輸送量は放熱部で凝縮した作動液をウイツクの
毛細管力により加熱部側へ還流させる量によつて
定まるもので、この作動液が蒸発する加熱部への
還流量が少なくなるとこれに伴つて最大熱輸送量
も減少してくる。
The limit of heat transport in this heat pipe depends on the maximum capillary force of the heat pipe. In other words, the maximum amount of heat transport is determined by the amount of working fluid condensed in the heat radiation section that is returned to the heating section due to the capillary force of the heat sink. Accordingly, the maximum heat transport amount also decreases.

またこの毛細管力は重力など体積力に影響さ
れ、加熱部が下方にある場合には重力の作用と相
俟つて作動液は加熱部側に十分還流されるが、加
熱部が重力の対して上方にあるトツプヒートの場
合には、下方に位置する放熱部で凝縮した作動液
を重力にさからつてウイツクの毛細管力により上
方の加熱部に引上げるため作動液の還流量が少な
くなる。従つてトツプヒートの条件においてはウ
イツクの毛細管力に限界があるため最大熱輸送量
は小さくなり、長尺のヒートパイプは実用に適さ
ない。
In addition, this capillary force is influenced by body forces such as gravity, and when the heating section is located below, the working fluid is sufficiently refluxed to the heating section side due to the action of gravity. In the case of top heat, the working fluid condensed in the heat dissipation section located below is pulled up to the heating section above by the capillary force against gravity, so the amount of return of the working fluid is reduced. Therefore, under top heat conditions, there is a limit to the capillary force of the heat pipe, so the maximum amount of heat transport becomes small, and a long heat pipe is not suitable for practical use.

このため上下方向に長い距離を熱輸送させる手
段として、従来複数本の短いヒートパイプをその
長手方向に沿つて直線状に接続して複合した長尺
のヒートパイプがトツプヒート用として開発され
ている。
For this reason, as a means of transporting heat over a long distance in the vertical direction, a long heat pipe has been developed for top heating, which is a composite of a plurality of short heat pipes connected in a straight line along the longitudinal direction.

しかしながらこの複合したヒートパイプは各ユ
ニツトの端部における接続部分での熱抵抗が極め
て大きいため全体として十分な熱輸送量が得られ
ない欠点があつた。
However, this composite heat pipe has the drawback that a sufficient amount of heat transport cannot be obtained as a whole because the thermal resistance at the connecting portions at the ends of each unit is extremely large.

〔問題点を解決するための手段〕[Means for solving problems]

本考案はかかる点に鑑みヒートパイプの各ユニ
ツトの接続部分における熱抵抗を減少せしめると
共に、全体をコンパクトな構成としたトツプヒー
ト用複合ヒートパイプを開発したものである。
In view of these points, the present invention has developed a composite heat pipe for top heat that reduces the thermal resistance at the connecting portions of each unit of the heat pipe and has a compact overall structure.

即ち、本考案は内壁面にウイツクを設けた短尺
のヒートパイプユニツトの複数個を直線状に配置
形成した1組の直管状ヒートパイプ群体の複数本
を各々のヒートパイプ群体のヒートパイプユニツ
ト間の隔離板の位置を夫々ずらして束ね、これら
複数本のヒートパイプ群体の接合部をろう材を介
して一体に接合したトツプヒート用複合ヒートパ
イプである。
That is, in the present invention, a plurality of straight tube-shaped heat pipe groups are formed by arranging a plurality of short heat pipe units with wicks on the inner wall surface in a straight line between the heat pipe units of each heat pipe group. This is a composite heat pipe for top heating in which the separators are shifted in position and bundled together, and the joints of the plurality of heat pipe groups are joined together via a brazing material.

〔実施例及び作用〕[Examples and effects]

以下本考案の実施例を図面を参照して詳細に説
明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本考案の一実施例を示すもので、銅、
アルミニウムなど熱伝導性に優れた短尺の金属パ
イプ(管状体)の内壁面にウイツク4を設けて、
その両端を隔離板5で溶接等により閉じ中空部3
内に減圧状態で作動液6を封入して独立した複数
個のヒートパイプユニツト7…を形成し、これら
のヒートパイプユニツト7を直線状に配置して
各々のユニツトを溶接等により接合して、1組の
直管状のヒートパイプ群体を作成する。次にこの
直管状のヒートパイプ群体の複数本を各々のヒー
トパイプ群体のヒートパイプユニツト間の隔離板
5の位置を夫々ずらして束ね、これら複数本のヒ
ートパイプ群体の接合部をろう材を介して接合し
たものである。
Figure 1 shows an embodiment of the present invention, in which copper,
A wick 4 is installed on the inner wall of a short metal pipe (tubular body) made of aluminum or other material with excellent thermal conductivity.
Both ends of the hollow part 3 are closed by welding or the like with a separator 5.
A plurality of independent heat pipe units 7 are formed by sealing the working fluid 6 in a reduced pressure state, and these heat pipe units 7 are arranged in a straight line and each unit is joined by welding or the like. A set of straight heat pipe groups is created. Next, a plurality of straight tube-shaped heat pipe groups are bundled with the separators 5 between the heat pipe units of each heat pipe group shifted, and the joints of the plurality of heat pipe groups are bonded via a brazing material. It was joined together.

使用する直管状のヒートパイプ群体の本数は、
第1図は3本の例を示したが、3本に限らず2
本、4本以上の複数本を用いることも可能であ
る。
The number of straight heat pipe groups to be used is
Figure 1 shows an example of three lines, but the number is not limited to three.
It is also possible to use four or more books.

前記ウイツク4としては焼結体、金属メツシ
ユ、グラスフアイバーなど多孔質体の他、多数の
細溝など毛細管作用を有するものであれば何れの
ものでも良い。また作動液6としては水、フレオ
ン、アルコール、アンモニアなどの他、比較的融
点の低い金属が用いられる。
The wick 4 may be any porous material such as a sintered body, a metal mesh, or a glass fiber, or any material having a capillary action such as a large number of narrow grooves. Further, as the working fluid 6, in addition to water, Freon, alcohol, ammonia, etc., a metal having a relatively low melting point is used.

なお各ヒートパイプユニツトの製造方法として
は、押出等によつて製造した金属パイプを所定の
長さに切断して、その両端を隔離板5で溶接等に
より閉じ、そろ壁面に排気孔を設けてここから作
動液6を注入した後減圧するか、若しくは減圧し
た後作動液6を注入し、しかる後ブラインドリベ
ツトで前記排気孔を密閉して夫々独立したヒート
パイプユニツト7…を形成する。なお、この場合
ブラインドリベツトの代りに通気孔を形成した細
管を取付けて、封じ切る方法でもよい。
The manufacturing method for each heat pipe unit is to cut a metal pipe manufactured by extrusion or the like into a predetermined length, close both ends with a separator plate 5 by welding, etc., and then provide an exhaust hole in the wall surface. After injecting the hydraulic fluid 6 from here, the pressure is reduced, or after the pressure is reduced, the hydraulic fluid 6 is injected, and then the exhaust holes are sealed with blind rivets to form independent heat pipe units 7, respectively. In this case, instead of the blind rivet, a thin tube with a ventilation hole may be attached and sealed.

しかして上記の如く構成されたトツプヒート用
複合ヒートパイプは上下方向に立設または傾けて
機器に取付け、ヒートパイプの上端側を加熱部
A、下端側を放熱部Bとする。この状態で上端側
の加熱部Aを加熱すると、各ヒートパイプユニツ
ト7においてその上端側の加熱部aのウイツク4
中に保持されている作動液6は蒸発潜熱を奪つて
蒸発する。加熱部a付近の蒸気圧は低温度の放熱
部b付近の蒸気圧より高くなりこの圧力勾配によ
り、蒸気は下方の放熱部bへ流れ、凝縮潜熱を放
出して凝縮する。この凝縮した作動液6はウイツ
ク4の毛細管力により上方の加熱部aに引きあげ
られてここで再び蒸発して以後同様のサイクルを
くり返すことにより各ユニツトにおいて加熱部a
から放熱部bへ熱輸送を行うものである。第1図
には余分な作動流体が下部に停留しているが、こ
れは必ずしも必要でなくウイツク中に含まれる程
度の作動流体量であれば良い。この場合ヒートパ
イプユニツト7は交互に配置してあるのでヒート
パイプユニツト7の放熱部bはろう材部10を介
して横方向に隣接するヒートパイプユニツト7の
加熱部aと広い伝熱面積を接続することができ
る。隔離板5の下側にウイツク4とつながるウイ
ツク(図示せず)を設ければ隔離板5を介しても
熱的につなげることができ更に有効となることは
もちろんである。このような接続することにより
接続の熱抵抗が少なく、効率よく順次下方のヒー
トパイプユニツト7に熱輸送を行うことができ
る。このように順次下方に向かつてヒートパイプ
ユニツト7…に熱輸送していくことにより複合ヒ
ートパイプ全体として優れた熱伝達効率が得られ
るものである。
The composite heat pipe for top heat constructed as described above is installed in a device vertically upright or tilted, with the upper end of the heat pipe serving as a heating section A and the lower end serving as a heat dissipating section B. When heating the heating section A on the upper end side in this state, the heating section A on the upper end side of each heat pipe unit 7 will be heated.
The working fluid 6 held therein absorbs latent heat of vaporization and evaporates. The vapor pressure near the heating section a becomes higher than the vapor pressure near the low-temperature heat dissipation section b, and due to this pressure gradient, the steam flows downward to the heat dissipation section b, releases latent heat of condensation, and condenses. This condensed working fluid 6 is pulled up to the heating section a above by the capillary force of the wick 4, where it evaporates again, and the same cycle is repeated thereafter, so that the working fluid 6 is heated at the heating section a in each unit.
This is to transport heat from the heat sink to the heat radiation section b. In FIG. 1, excess working fluid remains at the bottom, but this is not necessarily necessary, as long as the amount of working fluid is within the amount that can be contained in the wick. In this case, since the heat pipe units 7 are arranged alternately, the heat dissipation part b of the heat pipe unit 7 connects the heating part a of the laterally adjacent heat pipe unit 7 with a wide heat transfer area via the brazing material part 10. can do. It goes without saying that if a wick (not shown) connected to the wick 4 is provided below the separator 5, thermal connection can be made through the separator 5, making it even more effective. By making such a connection, the thermal resistance of the connection is low, and heat can be efficiently transported to the heat pipe unit 7 located below. By sequentially transporting heat downward to the heat pipe units 7 in this manner, excellent heat transfer efficiency can be obtained as a whole of the composite heat pipe.

〔効果〕〔effect〕

以上説明した如く本考案に係るトツプヒート用
複合ヒートパイプによれば、各ヒートパイプユニ
ツトをその長手方向に沿つて交互にずらして接合
した構造とすることにより、ヒートパイプユニツ
トの上部を加熱部a、下部を放熱部bとした広い
伝熱面積が得られ、従来の如く上端部、および下
端部のみを伝熱面としたものに比べて熱抵抗が少
なく全体として優れた熱輸送を行うことができ、
高低差の大きな伝熱機構として顕著な効果を有す
るものである。又本考案によるトツプヒート用複
合ヒートパイプは、既に形成されたヒートパイプ
ユニツトの所望の結合により組立てられるので、
製造が容易である。
As explained above, according to the composite heat pipe for top heat according to the present invention, each heat pipe unit is connected to each other by being alternately shifted along the longitudinal direction, so that the upper part of the heat pipe unit is connected to the heating part a, A wide heat transfer area is obtained with the lower part as the heat dissipation part b, and compared to the conventional case in which only the upper and lower ends are used as heat transfer surfaces, thermal resistance is lower and excellent heat transport can be performed as a whole. ,
It has a remarkable effect as a heat transfer mechanism with large height differences. Furthermore, the composite heat pipe for top heat according to the present invention can be assembled by desired combinations of already formed heat pipe units.
Easy to manufacture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例を示す一部切欠斜視
図である。 1……直管状のヒートパイプ群体、3……中空
部、4……ウイツク、5……隔離板、6……作動
液、7……ヒートパイプユニツト、A,a……加
熱部、B,b……放熱部、10……ろう材部。
FIG. 1 is a partially cutaway perspective view showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Straight heat pipe group, 3... Hollow part, 4... Wick, 5... Separation plate, 6... Working fluid, 7... Heat pipe unit, A, a... Heating part, B, b... Heat dissipation part, 10... Brazing metal part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内壁面にウイツクを設けた短尺のヒートパイプ
ユニツトの複数個を直線状に配置形成した1組の
直管状ヒートパイプ群体の複数本を各々のヒート
パイプ群体のヒートパイプユニツト間の隔離板の
位置を夫々ずらして束ね、これら複数本のヒート
パイプ群体の接合部をろう材を介して一体に接合
したトツプヒート用複合ヒートパイプ。
A set of straight tubular heat pipe groups is formed by arranging a plurality of short heat pipe units with wicks on the inner wall surface in a straight line, and the position of the separator between the heat pipe units of each heat pipe group is determined. This is a composite heat pipe for top heat, in which the joints of a plurality of heat pipes are bundled in a staggered manner and are joined together via a brazing material.
JP8471087U 1987-05-30 1987-05-30 Expired JPS6344691Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8471087U JPS6344691Y2 (en) 1987-05-30 1987-05-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8471087U JPS6344691Y2 (en) 1987-05-30 1987-05-30

Publications (2)

Publication Number Publication Date
JPS6323567U JPS6323567U (en) 1988-02-16
JPS6344691Y2 true JPS6344691Y2 (en) 1988-11-21

Family

ID=30939453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8471087U Expired JPS6344691Y2 (en) 1987-05-30 1987-05-30

Country Status (1)

Country Link
JP (1) JPS6344691Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012004757A2 (en) * 2009-09-02 2018-03-13 Invensor Gmbh feeding and surface distribution of a refrigerant to a heat exchanger in sorption machines.

Also Published As

Publication number Publication date
JPS6323567U (en) 1988-02-16

Similar Documents

Publication Publication Date Title
US3613778A (en) Flat plate heat pipe with structural wicks
US4830097A (en) Space vehicle thermal rejection system
US5275232A (en) Dual manifold heat pipe evaporator
CN103759563B (en) A kind of microchannel heat sink utilizing phase-change circulation of working medium motion heat transfer
KR930016752A (en) Integral heat pipe, heat exchanger and fastening plate
CN100582637C (en) Micro heat pipe with wedge capillaries
CN106033749A (en) Parallel type parallel-microchannel multi-chip radiator
CN109819635B (en) Heat dissipation device
CN101311662A (en) Flat type evaporator radiation system
US20090178785A1 (en) Composite heat pipe structure
US20150308750A1 (en) Slug Pump Heat Pipe
CN114777540A (en) Multistage V-shaped groove liquid absorption core thermal diode and processing method thereof
EP0165974A1 (en) Separate liquid flow heat pipe system.
JPS6344691Y2 (en)
CN209802161U (en) loop heat pipe assembly and heat pipe exchanger thereof
JPS632786Y2 (en)
FI110030B (en) A heat exchanger based on thermal energy binding to a working material and a process for producing a heat exchanger based on thermal energy binding to a working material
CN107677155A (en) A kind of flat heat pipe radiator
JPS60259861A (en) Heat pipe type solar heat collector
JPH10185466A (en) Heat pipe type heat sink
JPS59183254A (en) Solar water heater of heat pipe type
JPS5930865Y2 (en) Heat collection plate for solar collector
JP6756020B1 (en) Cooling system
JPS608275Y2 (en) Heat collection device for solar collector
JPS62204Y2 (en)