JPS6344175B2 - - Google Patents

Info

Publication number
JPS6344175B2
JPS6344175B2 JP13236782A JP13236782A JPS6344175B2 JP S6344175 B2 JPS6344175 B2 JP S6344175B2 JP 13236782 A JP13236782 A JP 13236782A JP 13236782 A JP13236782 A JP 13236782A JP S6344175 B2 JPS6344175 B2 JP S6344175B2
Authority
JP
Japan
Prior art keywords
light
shielding plate
output
displacement
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13236782A
Other languages
Japanese (ja)
Other versions
JPS5920811A (en
Inventor
Atsushi Kimura
Megumi Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP13236782A priority Critical patent/JPS5920811A/en
Publication of JPS5920811A publication Critical patent/JPS5920811A/en
Publication of JPS6344175B2 publication Critical patent/JPS6344175B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells

Description

【発明の詳細な説明】 この発明は物理量に応じて変位する変位量を光
を利用して電気信号として検出するようにした光
式変位変換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical displacement conversion device that detects a displacement amount corresponding to a physical quantity as an electric signal using light.

<背 景> 従来、変位を検出する変位変換装置としては、
例えば移動電極の両側に固定電極を対向して配置
し、その移動電極が変位に応じて固定電極の配列
方向に変位することにより、これ等移動電極と二
つの固定電極との間の静電容量が差動的に変化す
ることを利用して変位を検出するものがあつた。
このような変位変換装置においてはその1つの固
定電極を保持する部分に対して移動電極保持部分
を積み重ね、更に他方の固定電極を保持する部分
を重ねるような積み重ね構造により構成され、し
かも移動電極に対して左右が全く対称な構造にす
る必要があつた。そのような構造に作ることは高
い精度の工作精度及び組立て精度を必要とし、僅
かずれても積み重ね構造の性質により順次その誤
差が大きくなる欠点があり、その構造製作に十分
な注意を払わなければならず高価なものとなつて
いた。
<Background> Conventionally, displacement conversion devices for detecting displacement are
For example, by arranging fixed electrodes facing each other on both sides of a movable electrode, and displacing the movable electrode in the direction in which the fixed electrodes are arranged in accordance with the displacement, the capacitance between the movable electrode and the two fixed electrodes can be increased. There is a method that detects displacement by utilizing the differential change in .
In such a displacement conversion device, a movable electrode holding part is stacked on a part holding one fixed electrode, and a part holding the other fixed electrode is stacked on top of each other. On the other hand, it was necessary to create a structure that was completely symmetrical left and right. Creating such a structure requires high precision machining and assembly precision, and even if there is a slight deviation, the error will gradually increase due to the nature of the stacked structure, so it is necessary to pay sufficient attention to the structure production. However, it had become expensive.

<発明の概要> この発明の目的は比較的簡単な構造で、従つて
安価に作ることができる光式変位変換器を提供す
ることにある。
<Summary of the Invention> An object of the present invention is to provide an optical displacement transducer that has a relatively simple structure and can therefore be manufactured at low cost.

この発明によれば、発光部よりの光が受光部に
て受光されるように発光部及び受光部が配され、
これら発光部及び受光部間に物理量に応じて変位
する遮光板が配され、この遮光板の変位に応じて
受光部に受光される光量が変化され、よつて受光
部よりの電気信号出力は、遮光板の変位と対応し
たものとなる。この遮光板として特に電気信号に
より光透過量が変化するものが用いられ、遮光板
に印加する電気信号を周期的に変化させる。この
周期的変化と同期して受光部の出力が取出され、
この出力にもとずき遮光板の光透過量が大に制御
された状態での受光部からの電気信号がほゞ一定
になるように発光部が制御される。このようにし
て温度変動などにより発光部、受光部、更には受
光部の出力が供給される変換部の特性が変動して
もこれに影響されることなく、変位量を正しく検
出できる。
According to this invention, the light emitting part and the light receiving part are arranged so that the light from the light emitting part is received by the light receiving part,
A light-shielding plate that is displaced according to a physical quantity is arranged between the light-emitting part and the light-receiving part, and the amount of light received by the light-receiving part is changed according to the displacement of this light-shielding plate, so that the electrical signal output from the light-receiving part is This corresponds to the displacement of the light shielding plate. As this light-shielding plate, one whose light transmission amount changes depending on an electric signal is used, and the electric signal applied to the light-shielding plate is periodically changed. The output of the light receiving section is taken out in synchronization with this periodic change,
Based on this output, the light emitting section is controlled so that the electrical signal from the light receiving section remains approximately constant while the amount of light transmitted through the light shielding plate is greatly controlled. In this way, even if the characteristics of the light emitting section, the light receiving section, and even the conversion section to which the output of the light receiving section is supplied vary due to temperature fluctuations, the amount of displacement can be detected correctly without being affected by this.

<第1実施例> 第1図はこの発明による光式変換器の実施例を
示し、発光ダイオードのような発光部11とその
発光部11よりの光を受光して電気信号に変換す
る受光部12とが設けられる。これら発光部11
及び受光部12間に遮光板13が配される。遮光
板13は発光部11及び受光部12の配列方向と
板面が直角であり、かつその板面と平行に、検出
すべき物理量に応じて変位し、従つてこの変位に
応じて受光部12に受光される光量が変化する。
受光部12の出力は増幅器14で増幅されて検出
出力とされる。
<First Embodiment> FIG. 1 shows an embodiment of the optical converter according to the present invention, which includes a light emitting section 11 such as a light emitting diode and a light receiving section that receives light from the light emitting section 11 and converts it into an electrical signal. 12 are provided. These light emitting parts 11
A light shielding plate 13 is arranged between the light receiving section 12 and the light receiving section 12 . The light shielding plate 13 has a plate surface perpendicular to the arrangement direction of the light emitting section 11 and the light receiving section 12, and is displaced parallel to the plate surface according to the physical quantity to be detected. The amount of light received changes.
The output of the light receiving section 12 is amplified by an amplifier 14 and used as a detection output.

この発明においては遮光板13は電気信号によ
りその光透過量が制御可能なものが用いられ、そ
の遮光板13の光透過量を周期的に制御する。例
えば遮光板13として液晶シヤツタが用いられ、
その液晶シヤツタ13の両電極間に、スイツチ1
5を繰返しオン、オフすることにより電源16の
電圧E3を印加したり、その印加を解除したりさ
れる。例えば電圧E3が液晶シヤツタ13に印加
されると液晶シヤツタ13は閉、つまり不透明と
なり、スイツチ15がオフで透明となり、理想的
には遮光板13を除去した場合と同一の状態とな
る。
In this invention, the light shielding plate 13 is one whose light transmission amount can be controlled by an electric signal, and the light transmission amount of the light shielding plate 13 is periodically controlled. For example, a liquid crystal shutter is used as the light shielding plate 13,
A switch 1 is connected between both electrodes of the liquid crystal shutter 13.
By repeatedly turning on and off 5, the voltage E3 of the power source 16 can be applied or removed. For example, when the voltage E3 is applied to the liquid crystal shutter 13, the liquid crystal shutter 13 is closed, that is, becomes opaque, and when the switch 15 is turned off, it becomes transparent, ideally the same state as when the light shielding plate 13 is removed.

遮光板13の光透過量が大とされた時の受光部
12の出力が取出される。即ち増幅器14の出力
はスイツチ17により平滑回路18,19に切替
え供給される。スイツチ17及びスイツチ15は
発振回路21の出力により同期制御され、液晶シ
ヤツタ13に電圧が印加された時に、スイツチ1
7は平滑回路18へ供給される。平滑回路18の
出力は出力端子22へ、遮光板13の変位に応じ
た検出信号として出力される。
The output of the light receiving section 12 when the amount of light transmitted through the light shielding plate 13 is large is extracted. That is, the output of the amplifier 14 is selectively supplied to the smoothing circuits 18 and 19 by the switch 17. Switch 17 and switch 15 are synchronously controlled by the output of oscillation circuit 21, and when voltage is applied to liquid crystal shutter 13, switch 1
7 is supplied to the smoothing circuit 18. The output of the smoothing circuit 18 is outputted to the output terminal 22 as a detection signal corresponding to the displacement of the light shielding plate 13.

平滑回路19の出力が一定値になるように発光
部11が制御される。例えば平滑回路19の出力
は演算増幅器23の反転入力側へ供給され、演算
増幅器23の非反転入力側には電源24より基準
電圧E2が印加される。演算増幅器23の両入力
の差に応じた発光部11の電源25の電圧E1
制御される。電源25の出力は必要に応じ抵抗器
26が通じて発光部11に印加されている。
The light emitting section 11 is controlled so that the output of the smoothing circuit 19 becomes a constant value. For example, the output of the smoothing circuit 19 is supplied to the inverting input side of the operational amplifier 23, and the reference voltage E2 is applied from the power supply 24 to the non-inverting input side of the operational amplifier 23. The voltage E 1 of the power source 25 of the light emitting section 11 is controlled according to the difference between both inputs of the operational amplifier 23 . The output of the power source 25 is applied to the light emitting section 11 via a resistor 26 as required.

いま遮光板13は不透明状態で、変位x=0で
は、受光部12の最大受光量の半部を受光し、最
大変位は±aとする。受光部12の幅をL、受光
部12の光―電気変換効率をk、発光部11より
放射する光量をQとすると、平滑回路18の出力
V1は遮光板13が不透明状態の増幅器14の出
力と比例しているから、 V1=kQL(a±x) (1) となる。平滑回路19の出力V2は、遮光板13
が透明状態の増幅器14の出力と比例しているか
ら V2=kQL×2a (2) と表わせる。このV2が基準電圧E2と等しくなる
ように電源25の電圧E1が制御されているため、 kQ=E2/L×2a V1=LE2/L×2a(a±x)=E2/2a(a±x) (3) となる。このように端子22の出力V1は遮光板
13の変位xに比例し、しかも発光部11の光量
Q、受光部12の変換効率kに無関係である。従
つて周囲温度変化、経年変化などによつて光量
Q、効率kが変動しても、この変動に検出出力
V1は影響されない。
Now, the light shielding plate 13 is in an opaque state, and when the displacement x=0, half of the maximum amount of light received by the light receiving section 12 is received, and the maximum displacement is ±a. If the width of the light receiving section 12 is L, the light-to-electrical conversion efficiency of the light receiving section 12 is k, and the amount of light emitted from the light emitting section 11 is Q, then the output of the smoothing circuit 18 is
Since V 1 is proportional to the output of the amplifier 14 when the light shielding plate 13 is in an opaque state, V 1 =kQL(a±x) (1). The output V 2 of the smoothing circuit 19 is transmitted to the light shielding plate 13
Since it is proportional to the output of the amplifier 14 in the transparent state, it can be expressed as V 2 =kQL×2a (2). Since the voltage E1 of the power supply 25 is controlled so that this V2 is equal to the reference voltage E2 , kQ= E2 /L×2a V1 = LE2 /L×2a(a±x)=E 2 /2a(a±x) (3) In this way, the output V 1 of the terminal 22 is proportional to the displacement x of the light shielding plate 13 and is independent of the light amount Q of the light emitting section 11 and the conversion efficiency k of the light receiving section 12. Therefore, even if the light quantity Q and efficiency k change due to ambient temperature changes, aging, etc., the detection output will be affected by this change.
V 1 is not affected.

<第2実施例> 第2図はこの発明の第2実施例を示し、第1図
と対応する部分には同一符号を付けてある。この
例では電源16が省略され、代つて抵抗器26と
並列にスイツチ15を介して抵抗器27が接続さ
れる。更に発光部11と直列に抵抗器28が挿入
され、その抵抗器28の両端はツエナーダイオー
ドのようなしきい値素子29を通じて、遮光板と
しての液晶シヤツタ13の両電極に接続される。
スイツチ15がオフで発光部11を流れる電流は
i1で、この時の抵抗器28の両端電圧によつて
は、しきい値素子29は不導通で液晶シヤツタ1
3は透明であるが、スイツチ15がオンの場合は
発光部11に電流i2が流れ、この電流i2にもとず
く抵抗器28の両端電圧でしきい値素子29が導
通し、液晶シヤツタ13に電圧が印加されて不透
明になるように、しきい値素子29のしきい値、
抵抗器26,27,28の各抵抗値などが選定さ
れる。
<Second Embodiment> FIG. 2 shows a second embodiment of the present invention, in which parts corresponding to those in FIG. 1 are given the same reference numerals. In this example, the power supply 16 is omitted, and instead a resistor 27 is connected in parallel with the resistor 26 via the switch 15. Further, a resistor 28 is inserted in series with the light emitting section 11, and both ends of the resistor 28 are connected to both electrodes of the liquid crystal shutter 13 as a light shielding plate through a threshold element 29 such as a Zener diode.
When the switch 15 is off, the current flowing through the light emitting section 11 is
i 1 , and depending on the voltage across the resistor 28 at this time, the threshold element 29 is non-conductive and the liquid crystal shutter 1
3 is transparent, but when the switch 15 is on, a current i2 flows through the light emitting part 11, and the voltage across the resistor 28 based on this current i2 makes the threshold element 29 conductive, and the liquid crystal shutter is turned on. the threshold value of threshold element 29 such that a voltage is applied to 13 to make it opaque;
The resistance values of the resistors 26, 27, and 28 are selected.

i1:i2=1:nとすると、i1にもとずく発光部
11の光量Q1,i2にもとずく光量Q2もQ1:Q2
1:nとなる。前述と同様に V1=kQL(a±x)、V2=kQ1L×2a kQ1=E2/L×2a=KQ2/n∴V1=nE2/2a(a±x) となり、検出出力V1は変位xに比例し、かつk、
Q1、Q2などの変動の影響を受けない。
When i 1 :i 2 = 1:n, the light amount Q 1 of the light emitting unit 11 based on i 1 and the light amount Q 2 based on i 2 are also Q 1 :Q 2 =
1:n. As before, V 1 = kQL (a±x), V 2 = kQ 1 L×2a kQ 1 = E 2 /L×2a=KQ 2 /n∴V 1 = nE 2 /2a (a±x). , the detection output V 1 is proportional to the displacement x, and k,
It is not affected by fluctuations such as Q 1 and Q 2 .

<第3実施例> 第3図はこの発明の第3実施例を示す。この例
は遮光板13の光透過度が大とされた時の平滑回
路19の出力V2と基準電圧E2とを増幅器23で
比較し、その比較出力と、遮光板13の光透過度
が小とされた時の平滑回路18の出力V1、つま
り変位xに比例した出力との差を演算増幅器31
でとり、その演算増幅器31の出力により発光部
の電源25を制御して演算増幅器23の両入力、
演算増幅器31の両入力がそれぞれ一致するよう
にする。変位xの検出出力として演算増幅器23
の出力が端子22に取出される。前述の場合と同
様に、 V1=kQL(a±x)、V2=kQL×2a であり、かつE2=V2となるように動作すると共
に、端子22の出力電圧V0がV1になるように動
作する。従つて、 V0=V1=kQL(a±x)=E2/2a(a±x) となり、端子22の出力V0には変位xに比例し
た出力が得られる。この実施例では出力端子22
の出力V0が帰還されているため、外部雑音の影
響を受け難い。つまり、第1図、第2図に示した
実施例では平滑回路18から出力端子22の信号
通路に雑音が入ると、これが出力端子22へ出力
される。しかし第3図の実施例では全体を帰還し
ているからそのような雑音は抑圧される。
<Third Embodiment> FIG. 3 shows a third embodiment of the present invention. In this example, the amplifier 23 compares the output V 2 of the smoothing circuit 19 and the reference voltage E 2 when the light transmittance of the light shielding plate 13 is high, and the comparison output and the light transmittance of the light shielding plate 13 are The operational amplifier 31 calculates the difference between the output V 1 of the smoothing circuit 18 when the displacement is small, that is, the output proportional to the displacement x.
The power source 25 of the light emitting section is controlled by the output of the operational amplifier 31, and both inputs of the operational amplifier 23 are connected.
Both inputs of the operational amplifier 31 are made to match each other. Operational amplifier 23 as a detection output of displacement x
The output is taken out to the terminal 22. As in the previous case, V 1 = kQL (a±x), V 2 = kQL×2a, and E 2 = V 2 , and the output voltage V 0 of the terminal 22 is V 1 It works so that it becomes. Therefore, V 0 =V 1 =kQL(a±x)=E 2 /2a(a±x), and the output V 0 of the terminal 22 is proportional to the displacement x. In this embodiment, the output terminal 22
Since the output V0 is fed back, it is less susceptible to external noise. That is, in the embodiment shown in FIGS. 1 and 2, when noise enters the signal path from the smoothing circuit 18 to the output terminal 22, it is output to the output terminal 22. However, in the embodiment of FIG. 3, such noise is suppressed because the entire signal is fed back.

<その他の実施例> 第3図に示した実施例において第4図に示すよ
うに平滑回路18の出力V1を増幅器32で増幅
して比較増幅器31へ供給してもよい。或は逆に
出力端子22の出力V0を分圧して比較増幅器3
1へ供給してもよい。
<Other Embodiments> In the embodiment shown in FIG. 3, the output V 1 of the smoothing circuit 18 may be amplified by the amplifier 32 and supplied to the comparison amplifier 31 as shown in FIG. Or conversely, the output V 0 of the output terminal 22 is divided and the comparison amplifier 3
It may be supplied to 1.

先の例では遮光板13は電圧印加ゼロで透明体
となるようにしたが、完全な透明体にすることは
困難な場合がある。このような場合には例えば第
5図に示すように液晶シヤツタの遮光板13をそ
の変位方向に延長し、発光部11から受光部12
に達する光は必ず液晶シヤツタ13を通過するよ
うにされ、その液晶シヤツタの変位方向における
一半部は電極が形成されてなく、常に透明な透明
部13aとされ、他半部に電極が形成され、透過
度が制御される可変部13bとする。このように
すれば液晶シヤツタの光透過度が温度や経年変化
などで変化しても出力V0に誤差は生じない。上
述では遮光板13として電圧を印加した時に、光
透過度が小となり、不透明となるものを用いた
が、電圧を印加した時に光透明度が大になる液晶
シヤツタを用いてもよい。その場合は例えば第6
図に示すように液晶シヤツタの変位方向における
一半部と、他半部とに分離してそれぞれ対向電極
を設け、電源16よりその一半部には常に電圧を
印加して透明部13aとし、他半部はスイツチ1
5で電圧をオン、オフ印加して可変部13bとす
ればよい。第2図に示した実施例において抵抗器
26,27を切替える代りに電源25の電圧E1
を一定比率で切替えてもよく、電源25としては
電流源を用いてもよい。発光部11は白熱ランプ
でもよい。
In the previous example, the light shielding plate 13 was made to become transparent when no voltage was applied, but it may be difficult to make it completely transparent. In such a case, for example, as shown in FIG.
The light reaching the liquid crystal shutter 13 is made sure to pass through the liquid crystal shutter 13, and one half of the liquid crystal shutter in the displacement direction has no electrodes and is always transparent, a transparent part 13a, and the other half has an electrode formed thereon. It is assumed that the variable part 13b has transparency controlled. In this way, even if the light transmittance of the liquid crystal shutter changes due to temperature or aging, no error will occur in the output V0 . In the above description, the light shielding plate 13 is made of a material that has low light transmittance and becomes opaque when a voltage is applied, but a liquid crystal shutter that has high light transparency when a voltage is applied may also be used. In that case, for example, the 6th
As shown in the figure, one half in the displacement direction of the liquid crystal shutter and the other half are separated and provided with opposing electrodes, and a voltage is constantly applied to one half from the power supply 16 to form a transparent part 13a, and the other half Part is switch 1
5, the voltage may be applied on and off to form the variable portion 13b. In the embodiment shown in FIG. 2, instead of switching the resistors 26, 27, the voltage E 1 of the power supply 25 is
may be switched at a constant ratio, and a current source may be used as the power source 25. The light emitting section 11 may be an incandescent lamp.

<効 果> 以上述べたようにこの発明の光式変位変換器に
よれば、その構成から理解されるように、静電容
量式の場合のように各部を順次積み重ねて構成す
ることなく、比較的簡単に作ることができる。し
かも発光部、受光部、第3図の実施例ではその他
の増幅部などを含む全体の系における定数や特性
の変動が生じても、出力はこれに影響されない。
<Effects> As described above, according to the optical displacement transducer of the present invention, as can be understood from its configuration, it does not have to be constructed by stacking each part one after another as in the case of a capacitance type. It can be made easily. Moreover, even if the constants and characteristics of the entire system including the light emitting section, the light receiving section, and other amplifying sections in the embodiment shown in FIG. 3 change, the output is not affected by this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図はそれぞれこの発明による光
式変位変換器の一例を示すブロツク図、第4図は
その一部変形を示すブロツク図、第5図及び第6
図はそれぞれ遮光板13の変形例を示す図であ
る。 11:発光部、12:受光部、13:遮光板、
18,19:平滑回路、21:発振回路、22:
出力端子、23,31:比較増幅器、24:基準
電源。
1 to 3 are block diagrams showing an example of an optical displacement converter according to the present invention, FIG. 4 is a block diagram showing a partial modification thereof, and FIGS.
Each figure shows a modified example of the light shielding plate 13. 11: light emitting section, 12: light receiving section, 13: light shielding plate,
18, 19: Smoothing circuit, 21: Oscillation circuit, 22:
Output terminal, 23, 31: comparison amplifier, 24: reference power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 光を発生する発光部と、その発光部からの光
を受光する受光部と、これらの発光部及び受光部
間に配され、物理量に応じて変位し、その変位に
応じて上記受光部に入射される光量を変化させる
と共に、電気信号により光透過量を大小に変化さ
せることができる遮光板と、その遮光板に対し印
加する電気信号を周期的に変化する手段と、この
周期的変化と同期して上記受光部からの信号を取
出す手段と、上記遮光板の光透過量が大に制御さ
れた状態での上記受光部からの電気信号がほゞ一
定になるように上記発光部を制御する手段とを具
備する光式変位変換器。
1. A light-emitting part that generates light, a light-receiving part that receives light from the light-emitting part, and a light-receiving part that is disposed between these light-emitting parts and light-receiving parts, and that is displaced according to a physical quantity, and that the light-receiving part changes according to the displacement. A light-shielding plate capable of changing the amount of incident light and the amount of light transmitted by an electric signal, a means for periodically changing the electric signal applied to the light-shielding plate, and a means for periodically changing the electric signal applied to the light-shielding plate; means for synchronously extracting signals from the light receiving section; and controlling the light emitting section so that the electrical signal from the light receiving section is substantially constant while the amount of light transmitted through the light shielding plate is greatly controlled. An optical displacement transducer comprising means for.
JP13236782A 1982-07-28 1982-07-28 Optical type displacement transducer Granted JPS5920811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13236782A JPS5920811A (en) 1982-07-28 1982-07-28 Optical type displacement transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13236782A JPS5920811A (en) 1982-07-28 1982-07-28 Optical type displacement transducer

Publications (2)

Publication Number Publication Date
JPS5920811A JPS5920811A (en) 1984-02-02
JPS6344175B2 true JPS6344175B2 (en) 1988-09-02

Family

ID=15079710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13236782A Granted JPS5920811A (en) 1982-07-28 1982-07-28 Optical type displacement transducer

Country Status (1)

Country Link
JP (1) JPS5920811A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154403A (en) * 1984-08-24 1986-03-18 Toshiba Corp Lens position detecting device
JPH0632567Y2 (en) * 1989-12-28 1994-08-24 日本放送協会 Position detector
JPH03277933A (en) * 1990-03-28 1991-12-09 Takaoka Electric Mfg Co Ltd Torque sensor
JPH081443Y2 (en) * 1991-09-27 1996-01-17 株式会社ハイロックス Ultra-small close-up photography device
CN100487148C (en) * 2004-08-10 2009-05-13 三菱伸铜株式会社 Copper-based alloy casting of micro-pulverized crystal grain
JP4933606B2 (en) * 2009-11-09 2012-05-16 大同工機株式会社 Filter for preventing sticking of foreign substances such as algae

Also Published As

Publication number Publication date
JPS5920811A (en) 1984-02-02

Similar Documents

Publication Publication Date Title
KR850001590A (en) Ambient light and electronic noise reduction circuit
WO2000002309A3 (en) A current steering variable gain amplifier with linearizer
JPS6344175B2 (en)
KR920007247A (en) Optical Coupling Detection Device
US3283157A (en) Photomodulator for use with high gain d.c. amplifier
KR900001117A (en) Automatic gain control circuit
US4529928A (en) Automatic control circuit for a current translating device
RU2800159C1 (en) Light receiver
SU1383105A1 (en) Double-beam photometer
SU449353A1 (en) Optoelectronic device for the construction of electrical signals in the fraction
SU1538059A1 (en) Photometer
SU1425723A1 (en) Voltage divider
KR920009033A (en) Discrete current source whose output decreases with increasing control voltage
KR860001074B1 (en) Isolation amplifier
SU972524A1 (en) Amplitude discriminator
SU661357A1 (en) Autocompensator
KR920004338Y1 (en) Circuit for detecting and controlling two carrier voice identification signal
SU769740A1 (en) Photodetector
SU930306A1 (en) Bipolar dc voltage stabilizer
SU1638714A1 (en) Controlled current source
SU1658181A1 (en) Logic image processor
JPS6341492B2 (en)
JPH0571915A (en) Optical distance detecting apparatus
SU538375A2 (en) Functional converter
SU932614A1 (en) Multichannel voltage change-over switch