JPS6344125A - Glass pipe sheathing type sensor - Google Patents

Glass pipe sheathing type sensor

Info

Publication number
JPS6344125A
JPS6344125A JP61187858A JP18785886A JPS6344125A JP S6344125 A JPS6344125 A JP S6344125A JP 61187858 A JP61187858 A JP 61187858A JP 18785886 A JP18785886 A JP 18785886A JP S6344125 A JPS6344125 A JP S6344125A
Authority
JP
Japan
Prior art keywords
sensor
glass pipe
temperature
uniform
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61187858A
Other languages
Japanese (ja)
Inventor
Tadanobu Honda
本田 忠信
Yasumoto Unoki
保元 宇ノ木
Kouji Ootsuchi
大土 宏司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMA DENKI KOGYO KK
Tama Electric Co Ltd
Original Assignee
TAMA DENKI KOGYO KK
Tama Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMA DENKI KOGYO KK, Tama Electric Co Ltd filed Critical TAMA DENKI KOGYO KK
Priority to JP61187858A priority Critical patent/JPS6344125A/en
Priority to CA000544245A priority patent/CA1320311C/en
Publication of JPS6344125A publication Critical patent/JPS6344125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To uniform the responsivenss of a sensor and reduce a cost by forming the insulating protective sheathing of a glass pipe in close contact with the surface of a temperature dependent resistance film. CONSTITUTION:After a spiral groove 5 is formed in a temperature dependent resistance film 2 by a suitable method, for example, a laser machining, a sensor is sheathed with a glass pipe having a uniform wall thickness in the longitudinal direction of the sensor and an insulating protective sheathing 6' with a uniform thickness is coated in close contact with the film 2 by applying a suitable means, such as fusion by heating, to the glass pipe according to demand. This structure can uniform the responsiveness of the sensor and also reduce a scatter in the time constant of the sensor. Thus, unevenness in the responsiveness based on the uneven thickness of a coating film can be removed and the cost of the sensor can be reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、測定対象流体の流路にこれを設置して、温
度依存性抵抗膜と流体間の熱伝達を利用することにより
流体の流量または流速を検出することを主たる目的とす
る感熱型流体検出用センサーに関するものであるが、こ
のセンサーはまた測定対象雰囲気中にこれ?設置して、
温度依存性抵抗膜の抵抗値から雰囲気の温度を検出する
ことを目的とする感温抵抗体としても使用することが出
来ろものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention measures the flow rate of a fluid by installing it in a flow path of a fluid to be measured and utilizing heat transfer between a temperature-dependent resistive film and the fluid. This relates to a heat-sensitive fluid detection sensor whose main purpose is to detect flow velocity, but this sensor also detects the presence of water in the atmosphere to be measured. Install it and
It can also be used as a temperature-sensitive resistor for the purpose of detecting the temperature of the atmosphere from the resistance value of the temperature-dependent resistive film.

〔従来の技術〕[Conventional technology]

従来この種の感熱型流体検出用センサーとして知られて
いるものは第1図に示すようなものであった。
A conventionally known heat-sensitive fluid detection sensor of this type is shown in FIG.

即ち、第1図に於て、(1)はセラミックまたは石英な
どから成る円筒形絶縁管、(2)は円筒形絶縁管(1+
の外表面上に形成した温度依存性抵抗膜で、この場合例
えば白金抵抗膜、13)は上記円筒形絶縁管+1)の両
端開口部からその内部に一端を挿入して固定したリード
、(4)はこのリード(3)と円筒形絶縁管(1)とを
接続する為の導電性ペーストで、この場合例えば白金ベ
ース) 、(5)は感熱型流体検出用センサーの抵抗値
が所望の値を示すように前記温2度依存性抵抗膜12)
に螺旋状に形成したトリミング溝、(6)は前記温度依
存性抵抗膜(2)及びトリミング溝(5)の上に塗布し
て形成したコーテイング膜である。
That is, in Fig. 1, (1) is a cylindrical insulating tube made of ceramic or quartz, and (2) is a cylindrical insulating tube (1+
13) is a temperature-dependent resistive film formed on the outer surface of the cylindrical insulating tube +1), in this case, for example, a platinum resistive film; ) is a conductive paste for connecting this lead (3) and the cylindrical insulating tube (1), in this case, for example, platinum base), and (5) is a conductive paste for connecting the lead (3) to the cylindrical insulating tube (1). As shown in the above-mentioned temperature 2 degree dependent resistance film 12)
A trimming groove (6) formed in a spiral shape is a coating film formed by coating on the temperature-dependent resistance film (2) and the trimming groove (5).

以上のような構成を有する感熱型流体検出用センサーの
使用方法は次のとえりである。
The method of using the heat-sensitive fluid detection sensor having the above configuration is as follows.

即ち、まず、流体通路にこの感熱型流体検出用センサー
を設け、これに予め通電して流体温度よりイ)高い温度
に加熱してお(。
That is, first, this heat-sensitive fluid detection sensor is installed in the fluid passage, and it is heated in advance to a temperature higher than the fluid temperature by energizing it.

この加熱された感熱型流体検出用センサーに流体が肖る
と、流体の流者及び流速に応じた熱量が該感熱型流体検
出用センサーから奪われ、その際の流体流量Qと熱→k
IIとの間には、次に示すキングの関係式が成立するこ
とが一般に知られている。
When fluid comes into contact with this heated thermosensitive fluid detection sensor, the amount of heat corresponding to the flower and flow velocity of the fluid is taken away from the thermosensitive fluid detection sensor, and the fluid flow rate Q and heat→k
It is generally known that the following King's relational expression holds between .

)1 = (A−+−B、/’W > CTl−1−T
h )但し、A及びBは定数、TH−T龜 はセンサーと流体との温度差である、 従って、上記センサーと流体との温度差を一定に保持し
、熱−IHまたはそれに相当する加熱電流を検出するこ
とにより、流体の流計または流速を測定することが出来
る・ 〔この発明が解決しようとする問題点〕第1図に基づい
て一ヒ述した従来の感p′A型流体検出用センサーに於
ては、コーティング7摸(6)の厚みを一定に制御する
ことが困難で、bるところから、いきおい不均一な厚み
の層となることを避は難(、その@朱として、核部分の
有する熱容前の不均衡によってセンサーの応答が不均一
となり、時定数もセンサーによってばらつく等の欠陥が
あった。
)1 = (A-+-B, /'W > CTl-1-T
h) However, A and B are constants, and TH-T is the temperature difference between the sensor and the fluid. Therefore, the temperature difference between the sensor and the fluid is kept constant, and the heating current is [Problems to be solved by this invention] The conventional p'A type fluid detection method described above based on FIG. In sensors, it is difficult to control the thickness of the coating 7 (6) at a constant level, so it is inevitable that the layer will have an uneven thickness. Due to the imbalance before the heat capacity of the core, the response of the sensor was non-uniform, and the time constant varied depending on the sensor.

また、コーテイング膜(6)を形成することそれ自体に
ついても、極めて慎重を要てろ困難な作業を伴うところ
から、余分の手間がかかり、コストも高くつく欠点があ
った。
Further, the formation of the coating film (6) itself is a difficult and delicate operation, which requires extra effort and costs.

C問題点を解決する手段〕 この発明は、従来の感熱型流体検出用センサー罠不町避
であった上記のような欠陥を解消する為になされたもの
でちって、温度依存性抵抗膜(2)に螺旋状の溝(5)
を]を宜方法、例えばレーザー’jrl工法を用いて形
成したうえ、センサーの長手方向に厚みの均一なガラス
パイプを被着し、必要に応じてこれに加熱溶融等の適宜
手段を施して、厚みが均一な絶縁性保護被覆(6)′を
密着形成することにより、実質的て均一な応答性を示し
、時定数のげらつぎも小さい、優れた7感熱型流体検出
用でンサーであると同時に感温抵抗体としても使用し得
るガラスパイプ被6E型センサーを提供するものである
Means for Solving Problem C] The present invention was made in order to eliminate the above-mentioned defects in the conventional heat-sensitive fluid detection sensor. 2) Spiral groove (5)
] is formed using a suitable method, for example, the laser 'jrl construction method, and then a glass pipe of uniform thickness is attached in the longitudinal direction of the sensor, and if necessary, a suitable means such as heating and melting is applied to this. By closely forming an insulating protective coating (6)' with a uniform thickness, it exhibits substantially uniform response and has small fluctuations in time constant, making it an excellent 7 heat-sensitive fluid detection sensor. At the same time, the present invention provides a 6E-type sensor covered with a glass pipe that can be used as a temperature-sensitive resistor.

〔実施例〕〔Example〕

第2図は、第1図に示す従来公知の感兆型流体検出用セ
ンサーと対照的に、この発明に係るガラスパイプ被覆型
センサーの実施例を模式化して示したものであって、図
中(6)′がガラスパイプの加熱溶融等の適宜方法によ
って形成した実質的に厚みの均一な絶縁性保護被覆を示
すほか、その余の符号は第1図(4−示すものと基本的
に同一である。
FIG. 2 schematically shows an embodiment of the glass pipe covered type sensor according to the present invention, in contrast to the conventionally known symptom-type fluid detection sensor shown in FIG. (6)' indicates an insulating protective coating of substantially uniform thickness formed by heating and melting a glass pipe or other appropriate method, and the remaining symbols are basically the same as those shown in Figure 1 (4-). It is.

この実施例に於ては、白金の温度依存4/−F、抵抗膜
(2)にレーザーによって螺旋状の#4 F5+を形成
したリード付の素子を、NEG製のLG−16ガラスパ
イプで被覆し、これを750Cで加熱溶融すること罠よ
ってぐ碌性保護破(グ(6)を形成しである。
In this example, a leaded element with a temperature-dependent platinum 4/-F resistive film (2) formed with a spiral #4 F5+ by laser is covered with an LG-16 glass pipe made by NEG. Then, by heating and melting this at 750C, a durable protective crack (6) is formed.

なお、従来公知の感熱型流体検出用センサーと、それと
同一規格のこの発明に係る上記実施例との特性上の差異
を実験的に確かめたところ、下記第1表に示すとおりの
顕著な結果が得られ、この発明に係ろガラスパイプ被[
′a型センサーの極めて優れた効果が実証されている。
In addition, when we experimentally confirmed the difference in characteristics between the conventionally known heat-sensitive fluid detection sensor and the above-mentioned embodiment according to the present invention, which has the same standard, we found remarkable results as shown in Table 1 below. According to the present invention, a filter glass pipe covered [
The extremely excellent effectiveness of the 'a-type sensor has been demonstrated.

因みに、第1表は、静止空気中に於ける試讐センサーの
熱時定数(90%)を確認したものであって、同表中の
各数値は、従来公知の試料センサー合計4個及びこの発
明に係る試料センサー合計4個の各熱時定数(90%)
の測定結果を示すものであり、またその測定方法は、別
途第3図のグラフに示すとおりである。
Incidentally, Table 1 confirms the thermal time constant (90%) of the sample sensor in still air, and each value in the table is for a total of 4 conventionally known sample sensors and this Each thermal time constant (90%) of a total of 4 sample sensors according to the invention
This shows the measurement results, and the measurement method is as shown separately in the graph of FIG.

この測定結果によれば、従来公知の試料センサーの熱時
定数(90%)が5.18秒から6.10秒までの広い
範囲に分散しているのに対し、この発明に係る試料セン
サーの熱時定数は5.70秒から5.90秒という極め
て狭い範囲に世中していることを明らかに看取し得る。
According to the measurement results, the thermal time constant (90%) of the conventionally known sample sensor is dispersed over a wide range from 5.18 seconds to 6.10 seconds, whereas the thermal time constant (90%) of the sample sensor according to the present invention is It can be clearly seen that the thermal time constant is within an extremely narrow range of 5.70 seconds to 5.90 seconds.

第1表 静止空気中に於ける熱時定数(90%)の比較〔この発
明の効果〕 従来の感熱型流体検出用センサーに於てはコーテイング
膜(6)の厚みが不均一となるところから、応答性が不
均一となり、時定数′/c′i〕ばらつきを生ずると共
に、コーテイング膜16)の形成にも困難を伴うといつ
欠陥が避は難かったが、この発明では、ガラスパイプを
vt、覆し、必要に応じてこれに加熱溶融等の適宜手段
を施すこと(よって厚みの一定な絶縁性保護被覆(6)
′を形成することで、感熱型流体検出用センサーとして
これを使用する場合には応答性が均一であり且つ時定数
のばらつきも抑…11出来ろとい5堕めて優れた効果を
有すると共に、一般用途の感温抵抗体として使用した場
合にも有用なセンサーを極めて容易に実現することが可
能である。
Table 1 Comparison of thermal time constants (90%) in still air [Effects of this invention] This is because the thickness of the coating film (6) is non-uniform in conventional heat-sensitive fluid detection sensors. , the response becomes non-uniform, the time constant '/c'i] varies, and it is difficult to form the coating film 16), making it difficult to avoid defects. However, in this invention, the glass pipe can be , cover it, and if necessary, apply appropriate means such as heating and melting to it (thus, an insulating protective coating with a constant thickness (6)
' By forming this, when used as a heat-sensitive fluid detection sensor, the response is uniform and the variation in time constant is suppressed. It is possible to extremely easily realize a sensor that is useful even when used as a temperature-sensitive resistor for general purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来公知のコーティング層(6)を有する感
熱型流体検出用センサーの構造図、第2p、/lは、ガ
ラスパイプを被覆し、必要に応じてこれに加熱溶融等の
適宜手段な流動こと罠よって絶縁性保d口r a +s
+’を形成したことを特徴とするこの発明に係るガラス
パイプ被覆型センサーの実、効例の構造図をそとそれ示
1−1両図中の各符号は次の各構成を示す、。 (11:  絶縁性基体 (2):  温度依存性抵抗膜 (3):リード (4):  導伝性ペースト (5):  螺旋状溝 (6):  コーテイング膜(第1図)+6+’  :
  ガラスバイブ絶縁性保護被覆(第2図)第3図は、
第1表に於ける熱時定Fi(90%)の測定方法を示す
グラフである。
Fig. 1 is a structural diagram of a heat-sensitive fluid detection sensor having a conventionally known coating layer (6), and Fig. 2p and /l show a glass pipe coated with a glass pipe and, if necessary, an appropriate means such as heating and melting. Due to the flow and trap, the insulating hole r a +s
1-1 The reference numerals in both figures indicate the following structures. (11: Insulating substrate (2): Temperature-dependent resistance film (3): Lead (4): Conductive paste (5): Spiral groove (6): Coating film (Figure 1) +6+':
Glass vibe insulating protective coating (Figure 2) Figure 3 is as follows:
2 is a graph showing a method for measuring thermal time constant Fi (90%) in Table 1.

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性基体の表面に、螺旋状の溝を形成した温度
依存性抵抗膜を有し、該温度依存性抵抗膜の表面にガラ
スパイプの絶縁性保護被覆を有することを特徴とするガ
ラスパイプ被覆型センサー。
(1) A glass characterized by having a temperature-dependent resistive film with spiral grooves formed on the surface of an insulating substrate, and having an insulating protective coating of a glass pipe on the surface of the temperature-dependent resistive film. Pipe-covered sensor.
(2)絶縁性基体の表面に温度依存性抵抗膜を被着し、
該温度依存性抵抗膜に螺旋状の溝を形成した後、該螺旋
状の溝を有する温度依存性抵抗膜の表面にガラスパイプ
を密着被覆することによつて絶縁性保護被覆を形成する
ことを特徴とするガラスパイプ被覆型センサーの製造方
法。
(2) A temperature-dependent resistance film is deposited on the surface of the insulating substrate,
After forming a spiral groove in the temperature-dependent resistance film, an insulating protective coating is formed by closely covering the surface of the temperature-dependent resistance film having the spiral groove with a glass pipe. A manufacturing method for a glass pipe covered sensor.
JP61187858A 1986-08-12 1986-08-12 Glass pipe sheathing type sensor Pending JPS6344125A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61187858A JPS6344125A (en) 1986-08-12 1986-08-12 Glass pipe sheathing type sensor
CA000544245A CA1320311C (en) 1986-08-12 1987-08-11 Process for producing dry –-l-aspartyl-l-phenylalanine methyl ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61187858A JPS6344125A (en) 1986-08-12 1986-08-12 Glass pipe sheathing type sensor

Publications (1)

Publication Number Publication Date
JPS6344125A true JPS6344125A (en) 1988-02-25

Family

ID=16213444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61187858A Pending JPS6344125A (en) 1986-08-12 1986-08-12 Glass pipe sheathing type sensor

Country Status (1)

Country Link
JP (1) JPS6344125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309668B1 (en) 1994-02-01 2001-10-30 Aventis Pharma Limited Abuse resistant tablets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309668B1 (en) 1994-02-01 2001-10-30 Aventis Pharma Limited Abuse resistant tablets

Similar Documents

Publication Publication Date Title
RU2284595C2 (en) STABLE TUNGSTEN-ON-AlN HIGH-TEMPERATURE SENSOR/HEATER SYSTEM AND METHOD THEREOF
US8024958B2 (en) Gas sensors with thermally insulating ceramic substrates
JPH0221533B2 (en)
JPS6259442B2 (en)
US6318171B1 (en) Flow rate sensor implementing a plurality of inner tubes located within a sensor tube
KR920003950B1 (en) A heat wire type airflow meter with an improved resistance element and manufacturing method thereof
US4160969A (en) Transducer and method of making
EP0245092B1 (en) Thermo-sensitive resistor
CN111220257B (en) Acoustic particle velocity reactor and manufacturing method thereof
JPS6344125A (en) Glass pipe sheathing type sensor
US5251481A (en) Direct-intake air measuring apparatus
US11092471B2 (en) Sensor element and thermal flow sensor for determining a physical variable of a measurement medium
JPH05107118A (en) Method of measuring characteristic of medium
JP2984455B2 (en) Resistance element
JPS5965216A (en) Heat type flowmeter
JP3348256B2 (en) Heat removal atmosphere detector
JP2541540Y2 (en) Ceramic heater
JPH0823535B2 (en) Differential scanning calorimeter
JPH01316904A (en) Manufacture of glass coated type electronic component
JPS6189521A (en) Apparatus for detecting flow amount of gas
JPH0334653Y2 (en)
JPS62231148A (en) Thermal analysis instrument
JPS60218034A (en) Manufacture of sensor for thermal flow rate detection
JPH0510805A (en) Heat-sensitive type detector of residual quantity of fuel
US3512415A (en) Sensor for a thermostatic system