JPS6343591B2 - - Google Patents
Info
- Publication number
- JPS6343591B2 JPS6343591B2 JP14507480A JP14507480A JPS6343591B2 JP S6343591 B2 JPS6343591 B2 JP S6343591B2 JP 14507480 A JP14507480 A JP 14507480A JP 14507480 A JP14507480 A JP 14507480A JP S6343591 B2 JPS6343591 B2 JP S6343591B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- cam
- rotation speed
- drive motor
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005086 pumping Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000003786 synthesis reaction Methods 0.000 claims 1
- 230000010349 pulsation Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000004907 gland Anatomy 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/20—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B11/00—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
- F04B11/005—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
- F04B11/0058—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons with piston speed control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2203/00—Motor parameters
- F04B2203/02—Motor parameters of rotating electric motors
- F04B2203/0209—Rotational speed
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、往復動形プランジヤポンプを使用
した無脈動定量ポンプの改良に関し、特に無脈動
特性を安定化するための制御機構部の改良に関す
るものである。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an improvement in a non-pulsation metering pump using a reciprocating plunger pump, and particularly to an improvement in a control mechanism for stabilizing the non-pulsation characteristic. It is something.
一般に、シングルプランジヤ式往復動ポンプ
は、吸入行程時に吐出量が零となるため、吐出流
体は大きな脈動を発生する。このような吐出流体
の脈動を防止するため、2本の同径のプランジヤ
を配設すると共に各プランジヤの往復動の位相を
1/2サイクルずらして各プランジヤの合計移動容
積が常に一定となるように制御するポンプが提案
され実施されている。この種のポンプは、前記の
ように各プランジヤの合計移動容積が常に一定に
なるよう作動させる特殊な曲線を有する1個また
は2個のカムを使用し、2本のプランジヤのポン
プ動作による合成吐出量を理論上無脈動とするこ
とができる。すなわち、この種の無脈動往復動形
プランジヤポンプの具体例を示せば、第1図に示
す通りである。第1図に示すポンプは、2本のプ
ランジヤ10,10をカム駆動により往復動させ
て各プランジヤのポンプ動作による合成吐出量を
得るよう構成した往復動ポンプにおいて、各プラ
ンジヤ10,10を平行に並設すると共にこれら
のプランジヤに対し円筒体の一端面にカム面を構
成した単一の回転カム12を係合し、前記カム面
を円周方向に沿つて前記各プランジヤのポンプ動
作による合成吐出量が常に一定となる曲面に構成
したものである。なお、第1図において、参照符
号14は回転カム12の変位をそれぞれのプラン
ジヤ10,10に伝達するためのクロスヘツドで
あり、これらクロスヘツド14,14は、カム面
との当接部にカムフオロア16,16を備えると
共に常時カムフオロア16,16がカム面に当接
するようクロスヘツド14,14の外周にスプリ
ング18,18が囲繞配置される。また、回転カ
ム12は、カム面と反対の端面中心に回転軸20
を固着して片持構造となつている。さらに、プラ
ンジヤ10,10はそれぞれポンプ室22,22
にグランドシール24,24を介して挿通し、各
ポンプ室22,22から導出される吐出配管2
6,26が合流点Aで合流するよう構成されてい
る。
Generally, in a single plunger type reciprocating pump, the discharge amount becomes zero during the suction stroke, so the discharge fluid generates large pulsations. In order to prevent such pulsation of the discharged fluid, two plungers with the same diameter are provided, and the phase of the reciprocating motion of each plunger is shifted by 1/2 cycle so that the total moving volume of each plunger is always constant. Pumps that control the flow rate have been proposed and implemented. This type of pump uses one or two cams with a special curve to operate so that the total moving volume of each plunger is always constant, as described above, and the combined discharge from the pumping operation of the two plungers is The amount can theoretically be made pulsating-free. That is, a specific example of this type of pulsationless reciprocating plunger pump is shown in FIG. The pump shown in FIG. 1 is a reciprocating pump configured to reciprocate two plungers 10, 10 by cam drive to obtain a composite discharge amount by the pump operation of each plunger. A single rotary cam 12 having a cam surface formed on one end surface of a cylindrical body is engaged with these plungers, and the combined discharge by the pumping action of each of the plungers is applied to the cam surface along the circumferential direction. It is constructed into a curved surface where the amount is always constant. In FIG. 1, reference numeral 14 is a crosshead for transmitting the displacement of the rotary cam 12 to the respective plungers 10, 10, and these crossheads 14, 14 have cam followers 16, 16, 14, 14, 14, 22, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 40, 40, 40, 40, 50, 40, 40, 50, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40 cam followers, respectively, crossheads 14, 14, and 14, respectively. 16, and springs 18, 18 are disposed surrounding the outer peripheries of the crossheads 14, 14 so that the cam followers 16, 16 are always in contact with the cam surfaces. Further, the rotating cam 12 has a rotating shaft 20 centered on the end surface opposite to the cam surface.
is fixed to form a cantilevered structure. Further, the plungers 10, 10 are provided with pump chambers 22, 22, respectively.
The discharge piping 2 is inserted through the gland seals 24, 24 and led out from each pump chamber 22, 22.
6 and 26 are configured to merge at a merging point A.
このように、第1図に示されるポンプは、構造
的観点から、第2図aに示すような無脈動特性を
得ることができ、合成吐出量を無脈動とすること
ができる。しかしながら、実際には、次のような
理由から合成吐出量の脈動を完全に回避すること
は困難である。
In this manner, the pump shown in FIG. 1 can obtain a pulsation-free characteristic as shown in FIG. 2a from a structural standpoint, and can make the combined discharge amount pulsation-free. However, in reality, it is difficult to completely avoid pulsations in the combined discharge amount for the following reasons.
カムの変曲点には加工上丸みを持たせる必要
があること。 The inflection point of the cam must be rounded during machining.
カムの加工誤差により、カムないしはプラン
ジヤの速度特性が変化すること。 A change in the speed characteristics of the cam or plunger due to cam machining errors.
2本のプランジヤに対する位相差を180゜ずら
すためのカムの加工ないしは構成配置を正確か
つ精密に行うこと。 Accurately and precisely process or arrange the cam to shift the phase difference between the two plungers by 180 degrees.
ポンプの配管系に接続されるチエツク弁から
微量の逆流を生じること。 Producing a small amount of backflow from the check valve connected to the pump piping system.
ポンプ取扱液にはそれぞれ固有の圧縮性があ
ること。 Each fluid handled by the pump has its own compressibility.
取扱液中に気泡や粒子が含まれることがある
こと。 Air bubbles and particles may be included in the liquid being handled.
従来、上記理由の内比較的規則的に変動する
,項を補正する手段として、次の2方法が提
案されている。 Conventionally, the following two methods have been proposed as means for correcting terms that vary relatively regularly due to the above reasons.
〔〕 プランジヤ吐出行程初期のある範囲だ
け、プランジヤ速度を速くするようなカム速度
曲線を設計することにより、取扱液の圧縮ない
しは逆流によつて吐出量が減少するのを補正す
る方法。[] A method of compensating for the reduction in discharge amount due to compression or backflow of the handled liquid by designing a cam speed curve that increases the plunger speed only in a certain range at the beginning of the plunger discharge stroke.
〔〕 プランジヤの何ストロークかの吐出圧力
の平均値を求め、以後の行程の吐出圧力をその
平均値に近づける方法。[] A method of finding the average value of the discharge pressure of several strokes of the plunger and bringing the discharge pressure of subsequent strokes closer to that average value.
しかしながら、前記方法では、吐出圧力が比
較的低い領域では液の圧縮ないしは逆流が少ない
ため、逆に脈動が増大したり、カムの補正曲線設
計圧力と使用圧力とがずれるに従い補正による減
脈効果が低下する等の難点がある。また、前記方
法では、常に何ストロークかの平均圧力を求め
てこれに近い吐出圧力を維持しようとするもので
あるため、実際の吐出圧力変動に追従できない欠
点がある。さらに、前記方法,共に不規則に
発生する脈動には即応が不可能であり、結局はカ
ムの特性に左右されることになり、満足し得るも
のではなかつた。 However, in the above method, since there is little compression or backflow of liquid in a region where the discharge pressure is relatively low, pulsation increases or the pulsation reduction effect due to correction decreases as the cam correction curve design pressure and operating pressure deviate. There are disadvantages such as a decrease in Further, in the above method, since the average pressure of several strokes is always determined and an attempt is made to maintain a discharge pressure close to this average pressure, there is a drawback that it cannot follow actual fluctuations in discharge pressure. Furthermore, both of the above methods cannot be used to quickly respond to pulsations that occur irregularly, and are ultimately dependent on the characteristics of the cam, which is unsatisfactory.
そこで、本発明者は、前述した従来の無脈動定
量ポンプの問題点を全て克服すべく種々検討並び
に試作を重ねた結果、2本のプランジヤを駆動す
るカムに駆動モータを連結すると共にこの駆動モ
ータに回転数制御回路を接続し、一方合成吐出量
の圧力を検出する圧力検出器を設け、この圧力検
出器によつて検出された圧力変動信号を回転数制
御回路に補正信号として供給するよう構成するこ
とにより、前記問題点を一挙に解消し得ることを
突き止めた。 In order to overcome all the problems of the conventional non-pulsating metering pump mentioned above, the inventor of the present invention conducted various studies and made prototypes, and as a result, connected a drive motor to the cam that drives the two plungers, and connected the drive motor to the cam that drives the two plungers. A rotation speed control circuit is connected to the rotation speed control circuit, and a pressure detector is provided to detect the pressure of the combined discharge amount, and a pressure fluctuation signal detected by this pressure detector is supplied to the rotation speed control circuit as a correction signal. It has been found that by doing so, the above problems can be solved all at once.
従つて、本発明の目的は、簡単な構成でしかも
無脈動定量性を安定に保持することができる無脈
動定量ポンプを提供するにある。 Therefore, an object of the present invention is to provide a pulsation-free metering pump that has a simple configuration and can stably maintain pulsation-free metering performance.
前記の目的を達成するため、本発明において
は、2本のプランジヤをカム駆動により往復動さ
せて各プランジヤのポンプ動作による合成吐出量
を得るよう構成した往復動ポンプにおいて、2本
のプランジヤを駆動するカムに駆動モータを連結
すると共にこの駆動モータに回転数設定回路と主
増幅器と駆動モータの出力を主増幅器にフイード
バツクするタコジエネレータとからなる回転数制
御回路を接続し、さらに合成吐出量が得られる配
管に接続した圧力検出器と圧力検出器の出力信号
から直流分を除去する回路と増幅回路とからな
り、前記増幅回路で得られた信号を反転して回転
数設定回路から出力される信号に加えて回転数制
御回路の制御信号を補正する回路を設けることを
特徴とする。
In order to achieve the above object, the present invention provides a reciprocating pump configured to reciprocate two plungers by cam drive to obtain a composite discharge amount by the pumping operation of each plunger, in which the two plungers are driven. A drive motor is connected to the cam, and a rotation speed control circuit consisting of a rotation speed setting circuit, a main amplifier, and a tachogenerator that feeds back the output of the drive motor to the main amplifier is connected to the drive motor, and a composite discharge amount can be obtained. It consists of a pressure detector connected to the piping, a circuit that removes the DC component from the output signal of the pressure detector, and an amplifier circuit, and the signal obtained by the amplifier circuit is inverted and converted into a signal output from the rotation speed setting circuit. Additionally, a circuit for correcting the control signal of the rotation speed control circuit is provided.
この場合、駆動モータは、モータ単体の機械的
時定数が12msec以下の直流モータを使用すれば
最も好適である。 In this case, it is most preferable to use a direct current motor with a mechanical time constant of 12 msec or less as the drive motor.
次に、本発明に係る無脈動定量ポンプの実施例
につき添付図面を参照しながら以下詳細に説明す
る。
Next, embodiments of the pulsationless metering pump according to the present invention will be described in detail below with reference to the accompanying drawings.
第3図は、本発明ポンプの制御系統図を示すも
ので、参照符号30は、例えば第1図に示す構成
からなる2本のプランジヤを有する往復動形プラ
ンジヤポンプを示す。このプランジヤポンプ30
の2個のポンプ室からそれぞれ導出される吐出配
管が合流する配管32の一部に圧力検出器34を
設け、この圧力検出器34で検出された信号を直
流分除去回路36および増幅回路38を介して吐
出圧力の変動を検出するよう構成する。一方、プ
ランジヤポンプ30の回転カムを駆動する駆動モ
ータ40を設けて、この駆動モータ40の回転出
力を適宜減速機42を介してカム回転軸に伝達す
るよう構成する。そして、前記駆動モータ40
は、前記圧力検出器34から得られる信号により
回転数設定回路44で予め設定した回転数を補正
しながら、主増幅器46を介して回転数制御を行
うよう構成する。なお、駆動モータ40にはタコ
ジエネレータ48を接続配置してその出力を前記
主増幅器46にフイードバツクするよう構成す
る。 FIG. 3 shows a control system diagram of the pump of the present invention, and reference numeral 30 indicates a reciprocating plunger pump having two plungers having the configuration shown in FIG. 1, for example. This plunger pump 30
A pressure detector 34 is provided in a part of the pipe 32 where the discharge pipes led out from the two pump chambers join together, and the signal detected by the pressure detector 34 is sent to a DC component removal circuit 36 and an amplification circuit 38. The configuration is configured to detect fluctuations in discharge pressure via the discharge pressure. On the other hand, a drive motor 40 is provided to drive the rotating cam of the plunger pump 30, and the rotational output of the drive motor 40 is appropriately transmitted to the cam rotating shaft via a speed reducer 42. And the drive motor 40
is configured to perform rotation speed control via a main amplifier 46 while correcting the rotation speed preset by a rotation speed setting circuit 44 based on a signal obtained from the pressure detector 34. A tachometer generator 48 is connected to the drive motor 40 and its output is fed back to the main amplifier 46.
次に、このように構成される本発明ポンプの作
用につき、第4図に示す動作特性と共に説明す
る。 Next, the operation of the pump of the present invention constructed as described above will be explained together with the operating characteristics shown in FIG.
まず、プランジヤポンプ30の動作特性に若干
の脈動を生ずる場合、圧力検出器34において
は、例えば第4図aに示すような出力信号が得ら
れる。この場合、得られる出力信号は、その絶対
値ではなく変動分すなわちリツプル分のみが問題
となるため、直流分除去回路36で直流分を除去
し増幅回路38で適当に増幅すれば、第4図bに
示すような特性曲線が得られる。このようにして
得られた信号を逆位相〔第4図c参照〕にして、
回転数設定回路44からの信号に加えて主増幅器
46へ供給すれば、主増幅器46の出力は第4図
dに示すようになり、この結果圧力検出器34で
検出した圧力が上昇した際には駆動モータ40の
回転数を低減し、また圧力検出器34で検出した
圧力が低下した際には駆動モータ40の回転数を
増大することができる。このようにし、本発明に
よれば、吐出圧力を検出してこれによりポンプの
駆動モータの回転数をネガテイブフイードバツク
制御し、ポンプの吐出圧力変動を極めて小さくす
ることができる。 First, when some pulsation occurs in the operating characteristics of the plunger pump 30, the pressure detector 34 obtains an output signal as shown in FIG. 4a, for example. In this case, the problem with the obtained output signal is not its absolute value but only the fluctuation component, that is, the ripple component. Therefore, if the DC component is removed by the DC component removal circuit 36 and appropriately amplified by the amplifier circuit 38, as shown in FIG. A characteristic curve as shown in b is obtained. The signals obtained in this way are reversed in phase [see Figure 4c], and
If the signal is supplied to the main amplifier 46 in addition to the signal from the rotation speed setting circuit 44, the output of the main amplifier 46 becomes as shown in FIG. The rotation speed of the drive motor 40 can be reduced, and the rotation speed of the drive motor 40 can be increased when the pressure detected by the pressure detector 34 has decreased. In this way, according to the present invention, the discharge pressure can be detected and the rotational speed of the pump drive motor can be controlled by negative feedback, thereby making it possible to extremely minimize fluctuations in the pump discharge pressure.
なお、本発明ポンプを最も効果的に駆動制御す
るには、各機構部の慣性を極力小さくする必要が
あるが、特に駆動モータ40の応答特性が最も重
要である。このため、種々実験を行つた結果、駆
動モータ単体の機械的時定数が12msec以下の直
流モータを使用することにより、カム特性のみに
依存する方式に比べて容易に数分の1以下まで脈
動を小さくすることができることを確認した。従
つて、機械的時定数が15msec以上のモータを使
用する場合には、吐出圧力の変動に充分追従制御
することが困難となり、減脈を期待することはで
きないことが判つた。 In order to drive and control the pump of the present invention most effectively, it is necessary to minimize the inertia of each mechanical part, and the response characteristics of the drive motor 40 are particularly important. For this reason, as a result of various experiments, we found that by using a DC motor with a mechanical time constant of 12 msec or less for the drive motor alone, pulsation can be easily reduced to less than a fraction of that of a method that relies only on cam characteristics. We confirmed that it can be made smaller. Therefore, it has been found that when using a motor with a mechanical time constant of 15 msec or more, it is difficult to perform sufficient follow-up control to fluctuations in discharge pressure, and pulse reduction cannot be expected.
前述した実施例から明らかなように、本発明ポ
ンプによれば、ポンプの吐出流体の脈動を電気的
手段により補正制御するものであるから、吐出圧
力のリツプルに対する補正量を電気的に変えるだ
けで、カムを交換することなく、しかも脈動の大
きさを、例えば第2図cに示すように、所定範囲
で任意に調節することができるという優れた利点
を有する。
As is clear from the embodiments described above, according to the pump of the present invention, the pulsation of the fluid discharged from the pump is corrected and controlled by electrical means. This has the excellent advantage that the magnitude of the pulsation can be arbitrarily adjusted within a predetermined range, as shown in FIG. 2c, for example, without replacing the cam.
従つて、本発明ポンプは、第1図に示す構成か
らなる往復動形プランジヤポンプについて効果的
に応用することができるが、その他種々の無脈動
定量ポンプ構成体にも広く応用し得ることは勿論
である。 Therefore, the pump of the present invention can be effectively applied to the reciprocating plunger pump having the configuration shown in FIG. 1, but it can of course also be widely applied to various other non-pulsation metering pump configurations. It is.
以上、本発明の好適な実施例について説明した
が、本発明の精神を逸脱しない範囲内において
種々の設計変更をなし得ることは勿論である。 Although the preferred embodiments of the present invention have been described above, it goes without saying that various design changes can be made without departing from the spirit of the present invention.
第1図は無脈動定量ポンプのポンプ構造の一例
を示す説明図、第2図a〜cは第1図に示すポン
プの無脈動特性曲線図、第3図は本発明に係る無
脈動定量ポンプの制御系の系統図、第4図a〜d
は第3図に示すポンプの制御系の動作特性線図で
ある。
10…プランジヤ、12…回転カム、14…ク
ロスヘツド、16…カムフオロア、18…スプリ
ング、20…カム軸、22…ポンプ室、24…グ
ランドシール、26…吐出配管、30…往復動形
プランジヤポンプ、32…合流配管、34…圧力
検出器、36…直流分除去回路、38…増幅回
路、40…駆動モータ、42…減速機、44…回
転数設定回路、46…主増幅器、48…タコジエ
ネレータ。
FIG. 1 is an explanatory diagram showing an example of the pump structure of a pulsation-free metering pump, FIGS. 2 a to c are pulsation-free characteristic curve diagrams of the pump shown in FIG. 1, and FIG. 3 is a pulsation-free metering pump according to the present invention. System diagram of the control system, Figure 4 a to d
is an operating characteristic diagram of the control system of the pump shown in FIG. 3; DESCRIPTION OF SYMBOLS 10...Plunger, 12...Rotating cam, 14...Crosshead, 16...Cam follower, 18...Spring, 20...Camshaft, 22...Pump chamber, 24...Gland seal, 26...Discharge piping, 30...Reciprocating plunger pump, 32 ...merging pipe, 34...pressure detector, 36...DC component removal circuit, 38...amplifier circuit, 40...drive motor, 42...reducer, 44...rotation speed setting circuit, 46...main amplifier, 48...tachogenerator.
Claims (1)
せて各プランジヤのポンプ動作による合成吐出量
を得るように構成した往復動ポンプにおいて、2
本のプランジヤを駆動するカムに駆動モータを連
結すると共にこの駆動モータに回転数設定回路と
主増幅器と駆動モータの出力を主増幅器にフイー
ドバツクするタコジエネレータとからなる回転数
制御回路を接続し、さらに合成吐出量が得られる
配管に接続した圧力検出器と圧力検出器の出力信
号から直流分を除去する回路と増幅回路とからな
り、前記増幅回路で得られた信号を反転して回転
数設定回路から出力される信号に加えて回転数制
御回路の制御信号を補正する回路を設けることを
特徴とする無脈動定量ポンプ。 2 駆動モータは、モータ単体の機械的時定数が
12msec以下の直流モータからなる特許請求の範
囲第1項記載の無脈動定量ポンプ。[Scope of Claims] 1. A reciprocating pump configured to reciprocate two plungers by cam drive to obtain a combined discharge amount by the pumping operation of each plunger,
A drive motor is connected to the cam that drives the main plunger, and a rotation speed control circuit consisting of a rotation speed setting circuit, a main amplifier, and a tachometer generator that feeds back the output of the drive motor to the main amplifier is connected to this drive motor, and further synthesis is performed. It consists of a pressure detector connected to piping from which the discharge amount can be obtained, a circuit that removes the DC component from the output signal of the pressure detector, and an amplifier circuit, and the signal obtained by the amplifier circuit is inverted and output from the rotation speed setting circuit. A non-pulsating metering pump characterized by being provided with a circuit for correcting a control signal of a rotation speed control circuit in addition to an output signal. 2 The drive motor has a mechanical time constant of the motor alone.
A pulsation-free metering pump according to claim 1, which comprises a DC motor of 12 msec or less.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14507480A JPS5770975A (en) | 1980-10-18 | 1980-10-18 | Non-pulsation metering pump |
DE8181108256T DE3170869D1 (en) | 1980-10-18 | 1981-10-13 | A pulsation-free volumetric pump |
EP19810108256 EP0050296B1 (en) | 1980-10-18 | 1981-10-13 | A pulsation-free volumetric pump |
CA000387924A CA1181509A (en) | 1980-10-18 | 1981-10-14 | Pulsation-free volumetric pump |
MX18967081A MX154463A (en) | 1980-10-18 | 1981-10-15 | IMPROVEMENTS TO THE FREE PULSATION VOLUME PUMP AND ALTERNATE MOVEMENT FOR FLUIDS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14507480A JPS5770975A (en) | 1980-10-18 | 1980-10-18 | Non-pulsation metering pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5770975A JPS5770975A (en) | 1982-05-01 |
JPS6343591B2 true JPS6343591B2 (en) | 1988-08-31 |
Family
ID=15376772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14507480A Granted JPS5770975A (en) | 1980-10-18 | 1980-10-18 | Non-pulsation metering pump |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0050296B1 (en) |
JP (1) | JPS5770975A (en) |
CA (1) | CA1181509A (en) |
DE (1) | DE3170869D1 (en) |
MX (1) | MX154463A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2180467A (en) * | 1985-09-18 | 1987-04-01 | Philips Electronic Associated | Liquid chromatograph |
GB2195473B (en) * | 1986-09-17 | 1990-08-15 | Philips Electronic Associated | Liquid chromatograph |
US4753581A (en) * | 1987-02-10 | 1988-06-28 | Milton Roy Company | Constant suction pump for high performance liquid chromatography |
JP2559414B2 (en) * | 1987-07-10 | 1996-12-04 | 株式会社日立製作所 | Pulseless pump controller |
JP2745526B2 (en) * | 1988-03-28 | 1998-04-28 | 株式会社島津製作所 | Reciprocating liquid pump |
US5971714A (en) * | 1996-05-29 | 1999-10-26 | Graco Inc | Electronic CAM compensation of pressure change of servo controlled pumps |
JP2001207951A (en) * | 1999-11-16 | 2001-08-03 | Reika Kogyo Kk | Metering pump device |
JP4626270B2 (en) * | 2004-11-01 | 2011-02-02 | 株式会社島津製作所 | Liquid feeding device |
JP4727653B2 (en) * | 2005-02-25 | 2011-07-20 | 三菱重工業株式会社 | Cargo handling and regeneration method for battery-powered industrial vehicles and cargo handling and regeneration system |
JP4575844B2 (en) * | 2005-06-03 | 2010-11-04 | 株式会社デンソー | Rotating machine |
GB2481624A (en) * | 2010-07-01 | 2012-01-04 | Agilent Technologies Inc | Controller and piezoelectric actuator provides pressure ripple compensation in chromatographic pump drive |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4131393A (en) * | 1977-01-21 | 1978-12-26 | Altex Scientific, Inc. | Fluid pump mechanism |
DE2737062B1 (en) * | 1977-08-17 | 1979-03-29 | Zumtobel Kg | Push piston pump for pulsation-free pumping of a liquid |
-
1980
- 1980-10-18 JP JP14507480A patent/JPS5770975A/en active Granted
-
1981
- 1981-10-13 DE DE8181108256T patent/DE3170869D1/en not_active Expired
- 1981-10-13 EP EP19810108256 patent/EP0050296B1/en not_active Expired
- 1981-10-14 CA CA000387924A patent/CA1181509A/en not_active Expired
- 1981-10-15 MX MX18967081A patent/MX154463A/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP0050296A1 (en) | 1982-04-28 |
EP0050296B1 (en) | 1985-06-05 |
JPS5770975A (en) | 1982-05-01 |
CA1181509A (en) | 1985-01-22 |
MX154463A (en) | 1987-08-28 |
DE3170869D1 (en) | 1985-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5114314A (en) | Reciprocating type fluid delivery pump | |
US3726613A (en) | Pulsefree peristaltic pump | |
JPS63173866A (en) | Controlling system for nonpulsation pump | |
JPS6343591B2 (en) | ||
US4566858A (en) | Pulsation-free volumetric pump | |
JP3640447B2 (en) | Fluid intensifier | |
JPH04224278A (en) | Reciprocating plunger pump | |
US3666382A (en) | Pump | |
CN110617200A (en) | Fluid pumps and related systems and methods | |
GB1505521A (en) | Liquid chromatography apparatus and method | |
US4790732A (en) | Driving means of the triple-cylinder plunger pump | |
JPS61171891A (en) | Piezo-electric pump | |
JP2585615B2 (en) | Control method of pulseless pump | |
US7686595B1 (en) | Diaphragm pump | |
JP4401539B2 (en) | Reciprocating pump | |
EP0100149A1 (en) | Diaphragm pumps | |
CN221503451U (en) | Advection pump | |
US11035351B2 (en) | Hydraulic machine | |
US4963077A (en) | Profiled plunger for a reciprocating pump | |
JPS6321370A (en) | Pulsation-free constant flow rate pump | |
JPH0459473B2 (en) | ||
JPH04295183A (en) | Axial piston pump | |
JPH06147102A (en) | Multi-connection type non-pulsation fixed quantity pump | |
CN217440267U (en) | Plunger pump | |
US3782709A (en) | Pulse dampener |