JP4626270B2 - Liquid feeding device - Google Patents

Liquid feeding device Download PDF

Info

Publication number
JP4626270B2
JP4626270B2 JP2004317987A JP2004317987A JP4626270B2 JP 4626270 B2 JP4626270 B2 JP 4626270B2 JP 2004317987 A JP2004317987 A JP 2004317987A JP 2004317987 A JP2004317987 A JP 2004317987A JP 4626270 B2 JP4626270 B2 JP 4626270B2
Authority
JP
Japan
Prior art keywords
liquid
constant speed
excess
speed rotation
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004317987A
Other languages
Japanese (ja)
Other versions
JP2006125367A5 (en
JP2006125367A (en
Inventor
尚衛 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004317987A priority Critical patent/JP4626270B2/en
Publication of JP2006125367A publication Critical patent/JP2006125367A/en
Publication of JP2006125367A5 publication Critical patent/JP2006125367A5/ja
Application granted granted Critical
Publication of JP4626270B2 publication Critical patent/JP4626270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Description

本発明は複数のプランジャが往復運動して送液を行うプランジャ往復動型送液装置、例えば比較的小型の送液装置、いわゆる小プランジャ往復動型送液装置に関するものである。   The present invention relates to a plunger reciprocating liquid feeding device in which a plurality of plungers reciprocate to feed liquid, for example, a relatively small liquid feeding device, so-called small plunger reciprocating liquid feeding device.

プランジャ往復動型送液装置は、駆動用モータ、複数、例えば2個のポンプヘッドをそれぞれ駆動するプランジャ、及び駆動用モータの回転運動をプランジャの往復運動に変換する変換機構を備えている。   The plunger reciprocating liquid feeding device includes a driving motor, a plurality of plungers that respectively drive, for example, two pump heads, and a conversion mechanism that converts the rotational motion of the driving motor into the reciprocating motion of the plunger.

図2に2個のポンプヘッドを備えた理想的な送液装置における、カムの回転角度θに対するプランジャ速度特性を示す。
1は第1のポンプヘッドのプランジャ速度特性である。駆動用モータの回転をプランジャの往復運動に変換する変換機構としてカムが使用されているが、rはそのカムの回転中心からの距離であり、縦軸のdr/dθは駆動用モータが等速回転しているときのプランジャ速度である。横軸より上側は吐出側、下側は吸引側である。
FIG. 2 shows the plunger speed characteristics with respect to the cam rotation angle θ in an ideal liquid feeding device having two pump heads.
Reference numeral 1 denotes a plunger speed characteristic of the first pump head. A cam is used as a conversion mechanism for converting the rotation of the drive motor into the reciprocating motion of the plunger. R is the distance from the rotation center of the cam, and dr / dθ on the vertical axis is the constant speed of the drive motor. This is the plunger speed when rotating. The upper side from the horizontal axis is the discharge side, and the lower side is the suction side.

カムの形状はdr/dθが台形状になるように形成されている。
送液される液体の吐出流量が吐出側プランジャ速度に比例する理想的な液体の場合には、2台のポンプヘッドの吐出流量の和である送液量は、駆動用モータを等速で回転させたときに図2に記号3で示されるようにカムの全角度を通じて一定になる。
The cam is formed so that dr / dθ is trapezoidal.
In the case of an ideal liquid in which the discharge flow rate of the supplied liquid is proportional to the discharge-side plunger speed, the liquid supply amount, which is the sum of the discharge flow rates of the two pump heads, rotates the drive motor at a constant speed. When this is done, it becomes constant throughout the cam angle as shown by symbol 3 in FIG.

しかしながら、実際には台形状の送液を行う始めの部分(吐出開始区間)では、液体の圧縮性や逆止弁の応答遅れなどによって高圧力になると送液できなくなり、図3に示されるように吐出流量及び圧力に欠損部分4,5が生じる。これが周期的に生ずる脈流となり、送液精度を悪化させる。
この脈流を小さくするために、圧力が吐出開始区間では駆動用モータの回転速度を通常時より早く回転させることが行われている。
However, in practice, in the first part (discharge start section) where the trapezoidal liquid feeding is performed, the liquid cannot be fed due to the high pressure due to the compressibility of the liquid or the response delay of the check valve, as shown in FIG. Deficient portions 4 and 5 occur in the discharge flow rate and pressure. This becomes a periodically generated pulsating flow, which deteriorates the liquid feeding accuracy.
In order to reduce this pulsating flow, the rotation speed of the drive motor is rotated faster than usual during the discharge start interval.

図4(A)は高い圧力で送液する場合の脈流の補正であり、(B)は低い圧力で送液する場合の脈流の補正である。aはカムの回転速度を一定にした場合の脈流、bは脈流を補正するためのカムの回転速度、cは補正された脈流である。
高い圧力での送液ほど圧力の欠損が大きいので、高い圧力になるほど駆動用モータの回転速度を上げる必要がある。そのため、圧力が高くなるほど駆動用モータの負荷が大きくなり、出力の大きい駆動用モータが必要となる。
FIG. 4A shows correction of pulsating flow when liquid is supplied at a high pressure, and FIG. 4B shows correction of pulsating flow when liquid is supplied at a low pressure. a is a pulsating flow when the rotational speed of the cam is constant, b is a rotational speed of the cam for correcting the pulsating flow, and c is a corrected pulsating flow.
Since liquid loss at a higher pressure has a greater pressure deficit, it is necessary to increase the rotational speed of the drive motor as the pressure increases. Therefore, the higher the pressure, the greater the load on the drive motor, and a drive motor with a higher output is required.

そこで、その問題を解決するための方法として、駆動用モータを等速回転させた場合において、プランジャの吐出開始区間での送液量が他の区間の送液量より過剰になるように、図5のようなカム形状にする方法が行われている(特許文献1参照。)。   Therefore, as a method for solving the problem, in the case where the drive motor is rotated at a constant speed, the liquid supply amount in the discharge start section of the plunger is more excessive than the liquid supply amount in the other sections. No. 5 is used (see Patent Document 1).

図6は図5のカム形状を使用した場合の従来の脈流補正を示したものであり、(A)はほとんど圧力がない状態で送液される場合の脈流補正を示している。駆動用モータを等速で回転させれば、aで示されるように吐出開始区間では送液量に過剰分Aが発生する。そこでbに示されるようにカムの回転速度がその吐出開始区間で減速されるように駆動用モータを減速すると、cに示されるように送液量が一定となる。   FIG. 6 shows the conventional pulsating flow correction when the cam shape of FIG. 5 is used, and FIG. 6A shows the pulsating flow correction when liquid is fed with almost no pressure. If the drive motor is rotated at a constant speed, as shown by a, an excessive amount A is generated in the liquid supply amount in the discharge start section. Therefore, when the drive motor is decelerated so that the rotational speed of the cam is decelerated in the discharge start section as shown in b, the liquid supply amount becomes constant as shown in c.

(B)は低い圧力で送液される場合の脈流補正を示している。駆動用モータを等速で回転させると、aに示されるように、過剰送液するようにカムを修正した区間で時間的に後の部分に送液量過剰分A'が現れる。そこでその区間を補正するために、bに示されるようにモータの回転速度を減速すると、cのように送液量が一定となる。   (B) shows pulsating flow correction when the liquid is fed at a low pressure. When the drive motor is rotated at a constant speed, as shown in a, an excess liquid supply amount A ′ appears in a portion later in time in a section where the cam is corrected so as to supply excessive liquid. Therefore, in order to correct the interval, when the motor rotation speed is reduced as shown in b, the liquid feeding amount becomes constant as shown in c.

(C)は高い圧力で送液される場合の脈流補正を示している。この場合は高い圧力による送液量の欠損分とカムの修正による送液量過剰分とが相殺されて、駆動用モータが等速回転したときの送液量aが一定となり、駆動用モータの回転速度bを補正する必要がない。
特許第2745526号公報
(C) shows pulsating flow correction when liquid is fed at a high pressure. In this case, the liquid supply deficit due to the high pressure and the liquid supply excess due to the cam correction are offset, and the liquid supply amount a when the drive motor rotates at a constant speed becomes constant. There is no need to correct the rotational speed b.
Japanese Patent No. 2745526

プランジャの吐出開始区間での送液量が他の区間の送液量より過剰になるようなカム形状にし、駆動用モータの回転速度を遅くして補正する方法は、駆動用モータの負荷が大きくなることがなく、その結果、出力の大きい駆動用モータを必要としない利点がある。   The method of making the cam shape so that the amount of liquid delivered in the discharge start section of the plunger is more than the amount of liquid delivered in other sections, and correcting by slowing down the rotational speed of the drive motor is a heavy load on the drive motor. As a result, there is an advantage that a drive motor having a large output is not required.

本発明は、プランジャの吐出開始区間での送液量が他の区間の送液量より過剰になるようなカム形状にした送液装置の改良に関し、カム形状による送液過剰分を理想曲線から大きく外すことなく、さらに駆動用モータに負荷をかけずに、高圧下でも低圧下でも理想的な脈流補正をすることのできる送液装置を提供することを目的とする。 The present invention relates to an improvement of a cam-shaped liquid feeding device in which the liquid feeding amount in the discharge start section of the plunger becomes excessive from the liquid feeding amount in other sections, and the excess liquid feeding amount due to the cam shape is determined from an ideal curve. It is an object of the present invention to provide a liquid feeding device capable of performing ideal pulsating flow correction at a high pressure and a low pressure without greatly removing it and without applying a load to a driving motor.

本発明は、駆動用モータ、複数のポンプヘッドをそれぞれ駆動するプランジャ、及び駆動用モータの回転運動をプランジャの往復運動に変換する変換機構を備えた送液装置であり、変換機構のカム形状が、いずれのプランジャの吐出開始区間においても駆動用モータの等速回転時の送液量が他の区間の送液量より過剰になる形状に設定されているものに関するものである。そして、本発明は、送液圧力と圧縮完了角度との関係を予め求めておき、過剰送液区間での送液過剰分が液体の圧縮容量より大きくなり、等速回転時の送液量に過剰分が現れる低圧下での送液時には、その送液圧力下での予め求められた圧縮完了角度までは駆動用モータを等速回転で運転し、圧縮完了後にその過剰分に応じて駆動用モータの回転数を等速回転時よりも減速させた後、再び等速回転に戻し、過剰送液区間での送液過剰分が液体の圧縮容量より小さくなり、等速回転時の送液量に欠損分が現れる高圧下での送液時には、その送液圧力下での予め求められた圧縮完了角度までは駆動用モータを等速回転で運転し、圧縮完了後にその欠損分に応じて駆動用モータの回転数を等速回転時よりも加速させた後、再び等速回転に戻すようにした送液装置である。 The present invention is a liquid feeding device including a driving motor, a plunger for driving a plurality of pump heads, and a conversion mechanism for converting the rotational motion of the driving motor into the reciprocating motion of the plunger, and the cam shape of the conversion mechanism is In any of the plunger discharge start sections, the liquid supply amount at the constant speed rotation of the drive motor is set to a shape that is more than the liquid supply amount in the other sections . In the present invention, the relationship between the liquid supply pressure and the compression completion angle is obtained in advance, and the excess liquid supply in the excessive liquid supply section becomes larger than the compression capacity of the liquid, and the liquid supply amount during constant speed rotation is obtained. When liquid is fed under low pressure where an excess amount appears, the drive motor is operated at a constant speed until the compression completion angle determined in advance under the liquid feed pressure, and after completion of compression, the drive motor is driven according to the excess amount. After decelerating the number of rotations of the motor from that at the time of constant speed rotation, the motor is returned to constant speed rotation again , and the excess liquid supply in the excessive liquid supply section becomes smaller than the compression capacity of the liquid, so When liquid is fed under high pressure where defects appear, the drive motor is driven at a constant speed until the compression completion angle determined in advance under the liquid feeding pressure, and after completion of compression , it is driven according to the missing parts. after accelerated than when constant velocity rotating the rotating speed of use the motor, back to a constant speed rotation again It was a liquid delivery device.

また、過剰送液区間での送液過剰分が液体の圧縮容量と近くなり、等速回転時の送液量に不足分と過剰分の両方が現れる圧力下での送液時には、その不足分に応じて駆動用モータの回転数を等速回転時よりも加速させたあと、その後の過剰分に応じて駆動用モータの回転数を等速回転時よりも減速させるようにしてもよい。   In addition, when the liquid is fed under pressure where the excess liquid supply in the excess liquid delivery section is close to the compression capacity of the liquid and both the shortage and excess are present in the liquid delivery volume during constant speed rotation, the shortage Accordingly, the rotational speed of the driving motor may be accelerated more than at the time of constant speed rotation, and then the rotational speed of the driving motor may be decelerated from that at the time of constant speed rotation in accordance with an excess amount thereafter.

(作用)
液体には圧縮性があり、プランジャの吐出開始区間は液体が送液圧力まで圧縮されるまで送液されないので、送液量の欠損がおこる。その欠損分をカム形状に基づく過剰分で補うようにする。
(Function)
The liquid has compressibility, and the discharge start section of the plunger is not fed until the liquid is compressed to the liquid feeding pressure, so that the liquid feeding amount is lost. The missing portion is compensated with an excess amount based on the cam shape.

圧力が低い状態で送液する場合は、駆動用モータを等速で回転させるとカム形状による送液過剰分がそのまま現れて過剰送液となるので、その過剰送液区間ではカムの回転速度を減速して送液量が一定になるようにする。
送液欠損分をカム形状による過剰分では補えないほどの高い圧力で送液する場合、その欠損分が現れる区間ではカムの回転速度を加速して送液量が一定になるようにする。
圧力による送液欠損分とカム形状による過剰分とが近い場合、駆動用モータを等速回転させても大きな脈流は発生しないが、カム形状に合わせて駆動用モータの回転速度を加速させたあとに減速させることにより、より厳密に脈流を除去できるようになる。
When liquid is supplied at a low pressure, if the drive motor is rotated at a constant speed, excess liquid due to the cam shape appears as it is, resulting in excessive liquid supply. Decelerate so that the liquid delivery amount is constant.
In the case where the liquid supply defect is supplied at a high pressure that cannot be compensated for by the excessive amount due to the cam shape, the rotational speed of the cam is accelerated in a section where the defect appears, so that the liquid supply amount becomes constant.
When the liquid supply deficit due to pressure is close to the excess due to the cam shape, a large pulsating flow does not occur even if the drive motor is rotated at a constant speed, but the rotation speed of the drive motor is accelerated according to the cam shape. By subsequently decelerating, the pulsating flow can be removed more precisely.

本発明では、プランジャを往復動させるカム形状を、吐出開始区間において駆動用モータの等速回転時の送液量が、他の区間の送液量より過剰になるようにした上で、低い圧力では減速運転し、高い圧力では加速運転と、加速側と減速側の両方を使用することで、カム形状を理想曲線から大きく外すことなく、低出力モータを用いて、高圧下でも低圧下でも理想的な脈流補正をすることができるようになる。   In the present invention, the cam shape for reciprocating the plunger is set so that the liquid supply amount at the constant speed rotation of the drive motor in the discharge start section is excessive compared to the liquid supply amount in the other sections, and the low pressure With a low-speed motor, it is ideal for both high and low pressure without greatly deviating the cam shape from the ideal curve. Pulsating flow can be corrected.

図7に本発明が適用される一例の小プランジャ往復動型送液ポンプを示す。
10は駆動用ステツビングモータ、11はカム軸である。カム軸11には小プーリ12、ベルト13及びカム軸11の大プーリ14を介してステッピングモータ10の回転が伝達される。
FIG. 7 shows an example of a small plunger reciprocating liquid feed pump to which the present invention is applied.
Reference numeral 10 denotes a driving stepping motor, and 11 denotes a cam shaft. The rotation of the stepping motor 10 is transmitted to the cam shaft 11 through the small pulley 12, the belt 13 and the large pulley 14 of the cam shaft 11.

カム軸11には2個のポンプヘッドを駆動するために2個のカム15,16が固定されている。カム軸11にはまた、円板17が取り付けられ、円板17には孔18があけられ、フォトカプラ19によって孔18を検出することによりカム15,16の回転角度のホームポジションが検出される。   Two cams 15 and 16 are fixed to the cam shaft 11 to drive two pump heads. A disc 17 is also attached to the cam shaft 11, and a hole 18 is formed in the disc 17. By detecting the hole 18 by a photocoupler 19, the home position of the rotation angle of the cams 15 and 16 is detected. .

カム15にはクロスヘッド20の基端部が接触しており、カム15の回転によりクロスヘッド20が往復運動する。クロスヘッド20の他端には第1のポンプヘッド24のプランジャ21が取りつけられている。他方のカム16にもクロスヘッド22の基端部が接触しており、カム16の回転によりクロスヘッド22が往復運動する。クロスヘッド22には第2のポンプヘッド25のプランジャ23が取りつけられている。
カム15,16は後で記述され、また図5に示されるような角度−プランジャ速度特性を示す形状に設計されている。
The base end of the cross head 20 is in contact with the cam 15, and the cross head 20 reciprocates as the cam 15 rotates. A plunger 21 of the first pump head 24 is attached to the other end of the cross head 20. The base end of the cross head 22 is also in contact with the other cam 16, and the cross head 22 reciprocates as the cam 16 rotates. A plunger 23 of a second pump head 25 is attached to the cross head 22.
The cams 15 and 16 are designed to have an angle-plunger speed characteristic as described later and shown in FIG.

第1のポンプヘッド24ではプランジャ21の往復運動によって液26をサクションフィルタ29、入口ブロック27を経て圧力センサ28の流路へ送液する。第2のポンプヘッド25でもプランジャ23の往復運動によって液26をサクションフィルタ29、入口ブロック27を経て圧力センサ28の流路へ送液する。ポンプヘッド24,25において、aは入口逆止弁、bは出口逆止弁、cはシール部材である。   In the first pump head 24, the liquid 26 is sent to the flow path of the pressure sensor 28 through the suction filter 29 and the inlet block 27 by the reciprocating motion of the plunger 21. Also in the second pump head 25, the liquid 26 is sent to the flow path of the pressure sensor 28 through the suction filter 29 and the inlet block 27 by the reciprocating motion of the plunger 23. In the pump heads 24 and 25, a is an inlet check valve, b is an outlet check valve, and c is a seal member.

圧力センサ28の流路で第1のポンプヘッド24から送り出された液と第2のポンプヘッド25から送りだされた液が合流し、ポンプ出口30につながる流路に送り出される。31はドレイン洗浄、32は廃液ビンである。
33はCPUである。CPU33には圧力センサ28の圧力信号とフォトカプラ19からのホームポジション検出信号が送られ、CPU33はステッピングモータ10の回転速度を制御する。
The liquid sent out from the first pump head 24 in the flow path of the pressure sensor 28 and the liquid sent out from the second pump head 25 merge and are sent out to the flow path connected to the pump outlet 30. 31 is a drain cleaning, 32 is a waste liquid bottle.
Reference numeral 33 denotes a CPU. A pressure signal from the pressure sensor 28 and a home position detection signal from the photocoupler 19 are sent to the CPU 33, and the CPU 33 controls the rotation speed of the stepping motor 10.

カム15,16の形状は、カム回転角θに対するdr/dθ(等速回転時のプランジャ速度)特性が図5に示されるものになるように決定する。図5で1aは第1のポンプヘッドに関するもの、2aは第2のポンプヘッドに関するものである。   The shapes of the cams 15 and 16 are determined so that the dr / dθ (plunger speed during constant speed rotation) characteristics with respect to the cam rotation angle θ are as shown in FIG. In FIG. 5, 1a relates to the first pump head and 2a relates to the second pump head.

以下に、図5のdr/dθ特性のカム形状を示す。
0<θ≦10 … r=15.5+0.075θ 2/294.14062
10<θ≦25 … r=15.5+(1.5θ-7.5)/294.14062
25<θ≦70 … r=15.5+(7θ 2/180-4θ/9+605/36)/294.14062
70<θ≦205 … r=15.5+(5θ-173.75)/294.14062
205<θ≦220 … r=15.5+(-8θ 2/90+373θ/9-140735/36)/294.14062
220<θ≦250 … r=15.5+(-7θ 2/180+175θ/9-53615/36)/294.14062
250<θ≦300 … r=15.5+(-0.1255θ 2+62.75θ-6902.5)/294.14062
300<θ≦340 … r=15.5+(-12.55θ+4392.5)/294.14062
340<θ≦360 … r=15.5+(0.31375θ 2-225.9θ+4066.2)/294.14062
The cam shape of the dr / dθ characteristic in FIG. 5 is shown below.
0 < θ ≦ 10… r = 15.5 + 0.075 θ 2 /294.14062
10 < θ ≦ 25… r = 15.5 + (1.5 θ -7.5) /294.14062
25 < θ ≦ 70… r = 15.5 + (7 θ 2 / 180-4 θ /9+605/36)/294.14062
70 < θ ≦ 205… r = 15.5 + (5 θ -173.75) /294.14062
205 <θ ≦ 220 ... r = 15.5 + (- 8 θ 2/90 + 373 θ /9-140735/36)/294.14062
220 <θ ≦ 250 ... r = 15.5 + (- 7 θ 2/180 + 175 θ /9-53615/36)/294.14062
250 < θ ≤300… r = 15.5 + (-0.1255 θ 2 +62.75 θ -6902.5) /294.14062
300 < θ ≤340 ... r = 15.5 + (-12.55 θ +4392.5) /294.14062
340 < θ ≤ 360 ... r = 15.5 + (0.31375 θ 2 -225.9 θ +4066.2) /294.14062

図5に示されるように、一方のプランジャが吐出を開始する区間では、駆動用モータを等速回転させるとすれば両プランジャの速度の和が他の区間よりも大きくなり、もし液体が吐出側プランジャ速度に正確に追従するとすれば、送液量3aは吐出開始区間で記号Aで示されるように過剰になる。しかし、液体には圧縮係数kが存在し、体積Vの液体の圧力をP上昇させるために必要な体積変化率Vpは、
Vp=k・P・V (1)式
で表される。圧縮係数kの代表的な数値として、水でk=0.45〔GPa-1〕、メタノールでk=1.25〔GPa-1〕があげられる。
As shown in FIG. 5, in the section where one plunger starts discharging, if the drive motor is rotated at a constant speed, the sum of the speeds of both plungers becomes larger than the other section, and the liquid is discharged on the discharge side. If the plunger speed is accurately followed, the liquid feed amount 3a becomes excessive as indicated by symbol A in the discharge start section. However, the liquid has a compression coefficient k, and the volume change rate Vp necessary for increasing the pressure of the liquid of volume V by P is:
Vp = k · P · V (1) Typical numerical values of the compression coefficient k include k = 0.45 [GPa −1 ] for water and k = 1.25 [GPa −1 ] for methanol.

図1は本実施例におけるそれぞれの送液圧力においての、回転角度と駆動用モータの回転速度関係を表したものである。角度Aから吐出が始まり、それぞれのポンプヘッドで液体の圧縮が起こり、送液量の欠損が発生する。角度C,Dは変曲点である。   FIG. 1 shows the relationship between the rotation angle and the rotation speed of the drive motor at each liquid supply pressure in this embodiment. The discharge starts from the angle A, the liquid is compressed in each pump head, and the liquid feeding amount is lost. Angles C and D are inflection points.

(1)は送液圧力がそれほど高くなく、角度Bまでの部分が欠損する場合でのモータ速度の補正方法である。角度Bまでは等速でモータを回転させ、液体の圧縮が完了する角度Bを過ぎると両方のプランジャから送液されるため、過剰分に合わせて減速させ、角度D以降は等速回転にもどる。   (1) is a method for correcting the motor speed when the liquid feeding pressure is not so high and the portion up to the angle B is missing. The motor is rotated at a constant speed until the angle B, and after the angle B at which the compression of the liquid is completed, the liquid is fed from both plungers. Therefore, the speed is reduced in accordance with the excess amount, and after the angle D, the rotation returns to the constant speed. .

(2)は送液圧力が(1)より高くなり、液体の圧縮に必要な回転量が角度C以上を必要とする場合である。この場合、角度Cまでは等速でモータを回転させたあと、欠損分を補うためにモータ速度を加速させる。圧縮完了後は、両方のプランジャから送液されるため、過剰分に合わせて減速させ、角度D以降は等速回転にもどる。   (2) is a case where the liquid feeding pressure becomes higher than (1) and the amount of rotation necessary for compressing the liquid requires an angle C or more. In this case, after rotating the motor at a constant speed up to the angle C, the motor speed is accelerated to compensate for the missing portion. After completion of the compression, the liquid is fed from both plungers, so the speed is reduced in accordance with the excess amount, and after the angle D, the rotation returns to a constant speed.

(3)はさらに送液圧力が高くなり、液体の圧縮に必要な回転量が角度D以上を必要とする場合である。この場合、角度Cまでは等速でモータを回転させたあと、欠損分を補うためにモータ速度を加速させる。本実施例の設計では、角度Dでのモータ回転速度は、等速時の2倍の回転速度になっている。角度D以降は、厳密に補正をかける場合はさらに加速させる。ただし、区間角度も小さく、特に流速が早い場合は時間的にもごく短時間であるため、2倍速のまま続けても欠損量の送液への影響はほとんどみられない。圧縮完了後は両方のプランジャから送液され、すでにカム形状による過剰分もない角度なので等速回転にもどる。   (3) is a case where the liquid feeding pressure is further increased and the amount of rotation necessary for compressing the liquid requires an angle D or more. In this case, after rotating the motor at a constant speed up to the angle C, the motor speed is accelerated to compensate for the missing portion. In the design of this embodiment, the motor rotation speed at the angle D is twice the rotation speed at the constant speed. After the angle D, when the correction is strictly performed, the acceleration is further accelerated. However, since the section angle is small, especially when the flow velocity is high, the time is very short, so even if the double speed is continued, there is almost no effect on the liquid supply of the defect amount. After the compression is completed, liquid is fed from both plungers, and since there is already no excessive angle due to the cam shape, it returns to constant speed rotation.

送液圧力と圧縮完了角度の関係は、ポンプヘッドの容積をもとに(1)式より導かれる圧縮体積から推測でき、そこへ機械的な要因分(逆止弁の応答遅れや、気密性、高圧による機械的ひずみなど)を実験的に補正することで求めることができる。送液する液体によって圧縮係数が異なるが、あらかじめ設定された条件を用いて補正を行うか、圧力をモニタしながらフィードバック制御で自動的に求めるようにしてもよい。   The relationship between the liquid supply pressure and the compression completion angle can be estimated from the compression volume derived from equation (1) based on the volume of the pump head, and there are mechanical factors (check valve response delay and airtightness). It can be obtained by experimentally correcting the mechanical strain due to high pressure. Although the compression coefficient varies depending on the liquid to be fed, correction may be performed using a preset condition or may be automatically obtained by feedback control while monitoring the pressure.

本実施例では、ポンプヘッドを並列に接続した、並列接続プランジャ型送液装置であり、駆動用モータの加減速パターンが、モータ1回転につき2回発生する。他の実施例として直列接続プランジャ型送液装置でも実施可能であり、直列接続型の特徴として第2ポンプヘッドは常に送液圧力がかかり、送液液体の圧縮工程は第1ポンプヘッドのみとなるため、駆動用モータの加減速パターンが、モータ1回転につき1回で済む。   In this embodiment, it is a parallel-connected plunger type liquid feeding device in which pump heads are connected in parallel, and the acceleration / deceleration pattern of the drive motor is generated twice per one rotation of the motor. As another embodiment, it can also be implemented with a series-connected plunger type liquid feeding device. As a feature of the series connection type, the second pump head is always subjected to liquid feeding pressure, and the liquid feeding liquid is compressed only by the first pump head. Therefore, the acceleration / deceleration pattern of the driving motor is only required once per motor rotation.

本発明の送液装置は、例えば一定流量で移動相を送液する液体クロマトグラフなど、一定流量での送液を必要とする分析装置に利用することができる。   The liquid feeding device of the present invention can be used in an analyzer that requires liquid feeding at a constant flow rate, such as a liquid chromatograph that feeds a mobile phase at a constant flow rate.

図5に示すカムを使用した、実施例の送液装置における異なる圧力下での脈流補正を示す図である。It is a figure which shows the pulsating flow correction | amendment under the different pressure in the liquid feeding apparatus of an Example using the cam shown in FIG. 理想的な送液装置のプランジャ速度特性と等速回転時の送液量の関係を示す図である。It is a figure which shows the relationship between the plunger speed characteristic of an ideal liquid feeding apparatus, and the liquid feeding amount at the time of constant speed rotation. 実際の送液装置における吐出流量と圧力の関係を示す図である。It is a figure which shows the relationship between the discharge flow volume and pressure in an actual liquid feeding apparatus. 図2に示すカムを使用した従来の送液装置において、異なる圧力下での脈流補正を示す図である。It is a figure which shows the pulsating flow correction | amendment under a different pressure in the conventional liquid feeding apparatus using the cam shown in FIG. 一実施例においてカム形状に過剰分を持たせた送液装置のプランジャ速度特性と等速回転時の送液量の関係を示す図である。It is a figure which shows the relationship between the plunger speed characteristic of the liquid feeding apparatus which gave the excess part to the cam shape in one Example, and the liquid feeding amount at the time of constant speed rotation. 図5に示すカムを使用した従来の送液装置における異なる圧力下での脈流補正を示す図である。It is a figure which shows the pulsating flow correction | amendment under the different pressure in the conventional liquid sending apparatus using the cam shown in FIG. 一実施例の機構部分の構成図である。It is a block diagram of the mechanism part of one Example.

符号の説明Explanation of symbols

10 ステッピングモータ
15,16 カム
21,23 プランジャ
24,25 ポンプヘッド
33 CPU
10 Stepping motor 15, 16 Cam 21, 23 Plunger 24, 25 Pump head 33 CPU

Claims (2)

駆動用モータ、複数のポンプヘッドをそれぞれ駆動するプランジャ、及び前記駆動用モータの回転運動を前記プランジャの往復運動に変換する変換機構を備えた送液装置において、
前記変換機構のカム形状が、いずれのプランジャの吐出開始区間においても駆動用モータの等速回転時の送液量が他の区間の送液量より過剰になる形状に設定され、
送液圧力と圧縮完了角度との関係を予め求めておき、
前記過剰送液区間での送液過剰分が液体の圧縮容量より大きくなり、前記等速回転時の送液量に過剰分が現れる低圧下での送液時には、その送液圧力下での前記予め求められた圧縮完了角度までは駆動用モータを前記等速回転で運転し、圧縮完了後にその過剰分に応じて駆動用モータの回転数を前記等速回転時よりも減速させた後、再び前記等速回転に戻し
前記過剰送液区間での送液過剰分が液体の圧縮容量より小さくなり、前記等速回転時の送液量に欠損分が現れる高圧下での送液時には、その送液圧力下での前記予め求められた圧縮完了角度までは駆動用モータを前記等速回転で運転し、圧縮完了後にその欠損分に応じて駆動用モータの回転数を前記等速回転時よりも加速させた後、再び前記等速回転に戻すことを特徴とする送液装置。
In a liquid feeding device including a driving motor, a plunger that drives each of a plurality of pump heads, and a conversion mechanism that converts a rotational motion of the driving motor into a reciprocating motion of the plunger.
The cam shape of the conversion mechanism is set to a shape in which the liquid feeding amount at the constant speed rotation of the driving motor in any of the discharge start sections of any plunger is more than the liquid feeding amount in the other sections,
The relationship between the liquid supply pressure and the compression completion angle is obtained in advance,
The excess liquid transfer feeding excess in the section is larger than the compression volume of the liquid, wherein the liquid feed when under low pressure that excess appears on feed rate at the time of constant speed rotation, the under the liquid feed pressure previously obtained until completion of compression angle by operating the drive motor at the constant speed rotation, after the rotational speed of the drive motor in accordance with the excess after completion of compression was decelerated than when the constant speed, again Return to the constant speed rotation ,
The excess feed feeding excess with liquid segment is smaller than the compression volume of the liquid, wherein the liquid feed when under high pressure defect content appears on feed rate at the time of constant speed rotation, the under the liquid feed pressure after up to previously obtained compression complete angle and the driving motor is operated at the constant speed rotation, the rotational speed of the drive motor in accordance with the defect content after completion of compression to accelerate than during the constant speed, again Returning to said constant speed rotation, The liquid feeding apparatus characterized by the above-mentioned .
前記過剰送液区間での送液過剰分が液体の圧縮容量と近くなり、等速回転時の送液量に不足分と過剰分の両方が現れる圧力下での送液時には、その不足分に応じて駆動用モータの回転数を等速回転時よりも加速させたあと、その後の過剰分に応じて駆動用モータの回転数を等速回転時よりも減速させる請求項1に記載の送液装置。   When the liquid is fed under a pressure where the excess of the liquid in the excess liquid feeding section is close to the compression capacity of the liquid and both the shortage and the excess appear in the amount of liquid delivered at constant speed rotation, the shortage The liquid feeding according to claim 1, wherein the number of revolutions of the drive motor is accelerated from that at the time of constant speed rotation and then the number of revolutions of the drive motor is decelerated from that at the time of constant speed rotation in accordance with an excess amount thereafter. apparatus.
JP2004317987A 2004-11-01 2004-11-01 Liquid feeding device Active JP4626270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317987A JP4626270B2 (en) 2004-11-01 2004-11-01 Liquid feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317987A JP4626270B2 (en) 2004-11-01 2004-11-01 Liquid feeding device

Publications (3)

Publication Number Publication Date
JP2006125367A JP2006125367A (en) 2006-05-18
JP2006125367A5 JP2006125367A5 (en) 2007-03-29
JP4626270B2 true JP4626270B2 (en) 2011-02-02

Family

ID=36720335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317987A Active JP4626270B2 (en) 2004-11-01 2004-11-01 Liquid feeding device

Country Status (1)

Country Link
JP (1) JP4626270B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186435B2 (en) * 2009-05-08 2013-04-17 株式会社タクミナ Pump system
CN101832245B (en) * 2010-04-28 2013-09-18 北京航空航天大学 Double-plunger pulse-free flow combining method and direct-drive plunger pump
JP7360333B2 (en) * 2020-01-20 2023-10-12 株式会社日立ハイテク Liquid transfer pump and liquid transfer method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770975A (en) * 1980-10-18 1982-05-01 Nikkiso Co Ltd Non-pulsation metering pump
JPS5770976A (en) * 1980-10-18 1982-05-01 Nikkiso Co Ltd Non-pulsation metering pump
JP2745526B2 (en) * 1988-03-28 1998-04-28 株式会社島津製作所 Reciprocating liquid pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770975A (en) * 1980-10-18 1982-05-01 Nikkiso Co Ltd Non-pulsation metering pump
JPS5770976A (en) * 1980-10-18 1982-05-01 Nikkiso Co Ltd Non-pulsation metering pump
JP2745526B2 (en) * 1988-03-28 1998-04-28 株式会社島津製作所 Reciprocating liquid pump

Also Published As

Publication number Publication date
JP2006125367A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP2745526B2 (en) Reciprocating liquid pump
JP2824575B2 (en) Low pulsating flow pump
EP0264934B1 (en) Low pulsation pump device
KR101212824B1 (en) System and method for a variable home position dispense system
JP6022943B2 (en) Metering pump device
JP5049808B2 (en) Liquid feeding device and analyzer having the same
EP2436925B1 (en) Method, device and drive means of a double acting pump with alternating linear movement
EP1072787A3 (en) High-pressure fuel pump and cam for high-pressure fuel pump
WO2003079000A1 (en) Gradient liquid feed pump system, and liquid chromatograph
JP4626270B2 (en) Liquid feeding device
JP5567385B2 (en) Method and apparatus for equalizing transfer flow rate in positive displacement pump
EP0050296B1 (en) A pulsation-free volumetric pump
TWI493107B (en) System and method for position control of a mechanical piston in a pump
CA2330670C (en) Mill saw
CN101356373B (en) System for position control of a mechanical piston in a pump
JP2005282517A (en) Liquid feeding device
JP6313827B2 (en) Non-pulsating pump
JP2503804B2 (en) Liquid pump
JP4092831B2 (en) Liquid feeding device
JPS636758B2 (en)
JP2009013957A (en) Liquid feeding device and method for controlling same
JP4853907B2 (en) Control method of liquid metering device
JPH07332227A (en) Drive control device for plunger reciprocating type pump
KR20220017882A (en) How to determine the position of the diaphragm of an electric motor driven diaphragm pump
JP3849301B2 (en) Liquid chromatograph

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4626270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3