JPS6343529A - Load regulating controller of hydro-electric power station - Google Patents

Load regulating controller of hydro-electric power station

Info

Publication number
JPS6343529A
JPS6343529A JP61186790A JP18679086A JPS6343529A JP S6343529 A JPS6343529 A JP S6343529A JP 61186790 A JP61186790 A JP 61186790A JP 18679086 A JP18679086 A JP 18679086A JP S6343529 A JPS6343529 A JP S6343529A
Authority
JP
Japan
Prior art keywords
load
river
change rate
water level
load change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61186790A
Other languages
Japanese (ja)
Inventor
野口 哲哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61186790A priority Critical patent/JPS6343529A/en
Publication of JPS6343529A publication Critical patent/JPS6343529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は発電所の放水による河川水位の変化を制限する
水力発電所の負荷調整制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a load adjustment control device for a hydroelectric power plant that limits changes in river water level due to water discharge from the power plant.

(従来の技術) 第6図に示すような環境にある発電所では。(Conventional technology) In a power plant with an environment like the one shown in Figure 6.

通常の場合は上ダム1の放水ゲート2が閉鎖されている
ことが多い。発電所3において、・発電に使用した水は
放水口4を通って河川5へ放水されるが、前述したよう
に放水ゲート2が閉鎖している場合は、この発電所3か
らの放水だけで河川5の水位が変化することとなる。こ
のような河川5においては急な水位上昇による釣人の水
害等を防止するため、河川水位の変化を制限値以内とす
ることが義務付けられている。従って、このような発電
所3では、放水量の増加率すなわち出力増加の割合(以
下、負荷変化率という)を決めて河川水位の上昇が制限
値以内となるような発電を行なう必要がある。
Normally, the water discharge gate 2 of the upper dam 1 is often closed. At the power plant 3, the water used for power generation is discharged into the river 5 through the water discharge port 4, but if the water discharge gate 2 is closed as mentioned above, the water used for power generation is discharged only from the power plant 3. The water level of River 5 will change. In such a river 5, in order to prevent anglers from being flooded due to a sudden rise in water level, it is mandatory to keep the change in river water level within a limit value. Therefore, in such a power plant 3, it is necessary to determine the rate of increase in water discharge, that is, the rate of increase in output (hereinafter referred to as load change rate), and perform power generation such that the rise in river water level is within a limit value.

第7図に従来の負荷変化率制御装置について示す。通常
5発電所には複数台の主機があり、出力指令値Pは発電
所全体の主機の出力の総和として与えられる。負荷配分
処理部6はこの出力指令値P。
FIG. 7 shows a conventional load change rate control device. Normally, the five power plants have a plurality of main engines, and the output command value P is given as the sum of the outputs of the main engines of the entire power plant. The load distribution processing unit 6 uses this output command value P.

各主機の負荷状態を表わす運転条件信号at。An operating condition signal at indicating the load condition of each main engine.

・・・・・、anおよび固定負荷変化率ΔPOを入力し
て。
..., input an and the fixed load change rate ΔPO.

負荷に余裕のある主機に対して全主機の出力の総和がP
となる迄各号機に出力指令値PI、・・・・・、Pnを
配分する。負荷調整制御部71.・・・・・、7nはそ
れぞれ各主機出力指令値P+、・・・・・、Pnを目標
値として入力すると共に、各主機の実際の出力21′。
For a main engine with sufficient load, the sum of the outputs of all main engines is P.
Output command values PI, ..., Pn are distributed to each machine until the following. Load adjustment control section 71. ..., 7n are the respective main engine output command values P+, ..., Pn inputted as target values, and the actual outputs 21' of each main engine.

・・・・・Pn / を入力してその偏差に応じた調整
信号b + 、”・”、bnを出力してp 、 / 、
、、、・、pn/  をPI。
...Input Pn / and output adjustment signals b + , "・", bn according to the deviation, p , / ,
, , , pn/ is PI.

・・・・・、Pnに追従させるフィードバック制御を行
なっている。
..., performing feedback control to follow Pn.

以上の構成により、発電所に負荷要求があり出力指令値
Pが入力されると、負荷配分処理部6では、この指令値
Pに基づき、各主機への出力指令値P+。
With the above configuration, when a load request is made to the power plant and an output command value P is input, the load distribution processing section 6 issues an output command value P+ to each main engine based on this command value P.

・・・・・、Pnを算出するが、このときそれらの値は
、固定負荷変化率ΔPoによってその増加量が制限され
る。すなわち、各出力指令値P+、・・・・・、Pnは
接的に放水流量の変化ΔQが制限を受けて、河川の水位
の変化率ΔIIを一定以下とする制御が行なわれる。
..., Pn are calculated, but at this time, the amount of increase in these values is limited by the fixed load change rate ΔPo. That is, each of the output command values P+, .

(発明が解決しようとする問題点) ところが、従来の負荷変化率ΔPoは、放水をはじめた
ときに、水位変化の激しい低水位時に決定した値に固定
されている。しかし、河川の水位が高くなるにつれ河川
断面積は増加し、同一水位変化の制限条件ならば水位が
高い程多量に放水できるにもかかわらず、少ない放水流
量に制限されており、出力指令値の変化への追従性が遅
く、予想されるピーク負荷に対し他の発電所も起動しな
ければならなくなるという問題点があった。
(Problems to be Solved by the Invention) However, in the conventional method, the load change rate ΔPo is fixed to a value determined at a low water level where the water level changes rapidly when water is started to be discharged. However, as the water level of the river rises, the cross-sectional area of the river increases, and even though a higher water level would allow a larger amount of water to be discharged under the same water level change restriction condition, the discharge flow rate is limited to a small amount, and the output command value is The problem was that it was slow to follow changes, and other power plants would have to start up to meet expected peak loads.

そこで本発明は、河川の水位変化の許容範囲内で出力増
加の追従性を最大限に上げた水力発電所の負荷調整制御
装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a load adjustment control device for a hydroelectric power plant that maximizes the ability to follow increases in output within the permissible range of river water level changes.

[発明の構成] (問題点を解決するための手段) 本発明は一定の水位変化の条件のもとに河川の形状に合
わせた負荷変化率を算出する負荷変化率算出処理部を設
けて、この負荷変化率算出処理部の出力する負荷変化率
をもとにして各主機に負荷配分を行なうものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a load change rate calculation processing unit that calculates a load change rate according to the shape of the river under the condition of a constant water level change, The load is distributed to each main engine based on the load change rate output from the load change rate calculation processing section.

(作用) 河川水位に対して、常に最大の負荷変化率を各主機に配
分することができ、出力指令値の変化に対して追従性の
良い負荷調整制御装置が得られる。
(Function) The maximum load change rate can always be distributed to each main engine with respect to the river water level, and a load adjustment control device that can follow changes in the output command value can be obtained.

(実施例) 第1図は本発明の一実施例による負荷調整制御装置であ
る。従来と同一部分については同一符号を付しである。
(Embodiment) FIG. 1 shows a load adjustment control device according to an embodiment of the present invention. The same parts as the conventional one are given the same reference numerals.

負荷変化率算出処理部8は河川水位Hを入力し、河川形
状特性f(H)と負荷配分処理部6より出力される各主
機の負荷状態を表わす運転号機信号Cをもとに、その時
の負荷変化率ΔPを負荷配分処理部6に出力する。
The load change rate calculation processing unit 8 inputs the river water level H, and calculates the current value based on the river shape characteristic f(H) and the operating unit signal C representing the load state of each main engine output from the load distribution processing unit 6. The load change rate ΔP is output to the load distribution processing section 6.

この負荷変化率算出処理部8の構成を第2図に示す、負
荷変化率算出処理部8ば、河川形状特性f(H)と、河
川水位Hおよび設定した水位変化率ΔHを入力して河川
断面積ΔSを算出するΔS算呂処理部9と、このΔSか
ら放水流量ΔQを算出するΔS→ΔQ変換処理部10と
、このΔQと運転号機信号Cを入力して各主機のP−Q
特性データg(Q)を出力する主機特性データ処理部1
1と、この主機特性データg(0)からΔQに対応した
ΔPを出力するΔP算出処理部12と、河川水位11と
設定した変化率ΔHを入力して河川水位11の実際の増
加量ΔHaが△11を起えたとき△P算出処理部12の
出力を停止させるΔHa算出処理部13よりなっている
The configuration of this load change rate calculation processing unit 8 is shown in FIG. A ΔS bath processing unit 9 that calculates the cross-sectional area ΔS, a ΔS → ΔQ conversion processing unit 10 that calculates the water discharge flow rate ΔQ from this ΔS, and a P-Q of each main engine by inputting this ΔQ and the operation number signal C.
Main engine characteristic data processing unit 1 that outputs characteristic data g(Q)
1, a ΔP calculation processing unit 12 that outputs ΔP corresponding to ΔQ from this main engine characteristic data g(0), and a river water level 11 and a set rate of change ΔH, which calculates the actual increase ΔHa of the river water level 11. It consists of a ΔHa calculation processing unit 13 that stops the output of the ΔP calculation processing unit 12 when Δ11 occurs.

以上の構成のもとで第3図〜第5図を用いて負荷調整制
御装置の動作について説明する。
With the above configuration, the operation of the load adjustment control device will be explained using FIGS. 3 to 5.

第3図は河川形状データをもとにして作られた河川の水
位11と、水面迄の河川断面Isとの関係図である。河
川断面積Sは河川水位Hに対して下に凸の放物線S =
 f (H)となっている。ΔS算出処理部9は水位変
化率ΔHと、河川水位Hから河川断面積Sの増加量ΔS
をΔ5=f(I++ΔH)−f(+()として算出する
FIG. 3 is a relationship diagram between the river water level 11 created based on river shape data and the river cross section Is up to the water surface. The river cross-sectional area S is a downwardly convex parabola S with respect to the river water level H =
f (H). The ΔS calculation processing unit 9 calculates the water level change rate ΔH and the increase amount ΔS in the river cross-sectional area S from the river water level H.
is calculated as Δ5=f(I++ΔH)−f(+()).

次に、ΔS→ΔQ算出処理部10は、このΔSとその河
川の平均流速により単位時間当りの流量増加分ΔQを算
出する。そして、ΔP算出処理部12では、この流量増
加分ΔQと負荷変化を行なわせる主機のP−ロ特性P=
g(Q)より負荷変化率ΔPを622g(Q+ΔQ)−
g(Q)として算出する。この△Pは選択する主機によ
っては若干異なる値となる。
Next, the ΔS→ΔQ calculation processing unit 10 calculates the increase in flow rate ΔQ per unit time based on this ΔS and the average flow velocity of the river. Then, the ΔP calculation processing unit 12 calculates this flow rate increase ΔQ and the P-low characteristic P=
From g(Q), the load change rate ΔP is 622g(Q+ΔQ)−
Calculate as g(Q). This ΔP has a slightly different value depending on the selected main engine.

このように算出した負荷変化率ΔPと河川水位!(との
関係を第4図に示す。破線は従来の固定した負荷変化率
ΔPOを表わし、実線は水位によって可変の負荷変化率
△Pを表わす。水位が高くなるにつれて負荷変化率ΔP
が単調に増加していくことがわかる。このようにして得
られた負荷変化率ΔPによる実出力目襟値への追従性を
第5図に示す。
Load change rate ΔP and river water level calculated in this way! (The relationship between
It can be seen that increases monotonically. FIG. 5 shows the followability of the load change rate ΔP obtained in this way to the target actual output value.

従来の固定負荷変化率よりもΔ丁だけ早く目標とされた
出力指令値に到達することがわかる。
It can be seen that the target output command value is reached Δt earlier than the conventional fixed load change rate.

尚、ΔIla算出処理部13より負荷変化中止信号dが
出力されると、ΔP算出処理部12の出力する負荷変化
率ΔPはOMWとなる。このΔHa算出処理部13は、
第6図に示した上ダム1の放水ゲート2からの放流や大
雨等の発電所以外からの水により、河川の水位変化が影
響を受ける場合を考慮して設けたものである。これによ
り、大雨等の影響があっても水位変化をΔH以下にする
ことができる。
Note that when the load change stop signal d is output from the ΔIla calculation processing unit 13, the load change rate ΔP output from the ΔP calculation processing unit 12 becomes OMW. This ΔHa calculation processing section 13 is
This is provided in consideration of the case where changes in the water level of the river are affected by water discharged from the water discharge gate 2 of the upper dam 1 shown in FIG. 6 or by water from sources other than the power plant, such as heavy rain. This makes it possible to keep the water level change below ΔH even under the influence of heavy rain or the like.

以上のようにして、常に河川水位の変化を一定範囲内に
制限しながら発電負荷の変化に対して追従性の良い水力
発電所の負荷調整制御装置が得ら、れる。
In the manner described above, a load adjustment control device for a hydroelectric power plant can be obtained that has good followability to changes in power generation load while always limiting changes in river water level within a certain range.

[発明の効果] 以上のように本発明によれば、出力指令値への追従性が
大幅に向上し、予想されるピーク負荷に対して発電所の
能力をフルに活用することができ、給電運用面に大きく
寄与する水力発電所の負荷調整制御装置が得られる。
[Effects of the Invention] As described above, according to the present invention, the ability to follow output command values is greatly improved, the capacity of the power plant can be fully utilized for expected peak loads, and the power supply A load adjustment control device for a hydroelectric power plant that greatly contributes to operational aspects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による負荷調整制御装置の構
成図1.第2図は第1図の負荷変化率算出処理部の詳細
ブロック構成図、第3図は河川水位と河川断面積の関係
図、第4図は河川水位と負荷変化率の特性図、第5図は
実出力に対する追従性の特性図、第6図は河川水位の変
化率に制限のある発電所の環境周辺図、第7図は従来の
負荷調整制御装置の構成図である。 1・・・上ダム、2・・・放水ゲート、3・・・発電所
。 4・・・放水口、5・・・河川、6・・・負荷配分処理
部、7+、7n・・・負荷M整制御部、8・・・負荷変
化率算出処理部、9・・・ΔS算出処理部、10・・・
ΔS→ΔΩ変換処理部、11・・・主機特性データ処理
部、12・・・△P算出処理部、13・・・ΔHa算出
処理部。 慟               の さ 河1)1.木(IH− 第3図 暑 き i 湖   : 5雇用木組日□ 第4図 第5図 第6図
FIG. 1 is a block diagram of a load adjustment control device according to an embodiment of the present invention. Figure 2 is a detailed block configuration diagram of the load change rate calculation processing section in Figure 1, Figure 3 is a relationship diagram between river water level and river cross-sectional area, Figure 4 is a characteristic diagram of river water level and load change rate, and Figure 5 is a diagram of the relationship between river water level and river cross-sectional area. Figure 6 is a characteristic diagram of followability to actual output, Figure 6 is a diagram of the surrounding environment of a power plant where the rate of change in river water level is limited, and Figure 7 is a configuration diagram of a conventional load adjustment control device. 1...Upper dam, 2...Water discharge gate, 3...Power plant. 4... Water outlet, 5... River, 6... Load distribution processing section, 7+, 7n... Load M adjustment control section, 8... Load change rate calculation processing section, 9... ΔS Calculation processing unit, 10...
ΔS→ΔΩ conversion processing section, 11... Main engine characteristic data processing section, 12... ΔP calculation processing section, 13... ΔHa calculation processing section. Nosagawa 1) 1. Tree (IH- Figure 3 Hot i Lake: 5 employment wood group day □ Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 出力指令値に対して所定の負荷変化率で各主機に負荷配
分を行なうための水力発電所の負荷調整制御装置におい
て、河川水位を入力して河川形状に合わせた負荷変化率
を算出する負荷変化率算出処理部を設けて、この負荷変
化率算出処理部の出力する負荷変化率をもとに各主機に
負荷配分を行なうことを特徴とする水力発電所の負荷調
整制御装置。
In the load adjustment control device of a hydroelectric power plant, which distributes the load to each main engine at a predetermined load change rate in response to an output command value, the load change calculates the load change rate according to the shape of the river by inputting the river water level. 1. A load adjustment control device for a hydroelectric power plant, characterized in that a rate calculation processing section is provided, and load distribution is performed to each main engine based on a load change rate output from the load change rate calculation processing section.
JP61186790A 1986-08-11 1986-08-11 Load regulating controller of hydro-electric power station Pending JPS6343529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61186790A JPS6343529A (en) 1986-08-11 1986-08-11 Load regulating controller of hydro-electric power station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61186790A JPS6343529A (en) 1986-08-11 1986-08-11 Load regulating controller of hydro-electric power station

Publications (1)

Publication Number Publication Date
JPS6343529A true JPS6343529A (en) 1988-02-24

Family

ID=16194632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61186790A Pending JPS6343529A (en) 1986-08-11 1986-08-11 Load regulating controller of hydro-electric power station

Country Status (1)

Country Link
JP (1) JPS6343529A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065379A (en) * 2009-09-16 2011-03-31 Chugoku Electric Power Co Inc:The Operation support system, operation support method, and program for water storage facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065379A (en) * 2009-09-16 2011-03-31 Chugoku Electric Power Co Inc:The Operation support system, operation support method, and program for water storage facility

Similar Documents

Publication Publication Date Title
US4806781A (en) Water-driven machine set with the speed reference value set for optimum efficiency
JPS6343529A (en) Load regulating controller of hydro-electric power station
JPS5849647B2 (en) Hatsudenshiyo no Uten Seigiyosouchi
JPS6133353B2 (en)
JP4622063B2 (en) Generator control device and generator control method
JP3018767B2 (en) Water level adjustment device
JPS5925088A (en) Light load air charging controller
JPS5717009A (en) Control method for optimum state of plant
Ersan et al. Governor Control Systems in Hydroelectric Power Plants: Overview, Challenges, and Recommendations
JPH03213671A (en) Water conditioning operation device for plurality of hydraulic turbines
JP2619094B2 (en) Operation control method of hydroelectric power plant
JPH0339599B2 (en)
JP2752075B2 (en) Control devices for hydraulic machines
JPH0440526B2 (en)
JPS6269090A (en) Method of controlling operation of movable vane pump
JPS6122326B2 (en)
JPH036753B2 (en)
JPS562405A (en) Load control device
JPS5848108A (en) Water level regulator
JPS61129478A (en) Method for controlling water pumping amount of pumping-up electric power station
JPS62110442A (en) Output controller of water-wheel generator
JPS5453704A (en) Feed-pump-driving-turbine controller
JPS63111290A (en) Control method for steady operation of pump in pumped storage power plant of branch water channel
JPH0626026A (en) Control method for water level limit of conveyance channel
JPH04278608A (en) Control method for hydraulic power plant facilities having discharge valve