JPS6343466B2 - - Google Patents
Info
- Publication number
- JPS6343466B2 JPS6343466B2 JP58227576A JP22757683A JPS6343466B2 JP S6343466 B2 JPS6343466 B2 JP S6343466B2 JP 58227576 A JP58227576 A JP 58227576A JP 22757683 A JP22757683 A JP 22757683A JP S6343466 B2 JPS6343466 B2 JP S6343466B2
- Authority
- JP
- Japan
- Prior art keywords
- target
- sputtering
- magnet
- magnetic field
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005291 magnetic effect Effects 0.000 claims description 69
- 238000004544 sputter deposition Methods 0.000 claims description 26
- 239000002245 particle Substances 0.000 claims description 17
- 230000005684 electric field Effects 0.000 claims description 8
- 230000005672 electromagnetic field Effects 0.000 claims description 8
- 230000006835 compression Effects 0.000 claims description 7
- 238000007906 compression Methods 0.000 claims description 7
- 238000002788 crimping Methods 0.000 claims description 7
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 7
- 239000003302 ferromagnetic material Substances 0.000 claims description 5
- 238000005477 sputtering target Methods 0.000 claims description 3
- 239000000615 nonconductor Substances 0.000 claims description 2
- 239000010409 thin film Substances 0.000 description 23
- 239000000758 substrate Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3402—Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
- H01J37/3405—Magnetron sputtering
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
(技術分野)
本発明は、電界および磁界の印加のもとにガス
雰囲気中にて金属材料あるいは半導体材料の粒子
をターゲツトから飛散させて対向配置した基板に
被着させ、それらの材料の薄膜を形成する際に材
料粒子の放出源とするマグネトロンスパツタ源に
関し、特に、印加磁界の磁力線をターゲツト面に
平行に圧着し得るようにするとともに印加電界の
電力線をターゲツト面に平行にして、ガスイオン
の衝撃によるターゲツト面からの材料粒子の放出
を促進するようにした電磁界圧着型マグネトロン
スパツタ源の磁界圧着効果を格段に増大させるよ
うにしたものである。Detailed Description of the Invention (Technical Field) The present invention involves scattering particles of a metal material or a semiconductor material from a target in a gas atmosphere under the application of an electric field and a magnetic field, and depositing the particles on substrates arranged opposite to each other. Regarding the magnetron sputtering source used as a source of emitting material particles when forming thin films of these materials, in particular, it is possible to compress the lines of magnetic force of the applied magnetic field parallel to the target surface, and to direct the power lines of the applied electric field to the target surface. The magnetic field crimping effect of the electromagnetic crimping type magnetron sputter source is designed to greatly increase the magnetic field crimping effect of the electromagnetic field crimping type magnetron sputter source, which promotes the release of material particles from the target surface by gas ion bombardment.
(従来技術)
従来のこの種磁界圧着型マグネトロンスパツタ
源としては、本発明者の提案および出願に係る特
開昭55―31142号公報に記載のものがある。この
公報に記載の従来装置は第1図に示すように構成
されている。図示の構成においては、円板状のタ
ーゲツト1の裏面に、一極端例えばN極端を中心
にして他極端例えばS極端を環状にした磁石2を
取付け、ターゲツト1のやや前方にアノードリン
グ3を同軸に配置し、さらにその前方外側にソレ
ノイドコイル3を同軸に配置して、磁石2の中央
磁極Nからの磁界成分5と同極性の磁界成分6に
より磁石2の磁界成分5の一部5aをターゲツト
1の表面に圧着して平行にしてある。すなわち、
図示のようにターゲツト1の裏面に磁石2を装着
し、その磁石2によりターゲツト1の表面に現わ
れる漏洩磁界5のうちターゲツト1の表面に平行
な磁界成分5aによつて電子をトラツプして磁力
線5aに直角に進行させ、その電子との衝突によ
り生成したガスイオンの衝撃によりターゲツト1
の表面から放出される材料粒子の放出を促進して
スパツタリングの効率を高めるように構成してあ
る。(Prior Art) As a conventional magnetic field compression type magnetron sputter source of this type, there is one described in Japanese Patent Application Laid-Open No. 1983-31142, which was proposed and filed by the present inventor. The conventional device described in this publication is constructed as shown in FIG. In the configuration shown in the figure, a magnet 2 is attached to the back surface of a disk-shaped target 1, with one end, for example, the north end being centered, and the other end, for example, the south end being annular. Further, a solenoid coil 3 is coaxially arranged on the front outside thereof, and a part 5a of the magnetic field component 5 of the magnet 2 is targeted by a magnetic field component 6 having the same polarity as the magnetic field component 5 from the central magnetic pole N of the magnet 2. It is pressed onto the surface of 1 and made parallel. That is,
As shown in the figure, a magnet 2 is attached to the back surface of the target 1, and the magnet 2 traps electrons with a magnetic field component 5a parallel to the surface of the target 1 of the leakage magnetic field 5 appearing on the surface of the target 1, thereby creating magnetic lines of force 5a. The target 1 is struck by the impact of the gas ions generated by the collision with the electrons.
The sputtering efficiency is increased by promoting the release of material particles from the surface of the sputtering device.
しかしながら、かかる構成による従来の磁界圧
着型マグネトロンスパツタ源においては、電子を
トラツプするのに有効に作用するターゲツト1の
表面に平行な磁界成分5aは漏洩磁界5の未だ一
部分に過ぎず、漏洩磁界5の大部分はターゲツト
1の中央部および周縁部においてその表面に垂直
に入出する。したがつて、それらの部分において
はターゲツト1の表面が侵蝕されず、ターゲツト
1の有効利用率はなお約30%程度に留まり、従来
装置の最大の欠点となつていた。その結果、薄膜
製作中にターゲツト1に刻まれた侵蝕の溝が薄膜
製作の進行に伴つて徐々に深くなつて行き、薄膜
の最適製作条件が時間の経過とともに変化して、
一定の最適条件のもとに長時間薄膜の製作を継続
することが困難となる。さらに、この従来装置に
おいては、ガスイオンよりなるプラズマが漏洩磁
界5の磁力線に沿つて延在するので、熱的に弱い
高分子基板上に形成するメモリ用磁性薄膜の低温
製作のために高分子基板(図示せず)をプラズマ
に触れさせないようにするのに必要な基板・ター
ゲツト間の距離が少なくとも4〜5cm程度と長く
なり、また、基板に被着して堆積した薄膜の膜厚
分布の制御は基板・ターゲツト間の距離の機械的
調整によつて行なわざるを得ないという欠点もあ
つた。さらに、この従来装置においては、高密度
磁気記録用磁性薄膜の製作などに当つて、強磁性
体ターゲツトを使用すると、磁石2の磁路をター
ゲツト1が短絡してしまうので、強磁性体ターゲ
ツトの使用による磁性薄膜の高速度製作が極めて
困難という欠点もあつた。 However, in the conventional magnetic field compression type magnetron sputter source with such a configuration, the magnetic field component 5a parallel to the surface of the target 1, which effectively acts to trap electrons, is still only a part of the leakage magnetic field 5, and the leakage magnetic field 5 enters and leaves the target 1 perpendicularly to its surface in the center and periphery. Therefore, the surface of the target 1 is not eroded in those parts, and the effective utilization rate of the target 1 remains at about 30%, which is the biggest drawback of the conventional apparatus. As a result, the erosion groove carved into target 1 during thin film fabrication gradually becomes deeper as thin film fabrication progresses, and the optimal thin film fabrication conditions change over time.
It becomes difficult to continue producing thin films for a long time under certain optimal conditions. Furthermore, in this conventional apparatus, since the plasma made of gas ions extends along the lines of magnetic force of the leakage magnetic field 5, polymer In order to prevent the substrate (not shown) from coming into contact with the plasma, the distance between the substrate and the target is at least 4 to 5 cm, which increases the thickness distribution of the thin film deposited on the substrate. Another drawback was that control had to be performed by mechanically adjusting the distance between the substrate and the target. Furthermore, in this conventional apparatus, when a ferromagnetic target is used in the production of magnetic thin films for high-density magnetic recording, target 1 short-circuits the magnetic path of magnet 2. Another drawback was that it was extremely difficult to produce magnetic thin films at high speed.
なお、従来のスパツタリング技術においては、
一般に、スパツタガスとして比較的重いアルゴン
を用いているために、半導体素子に多用する軽量
のシリコンなどの材料の薄膜を製作する際に、重
いアルゴンガス粒子が薄膜中に侵入してその均質
性を劣化させるので、良質の薄膜を製作し得ない
という欠点があつた。 In addition, in conventional sputtering technology,
Generally, relatively heavy argon is used as a sputtering gas, so when manufacturing thin films of lightweight materials such as silicon, which are often used in semiconductor devices, heavy argon gas particles enter the thin film and deteriorate its homogeneity. The drawback was that it was not possible to produce a high-quality thin film because of this.
(発明の要点)
本発明の目的は、上述した従来の欠点を一挙に
除去し、ターゲツトの利用効率を向上させ、成膜
条件を安定化するとともに磁性体薄膜をも製作し
得るようにして薄膜の低温・超高速製作を可能に
した電磁界圧着型マグネトロンスパツタ源を提供
することにある。(Summary of the Invention) The purpose of the present invention is to eliminate the above-mentioned conventional drawbacks at once, improve target utilization efficiency, stabilize film formation conditions, and enable the production of magnetic thin films. The object of the present invention is to provide an electromagnetic field compression type magnetron sputtering source that enables low-temperature and ultra-high-speed production.
本発明の他の目的は、半導体産業、あるいは、
電子機器、電子計算機等の記憶用磁性材料薄膜の
製作や表面処理技術など、現存するあらゆる薄膜
製作技術にとつて替わるスパツタリング技術の実
現を可能にするスパツタ源を提供することにあ
る。 Another object of the invention is the semiconductor industry, or
The object of the present invention is to provide a sputtering source that enables the realization of sputtering technology that can replace all existing thin film production techniques, such as the production of magnetic material thin films for storage in electronic devices, computers, etc., and surface treatment techniques.
本発明のさらに他の目的は、従来に比して遥か
に高速のスパツタリング技術を実現することによ
りスパツタガスとして軽元素のヘリウムガスの使
用を可能にし、従来のスパツタリング技術によつ
ては製作困難であつた良質のシリコン薄膜等を製
作し得るようにしたスパツタ源を提供することに
ある。 Still another object of the present invention is to realize a sputtering technique that is much faster than conventional sputtering, thereby making it possible to use helium gas, a light element, as a sputtering gas, which is difficult to manufacture using conventional sputtering techniques. An object of the present invention is to provide a sputtering source that can produce high-quality silicon thin films.
すなわち、本発明電磁界圧着型マグネトロンス
パツタ源は、導電性を有する強磁性体よりなり、
一極端部を中心にして他極端部をほぼ環状に形成
した両磁極間に導磁性の電気的絶縁体を介在させ
た磁石の前記一極端部を少なくとも基底部を導電
性にしたほぼ円板状のスパツタ用ターゲツトの裏
面中央部に接して配置するとともに、ほぼ環状の
前記他極端部を前記ターゲツトの外周前方に離間
して近接配置し、前記磁石の前記他極端部と前記
ターゲツトとの間に前記ターゲツトの表面にほぼ
平行にした直流もしくは高周波の電界を印加する
とともに、前記ターゲツトの前方にほぼ円筒状の
ソレノイドを同軸に配置してそのソレノイドの漏
洩磁界を前記磁石の漏洩磁界に係合させることに
より前記磁石の漏洩磁界を前記ターゲツトの表面
にほぼ平行に圧着しうるようにしたことを特徴と
するものである。 That is, the electromagnetic field compression type magnetron sputter source of the present invention is made of a ferromagnetic material having electrical conductivity,
The one end of the magnet has a magnetically conductive electrical insulator interposed between the magnetic poles, and the other end is approximately annular with one end at the center. The magnet is placed in contact with the center of the back surface of the sputtering target, and the other end portion, which is substantially annular, is placed in front of the outer periphery of the target and spaced apart from it, and the magnet is placed between the other end portion of the magnet and the target. Applying a direct current or high frequency electric field substantially parallel to the surface of the target, and coaxially disposing a substantially cylindrical solenoid in front of the target so that the leakage magnetic field of the solenoid engages the leakage magnetic field of the magnet. This is characterized in that the leakage magnetic field of the magnet can be pressed substantially parallel to the surface of the target.
(実施例)
以下に図面を参照して実施例につき本発明を詳
細に説明する。(Example) The present invention will be described in detail below with reference to the drawings.
前述した従来の欠点をすべて除去するように改
良した本発明電磁界圧着型マグネトロンスパツタ
源の構成例を第2図に示す。図示の構成による本
発明のスパツタ源は、特に、スパツタリング領域
に漏洩磁界を印加する磁石2の構造が前述した第
1図示の従来装置とは全く異なり、ターゲツト1
の裏面中央部に接する中心磁極部例えばN極部2
aは第1図示の従来装置におけるとほぼ同様であ
るが、環状の他極端部例えばS極端部2bは、図
示のように、ターゲツト1の裏面に接着させるこ
となく、ターゲツト1の外周前方に適切に離間し
て位置させ、中心磁極Nからの磁力線を、従来の
ようにターゲツト1の表面上に終端させることな
く、その表面にほぼ平行に延在した状態にて直接
に環状磁極Sに終端させてある。さらに、かかる
漏洩を可及的完全にターゲツト1の表面に平行に
するために、ターゲツト1および環状磁極Nのわ
ずかに前方外側に従来と同様にソレノイドコイル
4を同軸に配置して直流電流を流し、ターゲツト
1に向けて中心磁極Nからの漏洩磁界と同一極性
の漏洩磁界を印加する。 FIG. 2 shows an example of the configuration of the electromagnetic field compression type magnetron sputtering source of the present invention, which has been improved so as to eliminate all of the above-mentioned conventional drawbacks. The sputtering source of the present invention having the configuration shown in the figure is completely different from the conventional device shown in the first figure described above, especially in the structure of the magnet 2 that applies a leakage magnetic field to the sputtering area.
The central magnetic pole part, for example, the N-pole part 2
a is almost the same as in the conventional device shown in the first figure, but the annular other end part, for example, the S end part 2b, is not attached to the back surface of the target 1 but is properly attached to the front of the outer periphery of the target 1, as shown in the figure. The lines of magnetic force from the center magnetic pole N are not terminated on the surface of the target 1 as in the conventional case, but are directly terminated at the annular magnetic pole S while extending approximately parallel to the surface of the target 1. There is. Furthermore, in order to make such leakage as completely parallel to the surface of the target 1 as possible, a solenoid coil 4 is coaxially arranged slightly forward and outward of the target 1 and the annular magnetic pole N, as in the past, and a direct current is passed therethrough. , a leakage magnetic field having the same polarity as the leakage magnetic field from the center magnetic pole N is applied toward the target 1.
すなわち、磁石2の環状磁極Sは、ターゲツト
1の外周外前方に離間して位置し、ターゲツト1
の中央部からの漏洩磁界の磁力線5は、ソレノイ
ドコイル4によつて誘起された同一極性の磁力線
6によつてターゲツト1の表面に圧着されるの
で、ターゲツト1のほぼ全面に亘つてその表面に
平行な磁界成分5aが大幅に増加する。さらに、
従来と同様に導電性を有する強磁性体2の磁路の
一部分7を例えばフエライトなどよりなるセラミ
ツク磁石材や極めて薄い電気的絶縁材などをもつ
て構成し、磁気的には絶縁せずに、電気的にのみ
絶縁して、外側の導電性磁極部2bを、第1図に
示したように従来電界印加のために設けていたア
ノードリング3の替りに兼用し、アノードリング
3を必要としないマグネトロンスパツタ源とす
る。 That is, the annular magnetic pole S of the magnet 2 is located apart from the outer circumference of the target 1 in front of the target 1.
The magnetic field lines 5 of the leakage magnetic field from the center of the target 1 are pressed against the surface of the target 1 by the magnetic field lines 6 of the same polarity induced by the solenoid coil 4. The parallel magnetic field component 5a increases significantly. moreover,
As in the past, a part 7 of the magnetic path of the conductive ferromagnetic material 2 is made of a ceramic magnet material such as ferrite or an extremely thin electrical insulating material, without being magnetically insulated. It is electrically insulated only, and the outer conductive magnetic pole part 2b is used in place of the anode ring 3 conventionally provided for applying an electric field, as shown in FIG. 1, so that the anode ring 3 is not required. Use as magnetron sputter source.
上述のように、導電性を有する強磁性体からな
る磁石2の磁路の一部を、セラミツク磁石もしく
は薄い電気絶縁材料により、電気的には絶縁する
も磁気的には絶縁せずに一体の磁石として作用さ
せ、一方の磁極例えばN極をターゲツト1の裏面
中央部に接着するとともに、他方の環状導電性磁
極例えばS極をターゲツト1の周縁部に接触させ
ずにその外周前方に位置させ、望ましくは水冷を
施した状態にて陽電極とし、ターゲツト1乃至そ
の導電性ホルダを陰電極として両電極を直流もし
くは高周波の電源に接続してターゲツト1の表面
にほぼ平行にした電界を印加する。 As mentioned above, a part of the magnetic path of the magnet 2 made of a conductive ferromagnetic material is insulated electrically but not magnetically by a ceramic magnet or a thin electrically insulating material. Acting as a magnet, one magnetic pole, for example, the N pole, is adhered to the center of the back surface of the target 1, and the other annular conductive magnetic pole, for example, the S pole, is positioned in front of the outer periphery of the target 1 without contacting the peripheral edge of the target 1. Preferably, the positive electrode is water-cooled, and the target 1 or its conductive holder is used as the negative electrode. Both electrodes are connected to a DC or high frequency power source to apply an electric field approximately parallel to the surface of the target 1.
なお、スパツタ領域には通常直流電界を印加す
るのであるが、ターゲツトの材料が高抵抗率であ
る場合には、ターゲツトに電荷が蓄積して機能低
下が生ずるので、高周波電界を印加してかかる機
能低下の発生を回避する。 Note that a direct current electric field is normally applied to the sputter region, but if the target material has a high resistivity, charge will accumulate on the target and the function will deteriorate, so a high frequency electric field is applied to the sputter area. Avoid the occurrence of degradation.
しかして、通常、マグネトロンスパツタリング
技術においては、スパツタガス中にてガスイオン
生成のためのグロー放電用陽電極としてのアノー
ドリング3を陰電極としてのターゲツト1に対向
配置する必要があるが、本発明マグネトロンスパ
ツタ源を用いれば、上述したように環状導電性磁
極部2bを陽電極に兼用し得るので、アノードリ
ング3を別に設ける必要がなくなり、スパツタリ
ング装置の構成が著しく簡単になる。 Generally, in the magnetron sputtering technique, it is necessary to arrange the anode ring 3, which serves as a positive electrode for glow discharge to generate gas ions in the sputtering gas, to face the target 1, which serves as a negative electrode. If the inventive magnetron sputtering source is used, the annular conductive magnetic pole portion 2b can also be used as the anode as described above, so there is no need to separately provide the anode ring 3, and the configuration of the sputtering apparatus is significantly simplified.
また、スパツタリングにより薄膜を製作するに
際し、薄膜材料の種類によつては、ターゲツトか
ら放出するその材料の粒子がイオン化している方
が良質の薄膜を製作し得る場合と中性粒子として
飛来した方が良質の薄膜が形成される場合とがあ
る。しかして、本発明スパツタ源を用いれば、ソ
レノイドコイル4の軸方向の長さを適切に設定し
て、ソレノイドコイル4を長くすればイオン化し
た材料粒子が基板に直向する方向のソレノイドコ
イル4の磁力線に沿い螺旋状に進んで効率よく基
板に運ばれ、また、ソレノイドコイル4を短くす
ればソレノイドコイル4の磁力線が基板に達し難
くなり、イオン化粒子は磁力線に沿つて基板から
外れ、磁界の影響を受けない中性粒子のみが直進
して基板に到達し、被着して堆積する。さらに、
基板上に堆積する薄膜の膜厚分布は、基板・ター
ゲツト間の距離を機械的に調整することによつて
制御し得るのみならず、機械的には固定のまま、
ソレノイドコイル4の電流を調整することによつ
ても制御することができる。したがつて、本発明
スパツタ源に用いるソレノイドコイル4は、ター
ゲツト1の裏面から表面側に現われる漏洩磁界を
ターゲツト表面に平行に圧着し得るのみならず、
上述したように、コイルの形状および励磁電流の
調整による漏洩磁界分布の制御と基板に被着する
ターゲツト材料粒子の電気的性質の制御と基板に
堆積する薄膜の膜厚分布の制御との三とおりの作
用をなしている。 In addition, when producing a thin film by sputtering, depending on the type of thin film material, it is possible to produce a thin film of better quality if the particles of the material released from the target are ionized, or if they are released as neutral particles. In some cases, a thin film of good quality is formed. Therefore, if the sputtering source of the present invention is used, by appropriately setting the length of the solenoid coil 4 in the axial direction and making the solenoid coil 4 longer, the ionized material particles will be directed directly to the substrate. The ionized particles travel in a spiral along the lines of magnetic force and are efficiently transported to the substrate.If the solenoid coil 4 is shortened, the lines of magnetic force of the solenoid coil 4 become difficult to reach the substrate, and the ionized particles come off the substrate along the lines of magnetic force, reducing the influence of the magnetic field. Only the unaffected neutral particles travel straight and reach the substrate, where they adhere and accumulate. moreover,
The thickness distribution of the thin film deposited on the substrate can be controlled not only by mechanically adjusting the distance between the substrate and the target, but also by keeping it mechanically fixed.
Control can also be achieved by adjusting the current in the solenoid coil 4. Therefore, the solenoid coil 4 used in the sputtering source of the present invention can not only compress the leakage magnetic field appearing from the back side of the target 1 to the front side in parallel to the target surface;
As mentioned above, there are three ways to control the leakage magnetic field distribution by adjusting the coil shape and excitation current, control the electrical properties of target material particles deposited on the substrate, and control the thickness distribution of the thin film deposited on the substrate. It has the effect of
(効果)
以上の説明から明らかなとおり、本発明によれ
ば、磁界圧着型マグネトロンスパツタ源において
ターゲツトの裏面に近接配置する磁石の磁路に導
磁性電気的絶縁部材を介在させて電気的に遊離さ
せた導電性の環状磁極端部をターゲツトから離間
してその外周前方に引出し、漏洩磁界をターゲツ
ト表面にほぼ平行に延在させたうえにソレノイド
コイルによる同一極性の磁界によりターゲツト表
面のほぼ全面に亘り平行に圧着し得るので、ター
ゲツト表面のほぼ全面が均一にスパツタガスイオ
ンにより侵蝕され、その有効利用率を87%にまで
大幅に向上させることができる。また、ターゲツ
ト表面近傍に形成される帯電ガス粒子よりなるプ
ラズマも漏洩磁界と同様にターゲツト表面に圧着
されて偏平な円盤状乃至ドーナツツ状となるの
で、基板とターゲツトとの距離を例えば1cm程度
にまで短縮することができ、均質のスパツタ薄膜
を容易に製作し得るようにすることができる。ま
た、強磁性体ターゲツトを用いても磁界印加用磁
石の磁路を短絡するおそれが皆無となるので、強
磁性材料の高速スパツタリングが可能となり、強
磁性体ターゲツトの有効利用率も70%以上と良好
にすることができる。(Effects) As is clear from the above explanation, according to the present invention, in a magnetic field compression type magnetron sputtering source, a magnetically conductive electrically insulating member is interposed in the magnetic path of the magnet disposed close to the back surface of the target. The free conductive annular magnetic pole tip is separated from the target and pulled out to the front of its outer periphery, causing the leakage magnetic field to extend almost parallel to the target surface, and the magnetic field of the same polarity from the solenoid coil is applied to almost the entire surface of the target. Since the sputter gas ions can be compressed in parallel over the target surface, almost the entire surface of the target is uniformly eroded by the sputtering gas ions, and the effective utilization rate can be greatly improved to 87%. Furthermore, like the leakage magnetic field, the plasma made up of charged gas particles formed near the target surface is compressed to the target surface to form a flat disk or donut shape. It can be shortened and a homogeneous sputtered thin film can be easily produced. Furthermore, even if a ferromagnetic target is used, there is no risk of shorting the magnetic path of the magnet for applying a magnetic field, so high-speed sputtering of ferromagnetic materials is possible, and the effective utilization rate of the ferromagnetic target is over 70%. It can be made good.
さらに、本発明スパツタ源はそのままイオン発
生源として用いることもでき、本発明スパツタ源
は、極めて顕著な効果を挙げ、しかも、半導体、
金属および誘電体等の薄膜の低温・高速製作、金
属のドライメツキ等極めて広範囲の用途に活用す
ることができる。 Furthermore, the sputtering source of the present invention can be used as an ion generation source as it is, and the sputtering source of the present invention has extremely remarkable effects.
It can be used in an extremely wide range of applications, including low-temperature and high-speed production of thin films of metals and dielectrics, and dry plating of metals.
第1図は従来の磁界圧着型マグネトロンスパツ
タ源の構成を示す断面図、第2図は本発明電磁界
圧着型マグネトロンスパツタ源の構成例を示す断
面図である。
1…ターゲツト、2,2a,2b…磁石、3…
アノードリング、4…ソレノイドコイル、5,5
a,6,6a…磁界成分、磁力線、7…セラミツ
ク磁石、導磁性電気絶縁部材。
FIG. 1 is a sectional view showing the structure of a conventional magnetic field crimping type magnetron sputter source, and FIG. 2 is a sectional view showing an example of the structure of the electromagnetic field crimping type magnetron sputter source of the present invention. 1...Target, 2, 2a, 2b...Magnet, 3...
Anode ring, 4... Solenoid coil, 5, 5
a, 6, 6a...Magnetic field component, lines of magnetic force, 7...Ceramic magnet, magnetically conductive electrical insulating member.
Claims (1)
をほぼ環状に形成した両磁極間に導磁性の電気的
絶縁体を介在させた磁石の前記一極端部を少なく
とも基底部を導磁性にしたほぼ円板状のスパツタ
用ターゲツトの裏面中央部に接して配置するとと
もに、ほぼ環状の前記他極端部を前記ターゲツト
の外周前方に離間して近接配置し、前記磁石の前
記他極端部と前記ターゲツトとの間に前記ターゲ
ツトの表面にほぼ平行にした直流もしくは高周波
の電界を印加するとともに、前記ターゲツトの前
方にほぼ円筒状のソレノイドを同軸に配置してそ
のソレノイドの漏洩磁界を前記磁石の漏洩磁界に
係合させることにより、前記磁石の漏洩磁界を前
記ターゲツトの表面にほぼ平行に圧着し得るよう
にしたことを特徴とする電磁界圧着型マグネトロ
ンスパツタ源。 2 特許請求の範囲第1項記載のスパツタ源にお
いて、ほぼ円筒状の前記ソレノイドの長さに応じ
て、前記ターゲツトから放出するスパツタ粒子の
電気的性質を選択的に制御し得るようにしたこと
を特徴とする電磁界圧着型マグネトロンスパツタ
源。 3 特許請求の範囲第1項または第2項記載のス
パツタ源において、前記ソレノイドの電流に応じ
て、前記ターゲツトから放出するスパツタ粒子の
均一性を制御し得るようにしたことを特徴とする
電磁界圧着型マグネトロンスパツタ源。 4 特許請求の範囲前記各項のいずれかに記載の
スパツタ源において、前記ターゲツトから放出す
るスパツタ粒子より軽い原子量のガスよりなるス
パツタガス中にて作用させることを特徴とする電
磁界圧着型マグネトロンスパツタ源。[Scope of Claims] 1. A magnet made of a conductive ferromagnetic material, with a magnetically conductive electrical insulator interposed between both magnetic poles, each of which has one end formed into a substantially annular shape, with the one end of the magnet having at least the base. The sputtering target is disposed in contact with the center of the back surface of a sputtering target having a substantially disc-shaped part that is magnetically conductive, and the other end, which is substantially annular, is disposed close to and spaced from the outer circumferential front of the target. A direct current or high frequency electric field approximately parallel to the surface of the target is applied between the other end and the target, and a nearly cylindrical solenoid is coaxially arranged in front of the target to prevent leakage magnetic field from the solenoid. An electromagnetic field compression type magnetron sputter source, characterized in that the leakage magnetic field of the magnet can be pressed substantially parallel to the surface of the target by engaging the leakage magnetic field of the magnet. 2. The sputter source according to claim 1, wherein the electrical properties of the sputter particles emitted from the target can be selectively controlled depending on the length of the substantially cylindrical solenoid. Features an electromagnetic field crimping type magnetron sputter source. 3. The sputter source according to claim 1 or 2, wherein the electromagnetic field is characterized in that the uniformity of sputter particles emitted from the target can be controlled in accordance with the current of the solenoid. Crimp type magnetron sputter source. 4. Claims: In the sputtering source according to any one of the preceding claims, an electromagnetic pressure bonding type magnetron sputtering device is characterized in that the sputtering source is operated in a sputtering gas made of a gas having an atomic weight lighter than the sputtering particles emitted from the target. source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22757683A JPS60121268A (en) | 1983-12-01 | 1983-12-01 | Electromagnetic press sticking type magnetron sputtering source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22757683A JPS60121268A (en) | 1983-12-01 | 1983-12-01 | Electromagnetic press sticking type magnetron sputtering source |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60121268A JPS60121268A (en) | 1985-06-28 |
JPS6343466B2 true JPS6343466B2 (en) | 1988-08-30 |
Family
ID=16863076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22757683A Granted JPS60121268A (en) | 1983-12-01 | 1983-12-01 | Electromagnetic press sticking type magnetron sputtering source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60121268A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57207173A (en) * | 1981-06-15 | 1982-12-18 | World Eng Kk | Magnetron sputtering device of magnetic field press contact type |
-
1983
- 1983-12-01 JP JP22757683A patent/JPS60121268A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57207173A (en) * | 1981-06-15 | 1982-12-18 | World Eng Kk | Magnetron sputtering device of magnetic field press contact type |
Also Published As
Publication number | Publication date |
---|---|
JPS60121268A (en) | 1985-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4046660A (en) | Sputter coating with charged particle flux control | |
US5135634A (en) | Apparatus for depositing a thin layer of sputtered atoms on a member | |
JPS60135573A (en) | Method and device for sputtering | |
JPH0585634B2 (en) | ||
JP2002530531A (en) | Method and apparatus for ionized physical vapor deposition | |
JPS59190363A (en) | Formation of metallic thin film | |
JPH0227433B2 (en) | ||
JPH0359138B2 (en) | ||
JPS6012426B2 (en) | Magnetic field compression type magnetron sputtering equipment | |
JP3146171B2 (en) | Plasma processing method and apparatus | |
JPH0713295B2 (en) | Sputtering device | |
JPS6343466B2 (en) | ||
JPS6128029B2 (en) | ||
JPH0791640B2 (en) | Magnetron type bias sputter device | |
JP2674995B2 (en) | Substrate processing method and apparatus | |
JPH0647723B2 (en) | Sputtering method and apparatus | |
JP5442286B2 (en) | Magnetron sputtering apparatus and electronic component manufacturing method | |
JPH0774441B2 (en) | Ion beam spreader device | |
JPH0867981A (en) | Sputtering device | |
JPS6127463B2 (en) | ||
JPS6127464B2 (en) | ||
JPH0241583B2 (en) | ||
JP2502948B2 (en) | Plasma deposition method | |
JP2000256846A (en) | Dc magnetron sputtering apparatus | |
JPH0445972B2 (en) |