JPS6343384A - Condensing device for solid laser oscillator - Google Patents

Condensing device for solid laser oscillator

Info

Publication number
JPS6343384A
JPS6343384A JP18720386A JP18720386A JPS6343384A JP S6343384 A JPS6343384 A JP S6343384A JP 18720386 A JP18720386 A JP 18720386A JP 18720386 A JP18720386 A JP 18720386A JP S6343384 A JPS6343384 A JP S6343384A
Authority
JP
Japan
Prior art keywords
platinum
rhodium
solid
state laser
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18720386A
Other languages
Japanese (ja)
Inventor
Kazuo Koe
向江 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP18720386A priority Critical patent/JPS6343384A/en
Publication of JPS6343384A publication Critical patent/JPS6343384A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
    • H01S3/0931Imaging pump cavity, e.g. elliptical

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To condense beams in a predetermined absorption wavelength region efficiently, and to prevent the lowering of reflectivity for a prolonged term by forming the reflecting surface of a reflecting mirror for a condensing device for an oscillator in a thin-film in prescribed thickness of any of platinum, rhodium or a platinum-rhodium alloy. CONSTITUTION:The foundation of Al of the body of a condensing reflector 11 for a condensing device is plated with platinum to form a reflecting surface by the thin-layer. A thin-layer 13 consisting of rhodium is shaped onto the Al foundation 13 of the body as a reflecting surface in specified thickness. A solid laser rod 7 is arranged to the reflecting mirror 11, the beam-condensing device for a solid laser oscillator is constituted, and the reflecting surface is formed in the thin-layer in thickness to 20mum from 1mum composed of any of platinum, rhodium or a platinum-rhodium alloy, thus efficiently condensing beams in an absorption wavelength region in the solid laser oscillator made up of Cr, Nd:GSAG or Cr, Nd:GSGG, then preventing the lowering of reflectivity for a prolonged term.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は固体媒質をレーザ媒質として用いる固体レーザ
発振装置の集光装置の反射面の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a structure of a reflecting surface of a condensing device of a solid-state laser oscillation device that uses a solid medium as a laser medium.

〔従来技術とその問題点〕[Prior art and its problems]

固体媒質をレーザ媒質として用いる固体レーザ装置は小
形で@量という利点から切断用の加工機や医療用のレー
ザメスなどに広く利用されている。
Solid-state laser devices using a solid medium as a laser medium are widely used in cutting machines, medical laser scalpels, etc. because of their small size and low volume.

固体レーザ装置においてレーザ光を発生させる固体レー
ザ発振装置の一例を第2図に示す。ここでは図示さねで
いない固体レーザ媒質と励起用の光源を収納した収納部
11反射ミラー2.シャ、43、Qスイッチ4.モード
セレクタ5.出力ミラー6とから構成されている。第3
図は収納部lの内部の一部を示し、たもので、a状に形
成された固体レーザロッド7と励起用光源であるフラッ
シュランプ8とが集光装置として鏡面に仕げられた楕円
面の集光用反射鏡9で囲まれる空間内に配置されており
、それぞねが楕円面の二つの焦線を中心軸とするように
位置している。この構成で一つの焦線上にあ゛るフラッ
シュランプ8から発した光は集光用反射鏡9の楕円面の
作用によって効率よく他の焦釧上にある固体レーザロア
ドアに集光さね・レーザロッド7はこの光によって励起
さねで発光する。レーザロッド7で発光した光は第2図
の反射ミラー2.J:出力ミラー6との[…をくり返し
多重反射されてレーザ発振が行なわわる。第2図の例で
はレーザ発振による光の照射があるレベル以上になる吉
急激に透明度を増して発振の鋭さを急激に増大させるQ
スイッチ4が備えられているので、このQスイッチ4に
よってパルス状のレーザ光線10が発生する。このレー
ザ光線10はさらにモードセレクタ5によって発振波長
が単一波長となるように整えられる、 この装置においてレーザ元型が効率よく行わわるために
は励起用のフラッシュランプ8から発した光を固体レー
ザロッド7が効率よく吸収することが必要であり、それ
には集光用反射鏡9の反射率の高いことが望まれる。ま
た高い反射率が長期の間に低下しないことが必要である
。現在広く実用化されている固体レーザ媒質の一つであ
るイツト11ウムアルミニウムガーネツト(YAG)に
対しては上記の反射面に一般に金が用いられている。
FIG. 2 shows an example of a solid-state laser oscillation device that generates laser light in a solid-state laser device. A storage section 11 that houses a solid-state laser medium and an excitation light source (not shown here); a reflection mirror 2. Sha, 43, Q switch 4. Mode selector 5. It is composed of an output mirror 6. Third
The figure shows a part of the inside of the storage part l, in which an a-shaped solid-state laser rod 7 and a flash lamp 8, which is an excitation light source, are arranged on an ellipsoidal surface with a mirrored surface as a light condensing device. They are arranged in a space surrounded by condensing reflecting mirrors 9, each of which is positioned so that the two focal lines of the ellipsoidal surface are the central axes. With this configuration, the light emitted from the flash lamp 8 on one focal line is efficiently focused by the elliptical surface of the focusing reflector 9 onto the solid-state laser lower door on the other focal line. 7 emits light when excited by this light. The light emitted by the laser rod 7 is reflected by the reflecting mirror 2 in FIG. J: Laser oscillation is performed by repeated multiple reflections with the output mirror 6. In the example shown in Figure 2, when the light irradiation by laser oscillation exceeds a certain level, the transparency increases rapidly and the sharpness of the oscillation increases rapidly.
Since a switch 4 is provided, a pulsed laser beam 10 is generated by this Q-switch 4. This laser beam 10 is further adjusted by a mode selector 5 so that the oscillation wavelength becomes a single wavelength.In order for this device to perform laser modeling efficiently, the light emitted from the excitation flash lamp 8 must be converted into a solid-state laser. It is necessary for the rod 7 to absorb the light efficiently, and for this purpose, it is desirable that the condensing reflector 9 has a high reflectance. It is also necessary that the high reflectance does not decrease over a long period of time. Gold is generally used for the above-mentioned reflective surface for 11ium aluminum garnet (YAG), which is one of the solid-state laser media currently in widespread use.

これは第1表に示すように金がYAGの吸収波長である
800 nrn付近の波長の光に対する反射率が(イ)
9以上と高いことと金の材質としての高い安定性とによ
るものである。通常アルミニウム類の下地にメツキ等に
よって金の薄層を形成させて反射鏡としている。
As shown in Table 1, this means that gold has a reflectance (a) for light with a wavelength around 800 nrn, which is the absorption wavelength of YAG.
This is due to the high value of 9 or more and the high stability of gold as a material. Usually, a thin layer of gold is formed on an aluminum base by plating or the like to form a reflective mirror.

一方YAGよりもさらに発振効率を向上させ得る固体レ
ーザ媒質として、Cr、Ndを活性イオンとしたカド1
1ニウムスカンジウムガリウムガー木、ト(Cr 、 
Nd : GSGG ’)や同じ(Cr 、 Ndを活
性イオンとしたガドリニウムスカンジウムアルミニウム
ガーネット(Cr :Nd :GSAG )などが最近
注目されている。これらのレーザ媒・頁はYAGの吸収
波長よりも短い400〜500μm付近の波長領域の光
が吸収波長となっている。したがって励起用の光には4
00〜500μmの波長領域の光が用いられるが、集光
用反射光として金を用いたものでは第1表に示すように
上記の彼長帝に2ける反射率は金属で410%近傍、薄
膜で39%近傍といずれも50%以下であって、励起の
効率がいちぢるしく低下し1発振効率の高いGSGGや
GSAGを用いても固体レーザ発振装置さしての全体の
効率は向上しない。こねに対して第1表に併記したアル
ミニウムや銀は上記の波長領域の反射率はすぐねている
が、材質の長期の安定性において劣っている。特にアル
ミニウムは酸化さねやすく急激に反射率が低下する。
On the other hand, as a solid-state laser medium that can further improve oscillation efficiency than YAG, we have developed a solid-state laser medium with active ions of Cr and Nd.
1ium scandium gallium gar wood, Cr,
Nd:GSGG') and the same (gadolinium scandium aluminum garnet (Cr:Nd:GSAG) with active ions of Cr and Nd) are attracting attention recently. The absorption wavelength is light in the wavelength region around ~500 μm.Therefore, the excitation light has a wavelength of 4
Light in the wavelength range of 00 to 500 μm is used, but as shown in Table 1, when gold is used as the reflected light for focusing, the reflectance of the above-mentioned He Changdi is around 410% for metals, and for thin films. The excitation efficiency is around 39%, which is less than 50% in both cases, and the excitation efficiency is significantly reduced, and even if GSGG or GSAG with high single oscillation efficiency is used, the overall efficiency of the solid-state laser oscillation device will not improve much. In contrast, aluminum and silver, which are also listed in Table 1, have excellent reflectance in the above wavelength range, but are inferior in long-term stability of the material. In particular, aluminum is easily oxidized and its reflectance decreases rapidly.

〔発明の目的〕[Purpose of the invention]

この発明は上述の問題点を解決し1発振効率の高い固体
レーザ製電を提供することを目的とCる。
The purpose of the present invention is to solve the above-mentioned problems and provide solid-state laser power production with high single oscillation efficiency.

〔発明の要点〕[Key points of the invention]

この発明は白金、ロジウム、あるいはこわらの合金であ
る白金ロジウム合金が400〜500 nmの波長領域
の光に対して高い反射ぶを示し、かつ長期間にわたって
安定である点に着目したもので。
This invention focuses on the fact that a platinum-rhodium alloy, which is an alloy of platinum, rhodium, or stiff metal, exhibits a high reflection of light in the wavelength range of 400 to 500 nm and is stable over a long period of time.

発振効率の高いCr 、 Nd : GSGGやCr 
、 Nd :GSAGを固体レーザ媒質として用いたレ
ーザ発振装置の集光装置である集光用反射鏡の反射面を
白金、ロジウム、白金ロジウム合金のいずれかを1μm
から頒μmの範囲内の厚さを持つ薄層で形成することに
よって、Cr 、 Nd : GSGGやCr 、 N
d :GSAGの吸収波長領域である400〜500 
nmの波長の元を効皐よくこわらに集光させるとともに
、その反射3が長期にわたって低下することのないよう
にしたものである。
Cr, Nd with high oscillation efficiency: GSGG and Cr
, Nd: The reflective surface of the focusing mirror, which is the focusing device of a laser oscillation device using GSAG as a solid laser medium, is made of platinum, rhodium, or platinum-rhodium alloy with a thickness of 1 μm.
Cr, Nd: GSGG or Cr, Nd by forming a thin layer with a thickness in the range from
d: 400-500 which is the absorption wavelength region of GSAG
It is designed to effectively and tightly focus light at a wavelength of nm, and to prevent its reflection 3 from decreasing over a long period of time.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例を示したものである〇集光装置
の集光用反射鏡11の本体はアルミニウム族で、このア
ルミニウムの下地の上に白金をメ、ツキにより5μfr
L厚の薄層として反射面を形成させたものと、同じ手法
により同じくアルミニウムの集光用反射鏡本体のアルミ
ニウム下地12の上にロジウムの5μm厚の薄層13を
反射面として形成させたものであり、第2表にその効率
の測定結果と寿命とが示しである。固体レーザ、s質と
してのレーザロッドは直径6.35am、長さ76、f
lfflのCr 、 Nd :GSGGとし、クリプト
ンランプで励起している。
FIG. 1 shows an embodiment of the present invention. The main body of the condensing reflector 11 of the condensing device is made of aluminum, and platinum is plated on the aluminum base to form a 5μfr.
One in which the reflective surface is formed as a thin layer with a thickness of L, and the other in which a thin layer 13 of rhodium with a thickness of 5 μm is formed as a reflective surface on the aluminum base 12 of the condensing mirror body made of aluminum using the same method. Table 2 shows the efficiency measurement results and life span. Solid-state laser, laser rod as S quality has a diameter of 6.35 am, a length of 76, f
Cr, Nd:GSGG of lffl, and excited with a krypton lamp.

ここで示したレーザの発振動ぶとしては励起用のクリプ
トンランプの入力を1500Wとした場合のレーザ光の
出力パワーのランプ入力パワーに対する比をとったもの
であり、その値を%で表示しである。また寿命は集光用
反射鏡の反射率が初期値の関%に低下するまでの時間で
ある。第2表にはこの発明の実施例との比較のために金
と銀の5μm厚の薄層の反射鏡を用いた場合の効率と寿
命を併記しである。こわら金と銀の薄層も白金やロジウ
ムと同じくアルミニウム族の本体のアルミニウム下地の
上に形成させである。第2表によりは白金の反射面では
1.7%、ロジウムめ反射面では1,8%の効率であり
、こねらの値は第1表に示した反射率が100%近い銀
で形成した反射面の1.9%におよばないがかなり高い
効率であることがわかる。
The laser oscillation frequency shown here is the ratio of the output power of the laser beam to the lamp input power when the input of the excitation krypton lamp is 1500W, and the value is expressed as a percentage. be. Furthermore, the life span is the time required for the reflectance of the condensing mirror to decrease to a percentage of its initial value. Table 2 also shows the efficiency and life when a reflective mirror made of a thin layer of gold and silver with a thickness of 5 μm is used for comparison with the examples of the present invention. The thin layers of gold and silver, like platinum and rhodium, are also formed on the aluminum base of the aluminum body. According to Table 2, the efficiency is 1.7% for the platinum reflective surface and 1.8% for the rhodium reflective surface, and the value of Konera is based on the reflectance shown in Table 1. It can be seen that the efficiency is quite high, although it is not as high as 1.9% of the reflecting surface.

反射面の寿命に関しては白金およびロジウムともに50
00時間以上と長い。これに対して銀は別時間と極端に
寿命が短く実用には適していない。一方今の反射面につ
いては寿命は5ooo時間以上き長いが効率は1.5%
と低いことがわかる。第3表は上記の結果の根拠となる
白金とロジウムについての波長と反射、率の関係を示し
た表である。
Regarding the lifespan of the reflective surface, both platinum and rhodium are 50%
It is long, over 00 hours. On the other hand, silver has an extremely short lifespan and is not suitable for practical use. On the other hand, the lifespan of current reflective surfaces is longer than 500 hours, but the efficiency is 1.5%.
It can be seen that this is low. Table 3 is a table showing the relationship between wavelength, reflection, and rate for platinum and rhodium, which are the basis for the above results.

第  2  表 第  3  表 上記の反射面を形成する薄層は厚みが薄すぎると薄層に
おける光の透過率が大きくなって反射率は低下してくる
。反射率を低下させない限度の厚みは通常波長のオーダ
とさねている。したがって本発明においては反射面の白
金やロジウムの薄層の厚みの下限を対象とする波長40
0〜500 nmの2倍程度として、こわをl pmに
設定する。、また厚みの上限としてはm層を形成するの
に要する時間が長すぎないこと、形成された薄層が機械
的にも安定でクラック等が発生しないことなどが要件で
あり、これらから通常容易に薄層を形成できる厚みであ
る加μmを上限さして設定する。すなわち本発明による
白金やロジウムによる反射面の薄層の厚みは1μm以上
加μm以下に形成する。
Table 2 Table 3 If the thickness of the thin layer forming the above reflecting surface is too thin, the light transmittance in the thin layer will increase and the reflectance will decrease. The maximum thickness that does not reduce the reflectance is usually on the order of the wavelength. Therefore, in the present invention, the wavelength 40
The stiffness is set to about twice the wavelength of 0 to 500 nm, and the stiffness is set to 1 pm. In addition, the upper limit of the thickness is that the time required to form the m layer is not too long, and that the formed thin layer is mechanically stable and does not develop cracks. The upper limit is set to 0.1 μm, which is the thickness at which a thin layer can be formed. That is, the thickness of the thin layer of the reflective surface made of platinum or rhodium according to the present invention is formed to be 1 .mu.m or more and 1 .mu.m or less.

本実施例では反射面の薄層をメツキ層で形成しているが
、スパッタ11ング等による蒸着層として形成しても同
等問題を生じることはない。蒸着層として形成する場合
は下地が非金属であっても差支えない。また反射面の材
質については白金やロジウムを単、独で用いるほか、こ
れらの合金才なわち白金ロジウム合金を用いてもよい。
In this embodiment, the thin layer of the reflective surface is formed of a plating layer, but the same problem will not occur even if it is formed as a vapor deposited layer by sputtering or the like. When forming it as a vapor deposited layer, there is no problem even if the base is a non-metal. As for the material of the reflective surface, platinum or rhodium may be used alone, or an alloy thereof, ie, a platinum-rhodium alloy may be used.

さらに本実施例ではこれら金属を薄層として反射面を形
成させているが、薄l11(!7せずに金属のまま表面
を研磨して鏡面に仕上げることによって形成することも
できる。固体レーザ媒質についても本実施例ではCr 
、 Nd ;GSGGを用いているが−コ(7) ホカ
” *Nd:GSAGを用いても同様に効率が高く寿命
の長い固体レーザ発振装置を構成できることはもちろん
である。
Furthermore, in this example, these metals are formed into a thin layer to form a reflective surface, but it can also be formed by polishing the surface of the metal to a mirror finish without forming a thin layer.Solid laser medium In this example, Cr
It goes without saying that a solid-state laser oscillation device with high efficiency and long life can be constructed using Nd:GSAG as well.

〔発明の効果〕〔Effect of the invention〕

本発明によれば発振効率の高いCr 、 Nd :GS
GGやCr 、 Nd :GSAGを固体レーザ媒質と
して用いる固体レーザ発振装置の集光装置の反射康の反
射面にCr 、Nd :GSGG41Cr 、Nd :
GSAGの吸収波長領域である400〜500 nmの
範囲の波長の光に対して高い反射率を示し、さらに長期
間にわたって材質が安定し前記の反射率を維持できる白
金、ロジウム、白金ロジウム合金のいずれかを厚み1μ
m以上mμm以下の薄層あるいはこれら金属の表面を研
磨したものを用いたので、発振効率が高くかつ寿命の掻
い固体レーザ発振装置が得られる。
According to the present invention, Cr, Nd:GS with high oscillation efficiency
GG, Cr, Nd: Cr, Nd:GSGG41Cr, Nd:
Any of platinum, rhodium, or platinum-rhodium alloys that exhibits high reflectance for light in the wavelength range of 400 to 500 nm, which is the absorption wavelength region of GSAG, and that is stable in material quality and can maintain the above reflectance over a long period of time. 1μ thick
Since a thin layer with a thickness of m or more and mμm or less or a polished surface of these metals is used, a solid-state laser oscillation device with high oscillation efficiency and a long life can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1171は本発明の実施ν11を示す集光装装置の斜
視図、笛2図は従来の固体レーザ発振装置の構成図。 第3図は従来の集光装置の斜視図である。 1:収納部、7:固体レーザロッド、8:フラッシュラ
ンプ、9:集光用反射鏡、10:レーザ光線。 ・榎Aj[±山口 Jオ 第1図 第2図 第3図
No. 1171 is a perspective view of a condensing device showing implementation v11 of the present invention, and No. 2 is a configuration diagram of a conventional solid-state laser oscillation device. FIG. 3 is a perspective view of a conventional condensing device. 1: storage section, 7: solid laser rod, 8: flash lamp, 9: condensing reflector, 10: laser beam.・Enoki Aj [±Yamaguchi JO Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1)クロムとネオジムとを活性イオンとしたガドリニウ
ムスカンジウムガリウムガーネット(Cr、Nd:GS
GG)もしくはクロムとネオジムとを活性イオンとした
ガドリニウムスカンジウムアルミニウムガーネット(C
r、Nd:GSAG)より成る固体レーザ媒質に励起用
光源の光を集光させるために前記固体レーザ媒質と前記
励起用光源とをともに囲む鏡面に仕上げた反射面が、白
金、ロジウム、白金ロジウム合金のいずれかより成るこ
とを特徴とする固体レーザ発振装置の集光装置。 2)特許請求の範囲第1項記載の装置において、反射面
が白金、ロジウム、白金ロジウム合金のいずれかより成
る厚さ1μm以上20μm以下の薄層で形成されている
ことを特徴とする固体レーザ発振装置の集光装置。
[Claims] 1) Gadolinium scandium gallium garnet (Cr, Nd:GS) containing chromium and neodymium as active ions.
GG) or gadolinium scandium aluminum garnet (C
In order to focus the light from the excitation light source onto a solid-state laser medium made of platinum, rhodium, or platinum-rhodium (Nd:GSAG), a mirror-finished reflecting surface surrounding both the solid-state laser medium and the excitation light source is made of A condensing device for a solid-state laser oscillation device, characterized in that it is made of any one of alloys. 2) A solid-state laser according to claim 1, wherein the reflecting surface is formed of a thin layer of platinum, rhodium, or platinum-rhodium alloy with a thickness of 1 μm or more and 20 μm or less. Light concentrator for oscillator.
JP18720386A 1986-08-09 1986-08-09 Condensing device for solid laser oscillator Pending JPS6343384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18720386A JPS6343384A (en) 1986-08-09 1986-08-09 Condensing device for solid laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18720386A JPS6343384A (en) 1986-08-09 1986-08-09 Condensing device for solid laser oscillator

Publications (1)

Publication Number Publication Date
JPS6343384A true JPS6343384A (en) 1988-02-24

Family

ID=16201895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18720386A Pending JPS6343384A (en) 1986-08-09 1986-08-09 Condensing device for solid laser oscillator

Country Status (1)

Country Link
JP (1) JPS6343384A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249151U (en) * 1988-09-30 1990-04-05
JP2005045211A (en) * 2003-05-16 2005-02-17 Metal Improvement Co Inc Self-seeded single frequency solid-state laser ring laser, single frequency laser peening method, and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249151U (en) * 1988-09-30 1990-04-05
JP2005045211A (en) * 2003-05-16 2005-02-17 Metal Improvement Co Inc Self-seeded single frequency solid-state laser ring laser, single frequency laser peening method, and method thereof
US7180918B2 (en) 2003-05-16 2007-02-20 Metal Improvement Company, Llc Self-seeded single-frequency solid-state ring laser and system using same
US7573001B2 (en) 2003-05-16 2009-08-11 Metal Improvement Company, Llc Self-seeded single-frequency laser peening method
US8207474B2 (en) 2003-05-16 2012-06-26 Metal Improvement Company, Llc Self-seeded single-frequency laser peening method

Similar Documents

Publication Publication Date Title
EP1500174B1 (en) Laser cavity pumping method and laser system thereof
US8908737B2 (en) Transition-metal-doped thin-disk laser
WO2010145855A1 (en) Monolithic, side pumped solid-state laser and method for operating the same
JP2004520709A (en) Compact ultrafast laser
JP2001521290A (en) Diode pumped laser device using gain medium with strong thermal focus
JP2001077449A (en) Mode-locked solid-state laser
US5406578A (en) Unstable laser resonator for generating a stable fundamental mode beam profile
JPS6343384A (en) Condensing device for solid laser oscillator
JP2658961B2 (en) Solid-state laser device
JP2000012935A (en) Laser exciting device
JPH0563263A (en) Semiconductor laser-pumped solid-state laser device
JP2003086873A (en) Passive q switch laser
JPH0475393A (en) Laser device
JPS61123801A (en) Substrate for total reflecting mirror for carbon dioxide gas laser
JPH04302186A (en) Solid-state laser oscillator, solid-state laser medium, laser resonator, and laser exposure device
TWI384709B (en) Laser homogenizing module
JPH02295181A (en) Semiconductor laser excitation solid-state laser element
Dascalu Edge-pump high power microchip Yb: YAG Laser
JPH08250789A (en) Light condenser for solid laser oscillator
JPH08274393A (en) Slab laser and laser processor
JP3110567B2 (en) Solid-state laser device
JP2673301B2 (en) Solid-state laser device
JP2734941B2 (en) Solid state laser oscillator
JPS637039B2 (en)
JPS6031284A (en) Solid-state laser device