JP2673301B2 - Solid-state laser device - Google Patents

Solid-state laser device

Info

Publication number
JP2673301B2
JP2673301B2 JP63031895A JP3189588A JP2673301B2 JP 2673301 B2 JP2673301 B2 JP 2673301B2 JP 63031895 A JP63031895 A JP 63031895A JP 3189588 A JP3189588 A JP 3189588A JP 2673301 B2 JP2673301 B2 JP 2673301B2
Authority
JP
Japan
Prior art keywords
solid
mirror
laser
resonator
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63031895A
Other languages
Japanese (ja)
Other versions
JPH01207983A (en
Inventor
公治 安井
正明 田中
康人 名井
一樹 久場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63031895A priority Critical patent/JP2673301B2/en
Priority to KR1019880006600A priority patent/KR910008990B1/en
Priority to EP88108902A priority patent/EP0293907B1/en
Priority to US07/201,999 priority patent/US4903271A/en
Priority to DE8888108902T priority patent/DE3879547T2/en
Publication of JPH01207983A publication Critical patent/JPH01207983A/en
Application granted granted Critical
Publication of JP2673301B2 publication Critical patent/JP2673301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • H01S3/08068Holes; Stepped surface; Special cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08081Unstable resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/20Lasers with a special output beam profile or cross-section, e.g. non-Gaussian
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0615Shape of end-face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • H01S3/08063Graded reflectivity, e.g. variable reflectivity mirror
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、大断面積、大出力で高品質のレーザビーム
を得ることのできる固体レーザ装置に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a solid-state laser device capable of obtaining a high-quality laser beam with a large cross-sectional area and a large output.

〔従来の技術〕[Conventional technology]

第10図は、例えばレーザハンドブック(オーム社、昭
和57年発行)に開示された従来の固体レーザ装置の一例
を示す断面図である。図において、(1)は固体素子
で、たとえばYAGレーザを例にとればY3-x、Ndx、Al5O12
なる組成をもつロッドからなっている。(2)は全反射
ミラー、(3)は出口ミラーで、これらによりいわゆる
安定型共振器を構成している。(4),(5)はそれぞ
れ出口ミラー(3)の外面及び固体素子(L)の両端面
に設けられたSiO2からなる無反射膜、(6)はアパーチ
ャ、(7)は出口ミラー(3)の内面に設けられたTiO2
よりなる部分反射膜、(8),(9)はそれぞれ共振器
の内,外に発生したレーザビームである。(10)は例え
ばフラッシュランプからなる固体素子(1)励起用の光
源、(11)は光源(10)の支持部、(12)は光源(10)
の光を反射させて固体素子(2)に導く反射板、(13)
は固体レーザ装置の外枠である。
FIG. 10 is a sectional view showing an example of a conventional solid-state laser device disclosed in, for example, the Laser Handbook (Ohm Co., published in 1982). In the figure, (1) is a solid-state element, for example, Y 3-x , N dx , Al 5 O 12 in the case of a YAG laser.
It consists of a rod with the composition (2) is a total reflection mirror, and (3) is an exit mirror, which constitute a so-called stable resonator. (4) and (5) are non-reflective films made of SiO 2 provided on the outer surface of the exit mirror (3) and both end surfaces of the solid state element (L), (6) is an aperture, and (7) is an exit mirror ( TiO 2 on the inner surface of 3)
Partial reflection films (8) and (9) are laser beams generated inside and outside the resonator, respectively. (10) is a light source for exciting the solid-state element (1) such as a flash lamp, (11) is a support portion of the light source (10), and (12) is a light source (10).
Plate that reflects the light of the above and guides it to the solid state element (2), (13)
Is the outer frame of the solid-state laser device.

次に動作について説明する。固体素子(1)は、光源
(10)からの直接光と反射板(12)による反射光とによ
り励起され、レーザ媒質を形成する。そしてこのレーザ
媒質内でレーザビーム(8)を共振させて増幅し、さら
にレーザビーム(8)の一部を固体レーザ装置の外部に
レーザビーム(9)として取りだす。ところで、出口ミ
ラー(3)と全反射ミラー(2)との間を往復するレー
ザビーム(8)には、レーザビーム(8)の断面方向に
種々の位相分布をもつものが存在する。このうちでレー
ザ加工用に最も適するものは、断面方向に位相のそろっ
たいわゆるTEM00モードと呼ばれるレーザビームであ
る。このレーザビームは発散角が小さく、従ってレンズ
等で細くしぼられて高パワー密度となり、効率的な加工
ができる。このTEM00ビームは、種々のレーザビームの
うちもっとも断面積が小さいため、このレーザビームの
みを選択するには小さい開口をもつアパーチャ(6)を
レーザビーム(8)の通路上に挿入することが必要であ
る。YAGレーザの場合は、波長は1.06μm、であるか
ら、共振器を構成する全反射ミラー(2)及び出口ミラ
ー(3)の曲率を20m、両ミラー(2),(3)間の光
学長長を1mとすると、共振器内部でのTEM00ビームの直
径は約1.8mmとなる。従来はこのように小径のレーザビ
ームによってレーザ加工を行なっていた。
Next, the operation will be described. The solid-state element (1) is excited by the direct light from the light source (10) and the reflected light from the reflector (12) to form a laser medium. Then, the laser beam (8) is resonated and amplified in the laser medium, and a part of the laser beam (8) is taken out to the outside of the solid-state laser device as a laser beam (9). By the way, the laser beam (8) that reciprocates between the exit mirror (3) and the total reflection mirror (2) includes those having various phase distributions in the cross-sectional direction of the laser beam (8). Of these, the most suitable one for laser processing is a so-called TEM 00 mode laser beam whose phase is aligned in the cross-sectional direction. This laser beam has a small divergence angle and is therefore narrowed down by a lens or the like to have a high power density, which enables efficient processing. Since this TEM 00 beam has the smallest cross-sectional area among various laser beams, an aperture (6) having a small aperture can be inserted in the passage of the laser beam (8) to select only this laser beam. is necessary. In the case of a YAG laser, the wavelength is 1.06 μm, so the curvature of the total reflection mirror (2) and the exit mirror (3) that make up the resonator is 20 m, and the optical length between both mirrors (2) and (3) If the length is 1 m, the diameter of the TEM 00 beam inside the resonator is about 1.8 mm. Conventionally, laser processing has been performed with a laser beam having such a small diameter.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記のように構成した従来の固体レーザ装置によれ
ば、高品質のレーザビームは数mmの小径でしか得ること
が出来ず、YAGロッドをはじめとする固体素子の直径は1
0〜15mm程度まで製作可能であるが、従来の装置ではこ
の固体素子から十分にレーザ出力がとり出せないことに
なる。また取り出したレーザビームは小径であるため、
出力を増大させると固体素子内での強度が強くなり、固
体素子そのものを歪ませるためビーム品質が損われ、極
端な場合は位相の乱れたいわゆるマルチモードが発生す
ることがある。従って、現在市販されている固体レーザ
装置のビームTEM00ビームにおける最大出力は、10W〜20
W程度が上限である。
According to the conventional solid-state laser device configured as described above, a high-quality laser beam can be obtained only with a small diameter of several mm, and the diameter of the solid-state element including the YAG rod is 1
Although it is possible to manufacture up to about 0 to 15 mm, the laser output cannot be sufficiently extracted from this solid-state element in the conventional device. Also, since the extracted laser beam has a small diameter,
Increasing the output increases the strength within the solid-state element, distorts the solid-state element itself, thereby degrading the beam quality, and in extreme cases, a so-called multi-mode having a disordered phase may occur. Therefore, the maximum power of the beam TEM 00 beam of the solid-state laser device currently on the market is 10 W to 20 W.
W is the upper limit.

本発明は上記のような問題点を解決するためになされ
たもので、高品質のレーザビームを大断面積、従って大
出力で得ることができる固体レーザ装置を得ることを目
的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a solid-state laser device capable of obtaining a high-quality laser beam with a large cross-sectional area and thus a large output.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係わる固体レーザ装置は、固体素子、この固
体素子に光を照射する光源及びレーザビームを共振させ
る共振器等からなり、前記共振器に形成されたレーザ媒
質内でレーザビームを共振させ、その一部を外部に取出
すように構成した固定レーザ装置において、前記共振器
に、出口ミラーの内面中央に設けられた部分反射部を有
する拡大ミラーと、この拡大ミラーに対向配置された全
反射コリメートミラーとによつて構成した不安定型共振
器を用いたものである。
A solid-state laser device according to the present invention comprises a solid-state element, a light source for irradiating the solid-state element with light, a resonator for resonating a laser beam, and the like, and resonates the laser beam in a laser medium formed in the resonator, In a fixed laser device configured to take out a part thereof to the outside, in the resonator, a magnifying mirror having a partial reflection portion provided in the center of the inner surface of an exit mirror, and a total reflection collimator arranged to face the magnifying mirror. It uses an unstable resonator composed of a mirror.

〔作用〕[Action]

固体素子を光励起し、出口ミラーの内面中央に設けら
れた部分反射部を有する拡大ミラーと、全反射コリメー
トミラーからなる不安定型共振器で共振させて、中づま
り状で大断面積のレーザビームを取り出す。
The solid-state element is optically excited and resonated by an unstable resonator consisting of a magnifying mirror having a partial reflection part provided in the center of the inner surface of the exit mirror and a total reflection collimating mirror to generate a laser beam with a large cross-sectional area in the form of a jam. Take it out.

〔発明の実施例〕(Example of the invention)

第1図は本発明の実施例を示す断面図である。なお、
第10図の従来装置と同一又は相当部分には同じ符号を付
し、説明を省略する。図において、(2a)は固体素子
(1)の一方の端面に蒸着された全反射膜よりなる全反
射コリメートミラーである。(3a)は凸状の出口ミラー
で、(4)はこの出口ミラー(3a)の内外面に設けられ
た例えばSiO2からなる無反射膜、(5)は固体素子
(1)の他方の端面に設けられた例えばSiO2からなる無
反射膜である。(30)は出口ミラー(3a)の内面中央部
に設けられた例えばSiO2の如き部分反射膜よりなる拡大
ミラーで、全反射コリメートミラー(2a)とともに不安
定型共振器を構成している。(8a),(9a)はそれぞれ
共振器の内外に発生したレーザビーム、(10)は例えば
フラッシュランプ、半導体レーザ等からなる固体素子
(1)の励起用の光源である。
FIG. 1 is a sectional view showing an embodiment of the present invention. In addition,
The same or corresponding parts as those of the conventional device shown in FIG. 10 are designated by the same reference numerals, and the description thereof will be omitted. In the figure, (2a) is a total reflection collimating mirror made of a total reflection film deposited on one end face of the solid state element (1). (3a) is a convex exit mirror, (4) is a non-reflective film made of, for example, SiO 2 provided on the inner and outer surfaces of the exit mirror (3a), and (5) is the other end surface of the solid-state element (1). Is a non-reflective film made of, for example, SiO 2 . Reference numeral (30) is an expansion mirror provided at the center of the inner surface of the exit mirror (3a) and made of a partial reflection film such as SiO 2 and constitutes an unstable resonator together with the total reflection collimating mirror (2a). (8a) and (9a) are laser beams generated inside and outside the resonator, and (10) is a light source for exciting the solid state element (1) such as a flash lamp or a semiconductor laser.

上記のように構成した本発明の作用を説明すれば、次
の通りである。まず固体素子(1)は光源(10)からの
直接光および反射板(12)による反射光により励起さ
れ、レーザ媒質を形成する。一方、拡大ミラー(30)に
より拡大反射されたレーザビーム(8a)はこのレーザ媒
質内で増幅されるとともに、全反射コリメートミラー
(2a)により出口ミラー(3a)内面の無反射膜(4)及
び部分反射膜よりなる拡大ミラー(30)を通して中づま
り状の平行レーザビーム(9a)となって固体レーザ装置
の外部にとり出される。この際レーザビームは、拡大ミ
ラー(30)と全反射コリメートミラー(2a)よりなる共
振器内で毎往復ごとに拡大されるため、共振器内部に発
生する位相のそろった従来例で示したTEM00ビームに相
当するレーザビームが極めて大断面積で得られることに
なる。
The operation of the present invention configured as described above will be described below. First, the solid-state element (1) is excited by the direct light from the light source (10) and the reflected light from the reflector (12) to form a laser medium. On the other hand, the laser beam (8a) expanded and reflected by the magnifying mirror (30) is amplified in this laser medium, and the total reflection collimating mirror (2a) causes the non-reflection film (4) on the inner surface of the exit mirror (3a) and A collimated parallel laser beam (9a) is taken out of the solid-state laser device through a magnifying mirror (30) made of a partially reflective film. At this time, since the laser beam is expanded in each reciprocation in the resonator composed of the expanding mirror (30) and the total reflection collimating mirror (2a), the TEM shown in the conventional example in which the phases generated inside the resonator are uniform A laser beam corresponding to the 00 beam will be obtained with an extremely large cross section.

第2図(a),(b)はそれぞれ本発明によって得ら
れたレーザビームの一例の形状を示す線図で、拡大率が
3、拡大ミラー(30)の透過率が50%であるときの、出
口ミラー(3a)内面でのビーム形状((a)図)及び出
口でのビーム形状((b)図)を示す。
2 (a) and 2 (b) are diagrams showing the shape of an example of the laser beam obtained by the present invention, respectively, when the magnifying power is 3 and the transmittance of the magnifying mirror (30) is 50%. A beam shape on the inner surface of the exit mirror (3a) (Fig. (A)) and a beam shape on the exit (Fig. (B)) are shown.

また、第3図は第2図で示した条件下におけるレーザ
ビームを、焦点距離f=2.5mのレンズで集光した場合の
集光ビームパターンの一例を示す線図である。図に示す
ように、集光パターンはガウス状であることがわかる。
ところで、第3図において、中央の強度が1/e2になる点
で定義した全発散角は約0.2mradと計算された。いまこ
の全発散値を市販されている本発明と同じ出射ビーム径
10mmのYAGレーザの全発散角と比較すると、本発明では
従来の出射ビーム直径の約1/50であり、極めて集光性の
よい高品質のレーザビームが得られることがわかる。ま
た本発明のビーム直径は従来のビーム直径の約5倍であ
り、従って断面積は約25倍であるため、大出力にしても
固体素子(1)の変形を招くことがなく、従来の10倍の
約100Wの出力が容易に得られた。
Further, FIG. 3 is a diagram showing an example of a focused beam pattern when a laser beam under the conditions shown in FIG. 2 is focused by a lens having a focal length f = 2.5 m. As shown in the figure, it can be seen that the condensing pattern is Gaussian.
By the way, in FIG. 3, the total divergence angle defined at the point where the central intensity becomes 1 / e 2 was calculated to be about 0.2 mrad. This total divergence value is the same as the beam diameter of the present invention that is commercially available.
Comparing with the total divergence angle of a 10 mm YAG laser, it can be seen that in the present invention, a high-quality laser beam with an extremely good converging property, which is about 1/50 of the conventional emission beam diameter, can be obtained. Further, the beam diameter of the present invention is about 5 times the conventional beam diameter, and therefore the cross-sectional area is about 25 times, so that the solid state element (1) will not be deformed even with a large output, and the beam diameter of the conventional 10 A doubled output of about 100 W was easily obtained.

なお、上記の説明では、出口ミラー(3a)の内面に設
けられた無反射膜(4)、及び部分反射膜よりなる拡大
ミラー(30)を通過するそれぞれのレーザビーム間の位
相差は小さく、問題とならなかったが、膜の構成によっ
ては大きい位相差が発生し、集光特性が悪化する場合が
ある。このときには、例えば第4図に示すように前記2
つのレーザビーム間に光路差を与えるため、出口ミラー
(3a)の外面に断差(31)を設けて、発生した位相差を
打消すようにしてもよく、また共振器内でレーザビーム
を拡大するには、例えば第5図に示すように凹状の出口
ミラー(3b)を設けることによりおこなってもよい。
In the above description, the phase difference between the respective laser beams passing through the non-reflection film (4) provided on the inner surface of the exit mirror (3a) and the magnifying mirror (30) made of a partially reflective film is small, Although not a problem, a large phase difference may occur depending on the structure of the film, and the light condensing characteristics may deteriorate. At this time, for example, as shown in FIG.
In order to give an optical path difference between the two laser beams, a gap (31) may be provided on the outer surface of the exit mirror (3a) to cancel the generated phase difference, and the laser beam is expanded in the resonator. For this purpose, for example, a concave exit mirror (3b) may be provided as shown in FIG.

また、共振器ミラーの形成も、第6図に示すように出
口ミラー(3c)(すなわち無反射膜(4))を固体素子
(1)の出口側の端面に直接設けてもよく、あるいは第
7図に示すように両ミラー(3c),(2a)を固体素子
(1)の両端面にそれぞれ設けてもよい。このように固
体素子(1)の端面に共振器ミラーを形成すると、装置
の安定化、低価格化が実現できる。もちろん通常のよう
に、両共振器ミラーとも第8図に示すように固体素子
(1)の外側に設けても良い。
Further, the resonator mirror may be formed by directly providing the exit mirror (3c) (that is, the non-reflection film (4)) on the exit side end face of the solid-state element (1) as shown in FIG. As shown in FIG. 7, both mirrors (3c) and (2a) may be provided on both end faces of the solid-state device (1). When the resonator mirror is formed on the end face of the solid-state element (1) in this way, the device can be stabilized and the cost can be reduced. Of course, as usual, both resonator mirrors may be provided outside the solid-state element (1) as shown in FIG.

また、第9図に示すように、ポッケルス素子の如きQ
スイッチ素子(50)を共振器内にも配設してQスイッチ
パルス発振をおこなえば、さらに大ピーク出力のレーザ
ビームが得られ、効率的加工ができる。また第9図に示
す素子(50)をKTP素子などの波長変換素子とすれば、
位相のそろったビームにより効率的な波長変換が実現で
きる。なお素子(50)はQスイッチ素子と波長変換素子
とを組合わせたものでもよい。
In addition, as shown in FIG. 9, Q such as Pockels element is used.
If the switch element (50) is also provided in the resonator to perform Q-switch pulse oscillation, a laser beam with a larger peak output can be obtained and efficient processing can be performed. If the element (50) shown in FIG. 9 is a wavelength conversion element such as a KTP element,
Efficient wavelength conversion can be realized by using the coherent beams. The element (50) may be a combination of a Q switch element and a wavelength conversion element.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明によれば、共
振器に、出口ミラーの内面中央に設けられた部分反射部
を有する拡大ミラーと、この拡大ミラーに対向配置され
た全反射コリメートミラーとによつて構成した不安定型
共振器を用いたので、中づまりのレザービームとなり、
大断面積、大出力、高品質のレーザビームを得ることが
できる。
As is apparent from the above description, according to the present invention, the resonator has a magnifying mirror having a partial reflection portion provided at the center of the inner surface of the exit mirror, and a total reflection collimating mirror arranged to face the magnifying mirror. Since the unstable resonator configured by is used, it becomes a razor beam with a jam,
It is possible to obtain a laser beam with a large cross-sectional area, a large output, and high quality.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す断面図、第2図(a),
(b)及び第3図はそれぞれ第1図の作用を示す線図、
第4図、第5図,第6図,第7図,第8図及び第9図は
それぞれ本発明の別の実施例を示す断面図、第10図は従
来の固体レーザ装置の一例を示す断面図である。 (1)……固体素子,(2),(2a)……全反射コリメ
ートミラー,(3a),(3b),(3c)……出口ミラー,
(4),(5)……無反射膜、(8a),(9a)……レー
ザビーム、(10)……光源、(12)……反射板、(30)
……拡大ミラー、(31)……段差。 なお、図中、同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 (a),
(B) and FIG. 3 are diagrams showing the operation of FIG. 1, respectively.
FIG. 4, FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9 and FIG. 9 are sectional views showing another embodiment of the present invention, and FIG. FIG. (1) …… Solid state element, (2), (2a) …… Total reflection collimating mirror, (3a), (3b), (3c) …… Exit mirror,
(4), (5) ... non-reflective film, (8a), (9a) ... laser beam, (10) ... light source, (12) ... reflector, (30)
…… Magnifying mirror, (31) …… Step. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固体素子、この固体素子に光を照射する光
瀕及びレーザビームを共振させる共振器等からなり、前
記共振器に形成されたレーザ媒質内でレーザビームを共
振させ、その一部を外部に取出すように構成した固定レ
ーザ装置において、 前記共振器に、出口ミラーの内面中央に設けられた部分
反射部を有する拡大ミラーと、この拡大ミラーに対向配
置された全反射コリメートミラーとによつて構成した不
安定型共振器を用いたことを特放とする固体レーザ装
置。
1. A solid-state device, an optical device for irradiating the solid-state device with light, a resonator for resonating a laser beam, and the like. The laser beam resonates in a laser medium formed in the resonator, and a part thereof In the fixed laser device configured to take out to the outside, in the resonator, a magnifying mirror having a partial reflection portion provided at the center of the inner surface of the exit mirror, and a total reflection collimating mirror arranged to face the magnifying mirror. A solid-state laser device characterized by the use of an unstable resonator configured as described above.
JP63031895A 1987-06-03 1988-02-16 Solid-state laser device Expired - Fee Related JP2673301B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63031895A JP2673301B2 (en) 1988-02-16 1988-02-16 Solid-state laser device
KR1019880006600A KR910008990B1 (en) 1987-06-03 1988-06-02 Laser apparatus
EP88108902A EP0293907B1 (en) 1987-06-03 1988-06-03 Laser apparatus
US07/201,999 US4903271A (en) 1987-06-03 1988-06-03 Laser apparatus
DE8888108902T DE3879547T2 (en) 1987-06-03 1988-06-03 LASER APPARATUS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63031895A JP2673301B2 (en) 1988-02-16 1988-02-16 Solid-state laser device

Publications (2)

Publication Number Publication Date
JPH01207983A JPH01207983A (en) 1989-08-21
JP2673301B2 true JP2673301B2 (en) 1997-11-05

Family

ID=12343751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031895A Expired - Fee Related JP2673301B2 (en) 1987-06-03 1988-02-16 Solid-state laser device

Country Status (1)

Country Link
JP (1) JP2673301B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145585A (en) * 1983-02-08 1984-08-21 Matsushita Electric Ind Co Ltd Laser oscillator
JPS61234087A (en) * 1985-03-05 1986-10-18 レーザー コーポレーション オブ アメリカ Photoresonator for laser unit
JPS62123788A (en) * 1985-11-22 1987-06-05 Toshiba Corp Variable wavelength type laser oscillator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145585A (en) * 1983-02-08 1984-08-21 Matsushita Electric Ind Co Ltd Laser oscillator
JPS61234087A (en) * 1985-03-05 1986-10-18 レーザー コーポレーション オブ アメリカ Photoresonator for laser unit
JPS62123788A (en) * 1985-11-22 1987-06-05 Toshiba Corp Variable wavelength type laser oscillator

Also Published As

Publication number Publication date
JPH01207983A (en) 1989-08-21

Similar Documents

Publication Publication Date Title
JP2004520709A (en) Compact ultrafast laser
JP4416977B2 (en) Solid state laser
JP2673301B2 (en) Solid-state laser device
JPH0537049A (en) Solid laser system
JP2580702B2 (en) Laser device
JP2673303B2 (en) Negative branch unstable laser cavity
JP2800006B2 (en) Laser device
JP2663497B2 (en) Laser device
JPH021192A (en) Solid-state laser equipment
JP2691773B2 (en) Solid-state laser device
JP2666350B2 (en) Solid-state laser device
JP2738053B2 (en) Solid-state laser device
JP2580703B2 (en) Laser device
JPH0637368A (en) Laser and beam expander
JP3003172B2 (en) Solid state laser oscillator
JP2550499B2 (en) Solid-state laser device
JP2673304B2 (en) Laser device
JP2743584B2 (en) Laser device
JP2597499B2 (en) Laser device
JPH0590687A (en) Light source device and optical pickup using said light source device
JP2865057B2 (en) Laser diode pumped solid-state laser oscillator.
JP2000012931A (en) Solid-state laser
JPH06334245A (en) Laser diode pumping solid state laser
JPH07311396A (en) Laser device
JPH08274402A (en) Slab laser oscillator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees