JPS634309A - Working liquid cooling device - Google Patents

Working liquid cooling device

Info

Publication number
JPS634309A
JPS634309A JP14682186A JP14682186A JPS634309A JP S634309 A JPS634309 A JP S634309A JP 14682186 A JP14682186 A JP 14682186A JP 14682186 A JP14682186 A JP 14682186A JP S634309 A JPS634309 A JP S634309A
Authority
JP
Japan
Prior art keywords
temperature
machining
machining fluid
working liquid
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14682186A
Other languages
Japanese (ja)
Inventor
Masakatsu So
宗 征克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14682186A priority Critical patent/JPS634309A/en
Publication of JPS634309A publication Critical patent/JPS634309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To improve working accuracy by varying the temperature of working liquid which flows between electrodes continuously according to ambient temperature. CONSTITUTION:Temperature data obtained by a sensor 18 for working liquid temperature detection which detects the temperature of the working liquid 3 interposed between a wire electrode 2 and a work 1 and a sensor 19 for ambient temperature detection are compared with each other. Then when the temperature of the working liquid between the wire electrode 2 and work 1 is lower than the specific range of the ambient temperature, the rotating speed of a compressing machine 16c for refrigeration is lowered by frequency conversion to lower its cooling ability. When the working liquid temperature is higher, on the other hand, the rotating speed of the compressing machine 16c is increased to increase the cooling ability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ワイヤ放電加工装置等における加工液冷却
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a machining fluid cooling device in a wire electrical discharge machining device or the like.

〔従来の技術〕[Conventional technology]

第3図は通常のワイヤ放電加工装置を示す構成図であり
、(1)は被加工物で、あらかじめドリル等で穿設され
た初期孔(1a)の孔壁とワイヤ電極(2)との間に絶
縁性の加工液(3)を介在させている。この加工液(3
)はタンク(4)から供給ポンプ(5)によって被加工
液(1)とワイヤ電極(2)との間隙にノズル(6)に
よって噴射される。
Fig. 3 is a configuration diagram showing a normal wire electrical discharge machining device, in which (1) is a workpiece, the hole wall of the initial hole (1a) previously drilled with a drill etc. and the wire electrode (2). An insulating working fluid (3) is interposed between them. This processing liquid (3
) is injected from a tank (4) by a supply pump (5) into the gap between the liquid to be processed (1) and the wire electrode (2) by a nozzle (6).

被加工物(1)とワイヤ電極(2)との間の相対的運動
は、被加工物(1)を載置しているテーブルαυによっ
て行なわれる。このテーブルαυはX軸モータ圓とY軸
モータα3とによって駆動され、被加工物(1)とワイ
ヤ電極(2ンとの間の相対的運動はX、Y軸平面内にお
いて2次元平面の連動となる。
The relative movement between the workpiece (1) and the wire electrode (2) is effected by the table αυ on which the workpiece (1) is placed. This table αυ is driven by an X-axis motor circle and a Y-axis motor α3, and the relative movement between the workpiece (1) and the wire electrode (2-axis) is caused by interlocking two-dimensional planes within the X and Y-axis planes. becomes.

ワイヤ電極(2)はワイヤ電極供給リール(刀によって
供給され、下部ワイヤ電極ガイド(8A)、被加工物(
1)内を通過して上部ワイヤ電極(8B)に達し、ワイ
ヤ電極(2)を巻取るテンションローラαQによって巻
き取られる。上記X、Y軸モータaz 、 uniの駆
動制御を行う制御装置はNC装置や倣い装置、あるいは
電n機が用いられ、電気的エネルギを供給する加工電源
<ISlは直流mtA(15m) 、スイッチング素子
(15b) 、電流制限抵抗(15c)およびスイッチ
ング素子(15b)を制御する制御回路(15d)によ
って構成されている。
The wire electrode (2) is supplied by the wire electrode supply reel (katana), the lower wire electrode guide (8A), the workpiece (
1), reaches the upper wire electrode (8B), and is wound up by a tension roller αQ that winds up the wire electrode (2). The control device that controls the drive of the X and Y axis motors az and uni is an NC device, a copying device, or an electric machine, and the processing power source that supplies electrical energy < IS1 is DC mtA (15 m), switching element (15b), a current limiting resistor (15c), and a control circuit (15d) that controls the switching element (15b).

上記のような構成のワイヤ放電加工装置において、加工
液(3)の温度制御がある一定の冷却能力範囲でのみ作
動しているため、周囲温度に対する加工液(3)の熱量
が過度的に変化する際における加工液(3)の温度の追
従性が極めて悪いために、安定したヒートサイクルで温
度制御ができない。
In the wire electrical discharge machining equipment configured as above, the temperature of the machining fluid (3) is controlled only within a certain range of cooling capacity, so the heat amount of the machining fluid (3) changes excessively with respect to the ambient temperature. Since the temperature followability of the machining fluid (3) during this process is extremely poor, the temperature cannot be controlled with a stable heat cycle.

また、被加工物に対する加工精度に最も影響を与える要
因として熱による機械系の変形がある。
Further, the factor that most affects the machining accuracy of the workpiece is deformation of the mechanical system due to heat.

例えば、機械系構造物の材料として用いられる鉄の熱膨
張率は、1mの長さの鉄が1℃温度上昇すると約11P
Ttの伸びを生じる。従って、例えば700n程度の長
さのテーブル、アーム等では、1℃の温度変化によって
約8 )bmの変形を生じることになるが、機械系の各
部分の温度変化にょる伸縮がこの温度変化に対応して完
全に同時に生じるとすると、これらの間の伸縮による寸
法差は生じない。つまり、周囲温度の変化に加工液(3
)の温度が常に追従できれば、上記の機械系の各部分は
それぞれに周囲の温度変化に対応して伸縮するようにな
るので、これらの機械系間の寸法差を最小限に抑えるこ
とができる。
For example, the coefficient of thermal expansion of iron used as a material for mechanical structures is approximately 11P when the temperature of 1m long iron increases by 1°C.
This causes an elongation of Tt. Therefore, for example, in a table, arm, etc. with a length of about 700n, a temperature change of 1°C will cause a deformation of about 8) bm, but the expansion and contraction due to temperature changes of each part of the mechanical system will cause this temperature change. Correspondingly, if they occur completely simultaneously, there will be no dimensional difference between them due to expansion and contraction. In other words, the machining fluid (3
) can always follow the temperature, each part of the mechanical system described above will expand and contract in response to changes in the surrounding temperature, so dimensional differences between these mechanical systems can be minimized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来のワイヤ放電加工装置では、ワイヤ電
極(2)と被加工物(υとの間、もしくはモータ系等の
他の発熱体から放射される熱によって、機械系の周囲温
度が上昇し、上記ワイヤ電極(2)と被加工物(1)と
の間に対する周囲温度との温度差、または機械系に対す
る周囲温度との温度差が生じる。このため、被加工物(
1)と機械系とに生じる熱応力による変形がそれぞれ異
なるので、被加工物(1)に対する加工精度に著しく悪
影響を及ぼすので、ある−定の冷却能力範囲を持つ冷却
装置では加工液(3)の発熱量が過渡的に変化した場合
、周囲温度に対する加工液(3)の温度の追従性が極め
て急く、安定した加工液冷却特性を保つことが困難であ
るという問題があった。
In the conventional wire electrical discharge machining equipment as described above, the ambient temperature of the mechanical system increases due to heat radiated between the wire electrode (2) and the workpiece (υ) or from other heating elements such as the motor system. However, a temperature difference occurs between the wire electrode (2) and the workpiece (1) and the ambient temperature, or a temperature difference between the mechanical system and the ambient temperature.
Since the deformation due to thermal stress occurring in the workpiece (1) and the mechanical system is different, this has a significant negative effect on the machining accuracy of the workpiece (1). When the calorific value of the machining fluid (3) changes transiently, there is a problem in that the temperature of the machining fluid (3) follows the ambient temperature extremely rapidly, making it difficult to maintain stable cooling characteristics of the machining fluid.

この発明はかかる問題点を解決するためになされたもの
で、極間内に流れる加工液温度と周囲温度とをその温度
変化の状態を同期させることによって、被加工物と機械
構造物との熱変形を連続的に均一化し、温度変化による
これらの相対的な寸法差を最小限に抑制することにより
、加工精度が向上する加工液冷却装置を得ることを目的
とする。
This invention was made to solve this problem, and by synchronizing the temperature change of the machining fluid flowing between the machining parts and the ambient temperature, the heat between the workpiece and the machine structure can be reduced. The object of the present invention is to obtain a machining fluid cooling device that improves machining accuracy by continuously uniformizing deformation and minimizing relative dimensional differences caused by temperature changes.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る加工液冷却装置は、加工装置の周E温度
と加工間隙付近の加工液温とを個々に検出し、これらの
温度差が所定の温度範囲内になるように加工液温を連続
的に制御し、さらに加工液熱量の変化に対して必要とさ
れる冷却能力の範囲を複数段階定め、その冷却能力を切
換えることによって幅広い領域の冷却能力を備え、周囲
温度の変化に対する加工液温の連続的な追従性を得るよ
うにしたものである。
The machining fluid cooling device according to the present invention individually detects the peripheral E temperature of the machining device and the machining fluid temperature near the machining gap, and continuously adjusts the machining fluid temperature so that the difference between these temperatures falls within a predetermined temperature range. Furthermore, by setting the range of cooling capacity required in response to changes in the heat amount of the machining fluid in multiple stages, and by switching the cooling capability, it is possible to provide cooling capability in a wide range of ranges, and to adjust the temperature of the machining fluid in response to changes in ambient temperature. This is to obtain continuous followability.

〔作 用〕[For production]

この発明においては、加工装置の周囲温度と被加工物付
近の加工液の温度との差を周波数変換し、インバータを
介して上記温度差に応じて冷凍圧縮機の駆動モータの回
転数を変え、連続的に加工液の温度を制御するとともに
、加工液熱量の過渡的な変動に対しては、加工液の冷却
装置内の冷媒ガスの循還路に設けた複数の開閉手段を多
段階に作動させ、冷却能力を切換えて制御する。
In this invention, the difference between the ambient temperature of the processing device and the temperature of the processing fluid near the workpiece is converted into a frequency, and the rotation speed of the drive motor of the refrigeration compressor is changed according to the temperature difference via an inverter. In addition to continuously controlling the temperature of the machining fluid, multiple opening/closing means installed in the refrigerant gas circulation path in the machining fluid cooling device are operated in multiple stages in response to transient fluctuations in the heat amount of the machining fluid. control by switching the cooling capacity.

〔発明の実施例〕 第1図はこの発明の一実施例によるワイヤ放電加工装置
における加工液冷却装置を示す構成図であり、(1)〜
(5)は従来例を示した第4図における同符号と同一部
分である。
[Embodiment of the Invention] FIG. 1 is a block diagram showing a machining fluid cooling device in a wire electrical discharge machining apparatus according to an embodiment of the present invention.
(5) is the same part as the same reference numeral in FIG. 4 showing the conventional example.

Qeは冷却装置であり、冷却空気の供給ポンプ(16a
)および凝縮機(16b) 、冷凍圧縮機(16c)送
風機(16d)、電磁弁(16f) 、絞り器(16g
)よりなる冷凍サイクル回路で構成されている。住では
周波数変換ユニットで第2図にその詳細を示すように、
加工液温度検出用センサa〜および周g温度検出用七ン
サ住9のそれぞれの検出1直を変換器(17c)。
Qe is a cooling device, which includes a cooling air supply pump (16a
) and condenser (16b), refrigeration compressor (16c), blower (16d), solenoid valve (16f), throttle (16g
) consists of a refrigeration cycle circuit. At home, the frequency conversion unit is used, as shown in Figure 2 in detail.
A converter (17c) converts each of the sensors a to 9 for detecting machining fluid temperature and the sensor 9 for detecting ambient g temperature.

(17d)によって電圧値に変換し、これらの変換器(
17e)、(17d)O出力M tt V/F変換器(
17bE入力し、このV/F変換器(17b)の出力を
インバータαηに入力してここで変換された出力によっ
て冷凍圧縮機(16c)を駆動するようになっている。
(17d) into a voltage value, and these converters (
17e), (17d) O output M tt V/F converter (
17bE is input, and the output of this V/F converter (17b) is input to the inverter αη, and the output converted here drives the refrigeration compressor (16c).

上記のような構成のこの発明による加工液冷却M[にお
いて、第2図に示すようにワイヤ電極(2)と被加工物
(1)との間に介在する加工液(3)の温度を検出する
加工液温度検出用センサaaと、周囲温度検出用センサ
四とによって、これらのセンサu8)。
In the machining fluid cooling M[ of the present invention configured as described above, the temperature of the machining fluid (3) interposed between the wire electrode (2) and the workpiece (1) is detected as shown in FIG. These sensors u8) include a machining fluid temperature detection sensor aa and an ambient temperature detection sensor 4.

(19で検出された温得の比較を行い、ワイヤ電極(2
)と被加工物(1)との間の加工液温度が周囲温度に対
して所定の温度範囲よりも低いときは、冷凍圧縮機(1
6c)の回転数を周波数変換によって下げ、冷却能力を
低下させる。また、これとは逆に高い場合は冷凍圧縮機
(16c)の回転数を上げて冷却能力を増加させる。
(The temperature gain detected in step 19 was compared, and the wire electrode (2
) and the workpiece (1) is lower than a predetermined temperature range with respect to the ambient temperature, the refrigeration compressor (1)
The rotational speed of 6c) is lowered by frequency conversion to reduce the cooling capacity. Conversely, if it is high, the rotational speed of the refrigeration compressor (16c) is increased to increase the cooling capacity.

さて、加工液(3)がある時間(1)後に(@℃だけ温
度変化した場合に、その熱交換の関係は次式で表わされ
る。
Now, when the temperature of the machining fluid (3) changes by (@°C) after a certain time (1), the heat exchange relationship is expressed by the following equation.

v−r−CP・θ =  Q、  −t−Qc−t= 
 Q、・t−(Q、+K・θ)t ・・・〔1〕ただし
V:流体の全体積(ぜ) r:比重    (kg / m” )Cp:比熱  
  (KeaJ / kg@c )K:冷却能力係数(
Kcal/ ’C)Ql:発熱量   (Kcal ) Q、:初期冷却熱量(Kcal) 上記第〔1〕式を各変数のt、θに関して微分方程式を
解くと、次の第〔2〕式で表わされる(初期条件t=o
、θ=00)。
v-r-CP・θ=Q, -t-Qc-t=
Q, ・t-(Q, +K・θ)t ... [1] Where, V: Total volume of fluid (ze) r: Specific gravity (kg/m") Cp: Specific heat
(KeaJ / kg@c) K: Cooling capacity coefficient (
Kcal/'C) Ql: Calorific value (Kcal) Q,: Initial cooling heat amount (Kcal) When the above equation [1] is solved as a differential equation with respect to each variable t and θ, it is expressed by the following equation [2]. (initial condition t=o
, θ=00).

v@r@Cp十に@を 上記第〔2〕式をもとにして、加工液熱量の変化領域に
対しどのくらい冷却力領域が必要であるかを算定し、こ
の算定結果を図示のない制御装置に記憶させ、冷却装置
αυ内に1組だけ例示した電磁弁(16r)と絞り(1
6g)とでなる冷媒ガスの循還路の開閉手段をvI数組
設け、上記制御装置の指令によって加工液熱量の過渡的
な増減に対応するように、上記開閉手段の複数の電磁弁
(16f)を段階的に作動させる。すなわち、加工液熱
量が過渡的に増加した場合には、その増加の程度に応じ
た台数の電磁弁(16f)を開路して循還する冷媒ガス
の流量を増して冷却熱量を大きくし、これとは逆に加工
液熱量が過渡的に減少した場合には、この減少程度に応
じた台数の電磁弁(16f)を閉路するようにして、加
工液温の過渡的な温度変動をそれぞれの場合について抑
制する。
Based on the above equation [2], calculate how much cooling power area is required for the changing area of machining fluid heat amount, and apply this calculation result to control (not shown). The solenoid valve (16r) and the throttle (1
A plurality of solenoid valves (16f) of the opening/closing means are provided in order to respond to transient increases and decreases in the heat amount of the machining fluid according to commands from the control device. ) in stages. That is, when the amount of heat of the machining fluid increases transiently, the number of solenoid valves (16f) corresponding to the degree of increase are opened to increase the flow rate of the circulating refrigerant gas to increase the amount of cooling heat. On the contrary, when the heat amount of the machining fluid decreases transiently, the number of solenoid valves (16f) corresponding to the degree of decrease are closed, and the transient temperature fluctuation of the machining fluid temperature is reduced in each case. suppress about.

なお、上記実施例ではワイヤ放電加工装置における加工
液冷却装置について説明したが、−般の加工装置におい
て加工手段と被加工物との間に加工液を供給して加工を
行う装置であれば、上記実施例と同様の効果を奏する。
In the above embodiment, a machining fluid cooling device in a wire electrical discharge machining device was explained, but if it is a device that performs machining by supplying machining fluid between a machining means and a workpiece in a general machining device, The same effects as in the above embodiment are achieved.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、加工液を供給しながら
加工を行う加工装置において、この加工装置の周囲温度
の検出用センサと加工液温度の検出用センサとによって
検出される温度を比較することにより、供給する加工液
温度を連続的に制御するとともに、加工液温の過渡的な
変動に対して、加工液に対する冷却能力を多段階に切換
えて制御するように構成したので、被加工物と機械系構
造物との熱変形を連続的に均一化して、周囲温度の影響
を受けずに高精度の加工を行うことができる効果がある
As explained above, the present invention is to compare the temperatures detected by the ambient temperature detection sensor and the machining fluid temperature detection sensor of the machining device in a machining device that performs machining while supplying machining fluid. As a result, the temperature of the machining fluid supplied is continuously controlled, and the cooling capacity for the machining fluid is controlled in multiple stages in response to transient fluctuations in the machining fluid temperature. This has the effect of continuously uniformizing thermal deformation with the mechanical structure and allowing highly accurate processing to be performed without being affected by ambient temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるワイヤ放電加工装置
における加工液冷却装置を示す構成図、第2図は第1図
における周波数変換ユニットの詳細を示す図、第3図は
従来のワイヤ放電加工装置の一例を示す構成図である。 図において、(1)は被加工物、(3)は加工液、αe
は冷却装置、(16f)は電磁弁、(IQは加工液温度
検出用センサ、αっけ周囲温度検出用センサ。 なお、図中同一符号は同一または相当部分を示す0
FIG. 1 is a block diagram showing a machining fluid cooling device in a wire electrical discharge machining apparatus according to an embodiment of the present invention, FIG. 2 is a diagram showing details of the frequency conversion unit in FIG. 1, and FIG. 3 is a diagram showing a conventional wire electrical discharge machine. FIG. 1 is a configuration diagram showing an example of a processing device. In the figure, (1) is the workpiece, (3) is the machining fluid, αe
(16f) is a cooling device, (16f) is a solenoid valve, (IQ is a sensor for detecting processing fluid temperature, and α is a sensor for detecting ambient temperature. In addition, the same symbols in the figure indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)被加工物とこれを加工する加工手段との間隙に冷
却用の加工液を供給するようになされた加工装置におい
て、上記間隙付近の加工液の温度検出用センサと上記加
工装置の周囲の温度検出用センサとを設け、これらのセ
ンサの出力を比較してその温度差が所定の温度範囲内に
なるように連続的に制御する手段と、上記加工液の熱量
変化に応じて複数段階に冷却能力を切換えて加工液温度
を制御する手段とを備えたことを特徴とする加工液冷却
装置。
(1) In a processing device configured to supply a cooling liquid to a gap between a workpiece and a processing means for processing the workpiece, a sensor for detecting the temperature of the processing liquid near the gap and the surroundings of the processing device a temperature detection sensor, a means for comparing the outputs of these sensors and continuously controlling the temperature difference so that it is within a predetermined temperature range, and a means for continuously controlling the temperature difference so that the temperature difference is within a predetermined temperature range; 1. A machining fluid cooling device characterized by comprising: a means for controlling a machining fluid temperature by switching a cooling capacity to a temperature of the machining fluid;
(2)加工装置がワイヤ放電加工装置であることを特徴
とする特許請求の範囲第1項記載の加工液冷却装置。
(2) The machining fluid cooling device according to claim 1, wherein the machining device is a wire electrical discharge machining device.
JP14682186A 1986-06-25 1986-06-25 Working liquid cooling device Pending JPS634309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14682186A JPS634309A (en) 1986-06-25 1986-06-25 Working liquid cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14682186A JPS634309A (en) 1986-06-25 1986-06-25 Working liquid cooling device

Publications (1)

Publication Number Publication Date
JPS634309A true JPS634309A (en) 1988-01-09

Family

ID=15416289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14682186A Pending JPS634309A (en) 1986-06-25 1986-06-25 Working liquid cooling device

Country Status (1)

Country Link
JP (1) JPS634309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055949A (en) * 1989-01-25 1991-10-08 Kabushiki Kaisha Toshiba Disk drive and method for controlling the cleaning of the floppy disk
US5621597A (en) * 1991-05-22 1997-04-15 Tdk Corporation Disc cartridge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055949A (en) * 1989-01-25 1991-10-08 Kabushiki Kaisha Toshiba Disk drive and method for controlling the cleaning of the floppy disk
US5621597A (en) * 1991-05-22 1997-04-15 Tdk Corporation Disc cartridge

Similar Documents

Publication Publication Date Title
US6222164B1 (en) Temperature control system for a thermal reactor
US5476137A (en) Ultra-precision temperature control system for machine tool and control method therefor
CN109827308A (en) Multi-split system control method and device and multi-split system
US20230221085A1 (en) Operation control system and method for a chiller cooling tower
JPS634309A (en) Working liquid cooling device
KR20110112533A (en) Temparature control system for the industrial cooler
US8694167B2 (en) Method for controlling vacuum pumps in an industrial furnace complex
JP3903150B1 (en) Weather light test method and weather light test machine
CN214950836U (en) Operation control system of ice machine cooling tower
JPH0128299B2 (en)
JPH05322279A (en) Control device for air conditioner
JPS61297020A (en) Wire electric discharge machine
US3212309A (en) Automatic temperature regulating system
KR20200142462A (en) Heater, temperature control system, processing apparatus, and method of manufacturing semiconductor device
CN207918909U (en) a kind of cooling device
US20060082034A1 (en) Method and apparatus for automatically controlling temperature in a furnace system
JPH024152A (en) Air conditioner
KR20050088989A (en) Heat treatment system and heat treatment method
JPS6249149A (en) Indoor air conditioning system
CN218503669U (en) Metal part welding seam stress relieving device
JP2744935B2 (en) Processing equipment
JP2001074318A (en) Control method for cooling system
JPH0936097A (en) Temperature adjustment device
JPS5914182B2 (en) thermal testing equipment
JPH0374942B2 (en)