JPS6342804B2 - - Google Patents

Info

Publication number
JPS6342804B2
JPS6342804B2 JP55118818A JP11881880A JPS6342804B2 JP S6342804 B2 JPS6342804 B2 JP S6342804B2 JP 55118818 A JP55118818 A JP 55118818A JP 11881880 A JP11881880 A JP 11881880A JP S6342804 B2 JPS6342804 B2 JP S6342804B2
Authority
JP
Japan
Prior art keywords
resin
polyborosiloxane
heat
varnish
insulated wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55118818A
Other languages
Japanese (ja)
Other versions
JPS5743309A (en
Inventor
Etsuo Hosokawa
Kozo Arahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP55118818A priority Critical patent/JPS5743309A/en
Publication of JPS5743309A publication Critical patent/JPS5743309A/en
Publication of JPS6342804B2 publication Critical patent/JPS6342804B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐熱性絶縁電線特に300℃以上の高温
で使用できる耐熱性絶縁電線に関する。 従来より、耐熱性エナメル線として知られてい
るものにはポリイミド線、ポリアミドイミド線、
ポリエステルイミド線等があり、それぞれ220〜
250℃、180〜220℃、155〜180℃の耐熱性を有し
ており、かなりの耐熱性を有すると言えるがいず
れも有機物の絶縁皮膜から成るため、400℃位の
高温になると分解し、従つて250℃位までの使用
に限られていた。一方ガラス糸を導体に巻きつけ
て絶縁したガラス巻線も耐熱性絶縁電線として知
られているが、このようなガラス巻線には通常絶
縁性の向上とほつれ防止の目的でガラス糸とガラ
ス糸の間に有機物の絶縁塗料が塗布されており、
そのため耐熱性はたかだか180℃位にとどまり、
更にスペースフアクターに劣るという欠点があつ
た。 近年原子力発電、地熱発電その他特殊用途に
300℃以上の高温で使用できるマグネツトワイヤ
ーの要求があり、無機物をコーテイングした無機
電線等が検討されているが、このような無機電線
は一般にポーラスであるため可撓性、絶縁性が悪
く実用化されていないのが現状である。一方本発
明者らはケイ素、ホウ素、酸素を骨格とする、電
気絶縁塗料として使用できるポリボロシロキサン
樹脂について検討し、これに芳香族ポリイミド樹
脂を混合すれば300℃以上の高温においても使用
でき、しかも可撓性、絶縁特性の低下のない絶縁
電線が得られることを見いだし先に出願した。し
かしながらこのものは機械強度が不充分で、その
改善が必要であつた。 本発明はこの改善のためなされたものであつ
て、前述のポリボロシロキサン樹脂と芳香族ポリ
イミド樹脂の混合ワニスの塗布焼付層上に、H種
以上の絶縁被覆を設けた耐熱性絶縁電線に関す
る。 本発明に使用する芳香族ポリイミド樹脂溶液
は、例えば特公昭46−17145号に記載されている
ように3.3′.4.4′―ベンゾフエノンテトラカルボン
酸二無水物と特殊な芳香族ジアミンとをクレゾー
ル等のフエノール系溶剤中で加熱重縮合させるこ
とにより得られるもの(このようなものに例えば
東芝ケミカル社製のTVE5051がある)が適切で、
他にパイルML(DuPont社製商品名)のような、
ピロメリツト酸二無水物と4.4′―ジアミノジフエ
ニルエーテルとをN―メチルピロリドン
(NMP)やジメチルアセトアミド(DMAc)等
の特殊な極性溶剤中で10℃前後の低温で付加反応
させて得られる、ワニス状態ではポリイミドの先
駆体であるポリアミド酸樹脂溶液であるものもあ
るが、ワニスのライフが短いため低温保存を必要
とする、高価な特殊溶剤を使用する等の理由から
前者のクレゾールに溶かした芳香族ポリイミド樹
脂溶液の方が好ましい。 本発明に使用するポリボロシロキサン樹脂は、
(a)オルトホウ酸、メタホウ酸、無水ホウ酸、ホウ
酸メチルエステル、ホウ砂等のホウ酸化合物と、
(b)SiX4、SiRX3、SiRR′X2で表わされるシラン化
合物(式中R、R′はメチル基又はフエニル基、
Xは水酸基又は塩素であつて、Xが水酸基の場合
はその脱水縮合物も含む)とを1:10〜10:1好
ましくは1:3〜3:1の当量モル比(モルに官
能基の数を乗じたもの)で50〜800℃に加熱して
縮重合反応を行なわせて得られる。而して反応温
度が300℃以上の場合は不活性雰囲気下で行なう
のが望ましく、又反応を2段階に分けて行なつて
も良い。ポリボロシロキサン樹脂の製造に際して
は(b)の塩素含有シランは塩化水素を発生し作業環
境上好ましくないのでシラノール化合物(ヒドロ
キシシラン)を使用するのが望ましい。又(a)のホ
ウ酸化合物と(b)のシラン化合物の全量に対して、
5重量%以上のシリコンオイルを添加して重縮合
反応を行なえば、電線皮膜とした場合により優れ
た可撓性を有するものが得られるのでその使用が
望ましい。シリコンオイルは25℃における粘度が
1.0センチストークス好ましくは10センチストー
クス以上のジメチルシリコン又はメチルフエニル
シリコン又はそれらの混合物が適切である。 ポリボロシロキサン樹脂溶液は前記ポリボロシ
ロキサン樹脂をクレゾール等のフエエノール系溶
剤やN―メチルピロリドン(NMP)等の焼付可
能な溶剤に溶解させて得られる。 本発明においては芳香族ポリイミド樹脂溶液に
ポリボロシロキサン樹脂を添加溶解させてワニス
状樹脂溶液とすることもできるが、溶液同士を混
合する方がやりやすく、その場合同種の溶剤を使
用するのが望ましい。例えば芳香族ポリイミド樹
脂溶液の溶剤がクレゾール等のフエノール系溶剤
の場合は、ポリボロシロキサン樹脂溶液もフエノ
ール系溶剤を使用するのが望ましく、又NMP、
DMAc等の極性溶剤の場合は、ポリボロシロキ
サン樹脂溶液もNMP、DMAcを使用するのが望
ましい。その理由は異種の溶剤が混入するとポリ
イミドの溶解性が異なり、分離、沈殿するからで
ある。 本発明においては芳香族ポリイミド樹脂溶液と
ポリボロシロキサン樹脂又は樹脂溶液の混合比率
は要求される特性に応じて適宜選択することがで
きる。例えば機械特性はあまり必要でないが耐熱
性が非常に要求される場合はポリボロシロキサン
樹脂の比率を大きくすればよく、逆の場合は芳香
族ポリイミドの比率を大きくすればよい。 しかしながら芳香族ポリイミドのクレゾール溶
液を使用する場合はポリボロシロキサン樹脂固形
分が全体の樹脂固形分の70%より多くなるとポリ
イミド樹脂の沈殿が生じるのでポリボロシロキサ
ン樹脂固形分は70%以下が好ましい。本願発明に
おけるこれら混合物の特性は、それぞれ単独の特
性の相和平均ではなく、両者混合により特性は著
しく改善される。 本発明に使用するH種以上の絶縁被覆としては
THEICポリエステルイミド樹脂、ポリアミドイ
ミド樹脂、ポリイミド樹脂、シリコン樹脂等があ
る。これらの皮膜の厚さはあまり厚すぎると下層
の耐熱性が充分発揮されないので全体の皮膜厚の
30%以下が好ましい。 本発明においては、使用する導体はNiメツキ、
Agメツキの銅線あるいはAg線、Ni線等の耐熱性
の導体が好ましく、これらの導体上に前述したポ
リボロシロキサン樹脂と芳香族ポリイミド樹脂の
混合ワニスを通常の方法で複数回塗布焼付けし、
更にその上にH種以上のワニスを塗布焼付けして
本発明に係る耐熱性絶縁電線が得られる。 次に実施例について説明する。 実施例 1 ジフエニルジヒドロキシシラン50.0モル%とホ
ウ酸34.0モル%とジメチルシリコンオイル(平均
分子量384)16.0モル%とを温度計、撹拌機およ
びコンデンサーを備えた反応容器に入れ常温から
徐々に400℃まで温度をあげてゆき(6時間)、更
に400℃で2時間反応させて縮重合させた。この
生成物をクレゾールに溶解し不揮発分39.8%
(300℃×1時間)、30℃における粘度が3.2ポイズ
のポリボロシロキサン樹脂のクレゾール溶液を得
た。このポリボロシロキサン樹脂溶液と芳香族ポ
リイミド樹脂溶液あるTVE5051を全体の樹脂固
形分の重量に対してそれぞれの樹脂固形分が40%
と60%なるよう混合し本願発明に係るワニスを得
た。このワニスは不揮発分21.3%(250℃×1.5時
間)、30℃における粘度が32.4ポイズであつた。
このワニスを1.0mmφのNiメツキ線(メツキ厚
2μ)に、炉長7.2mの縦型焼付機を用い、焼付温
度450℃、線速8m/分で8回塗布焼付し、空焼
3回することにより、28μの塗膜厚を有する絶縁
電線を得、更にこの上にTVE5051を3回塗布し、
全体の厚さが37μの絶縁電線を得た。得られた絶
縁電線の特性についての試験結果は第1表の通り
であつた。 実施例 2 実施例1で得られた、ポリボロシロキサン樹脂
と芳香族ポリイミド樹脂の混合ワニスの塗布焼付
層上に、ポリアミドイミド樹脂であるHI―400
(日立化成社製商品名)を2回塗布し、全体の厚
さが38μの絶縁電線を得た。 実施例 3 実施例1で得られたポリボロシロキサン樹脂
を、TVE5051と、50%、50%となるよう混合し、
これを第1表の焼付条件で焼付けし、この上に更
にTVE5051を3回塗布して全体の厚さが37μの絶
縁電線を得た。 実施例 4、5、6 ジフエニルジヒドロキシシラン54.6モル%とホ
ウ酸36.3モル%とジメチルシリコンオイル(平均
分子量384)9.1モル%とを実施例1と同様に縮重
合反応させ、NMPに溶解して不揮発分41.1%
(300℃×1時間)、30℃における粘度が0.5ポイズ
のポリボロシロキサン樹脂のNMP溶液を得た。
これをパイルMLと、10%、90%(実施例4)、
50%、50%(実施例5)90%、10%(実施例6)
となるよう混合し、第1表の焼付条件で塗布焼付
け、この上に更に、実施例4ではパイルMLを、
実施例5ではHI―400(ポリアミドイミド)を、
実施例6ではTHEICポリエステルイミドである
アイソミツドRH(日触スケネクタデイ社製商品
名)を2回塗布してそれぞれ39μ、37μ、36μの塗
膜厚を有する絶縁電線を得た。このものの試験結
果は第1表の通りであつた。 なお表中比較例としてあげたものは上層のない
ものであつて、比較例1は実施例1で得たポリボ
ロシロキサン樹脂のみの被覆、比較例2は実施例
3で得た混合ワニスの塗布焼付層のみの場合を示
す。
The present invention relates to a heat-resistant insulated wire, particularly a heat-resistant insulated wire that can be used at high temperatures of 300° C. or higher. Traditionally known heat-resistant enamelled wires include polyimide wire, polyamide-imide wire,
There are polyester imide wires, etc., each starting from 220
It has heat resistance of 250℃, 180~220℃, and 155~180℃, and can be said to have considerable heat resistance, but since they are all made of organic insulation films, they decompose at high temperatures of around 400℃. Therefore, its use was limited to temperatures up to about 250°C. On the other hand, glass windings made by wrapping glass threads around a conductor to insulate them are also known as heat-resistant insulated wires, but such glass windings usually include glass threads and glass threads for the purpose of improving insulation and preventing fraying. An organic insulating paint is applied between the
Therefore, the heat resistance is only around 180℃,
Furthermore, it had the disadvantage of being inferior to Space Factor. In recent years, it has been used for nuclear power generation, geothermal power generation, and other special purposes.
There is a demand for magnet wires that can be used at high temperatures of 300°C or higher, and inorganic wires coated with inorganic materials are being considered, but such inorganic wires are generally porous and have poor flexibility and insulation, making them impractical. The current situation is that it has not been standardized. On the other hand, the present inventors studied polyborosiloxane resin, which has a skeleton of silicon, boron, and oxygen and can be used as an electrically insulating paint, and found that if it is mixed with an aromatic polyimide resin, it can be used even at high temperatures of 300°C or higher. Moreover, it was discovered that an insulated wire with no deterioration in flexibility or insulation properties could be obtained, and the patent was filed earlier. However, this product had insufficient mechanical strength and needed to be improved. The present invention has been made to improve this, and relates to a heat-resistant insulated wire in which an insulation coating of class H or higher is provided on a coated and baked layer of the above-mentioned mixed varnish of polyborosiloxane resin and aromatic polyimide resin. The aromatic polyimide resin solution used in the present invention is prepared by mixing 3.3'.4.4'-benzophenone tetracarboxylic dianhydride and a special aromatic diamine with cresol as described in Japanese Patent Publication No. 46-17145. (such as TVE5051 manufactured by Toshiba Chemical Co., Ltd.) is suitable.
Others, such as Pile ML (product name manufactured by DuPont),
Varnish obtained by addition reaction of pyromellitic dianhydride and 4,4′-diaminodiphenyl ether in a special polar solvent such as N-methylpyrrolidone (NMP) or dimethylacetamide (DMAc) at a low temperature of around 10°C. In some cases, it is a solution of polyamic acid resin, which is a precursor of polyimide, but due to the short life of the varnish, it requires low temperature storage, and the use of expensive special solvents. Group polyimide resin solutions are preferred. The polyborosiloxane resin used in the present invention is
(a) boric acid compounds such as orthoboric acid, metaboric acid, boric anhydride, boric acid methyl ester, borax,
(b) Silane compounds represented by SiX 4 , SiRX 3 , SiRR'X 2 (wherein R and R' are methyl or phenyl groups,
X is a hydroxyl group or chlorine, and in the case where It is obtained by heating the polycondensate at 50 to 800°C to carry out a polycondensation reaction. When the reaction temperature is 300°C or higher, it is preferable to carry out the reaction under an inert atmosphere, and the reaction may be carried out in two stages. In the production of polyborosiloxane resins, it is desirable to use silanol compounds (hydroxysilanes), since the chlorine-containing silane (b) generates hydrogen chloride, which is unfavorable in terms of the working environment. Also, based on the total amount of boric acid compound (a) and silane compound (b),
If 5% by weight or more of silicone oil is added and the polycondensation reaction is carried out, it is desirable to use this method because a wire coating having superior flexibility can be obtained. The viscosity of silicone oil at 25℃ is
Dimethylsilicon or methylphenylsilicon or mixtures thereof of 1.0 centistokes, preferably 10 centistokes or more are suitable. The polyborosiloxane resin solution is obtained by dissolving the polyborosiloxane resin in a phenolic solvent such as cresol or a stoving solvent such as N-methylpyrrolidone (NMP). In the present invention, a varnish-like resin solution can be obtained by adding and dissolving a polyborosiloxane resin into an aromatic polyimide resin solution, but it is easier to mix the solutions together, and in that case, it is preferable to use the same type of solvent. desirable. For example, if the solvent for the aromatic polyimide resin solution is a phenolic solvent such as cresol, it is desirable to use a phenolic solvent for the polyborosiloxane resin solution.
In the case of a polar solvent such as DMAc, it is desirable to use NMP or DMAc for the polyborosiloxane resin solution. The reason for this is that when different types of solvents are mixed, the solubility of polyimide differs, causing separation and precipitation. In the present invention, the mixing ratio of the aromatic polyimide resin solution and the polyborosiloxane resin or resin solution can be appropriately selected depending on the required characteristics. For example, if mechanical properties are not so required but heat resistance is extremely required, the proportion of polyborosiloxane resin may be increased, and in the opposite case, the proportion of aromatic polyimide may be increased. However, when using a cresol solution of aromatic polyimide, if the solid content of the polyborosiloxane resin exceeds 70% of the total resin solid content, precipitation of the polyimide resin will occur, so the solid content of the polyborosiloxane resin is preferably 70% or less. The properties of these mixtures in the present invention are not the sum of the individual properties, but are significantly improved by mixing both. As the insulation coating of class H or higher used in the present invention,
THEIC polyesterimide resin, polyamideimide resin, polyimide resin, silicone resin, etc. If the thickness of these films is too thick, the heat resistance of the underlying layer will not be fully demonstrated, so the total film thickness should be
30% or less is preferable. In the present invention, the conductor used is Ni plating,
Heat-resistant conductors such as Ag-plated copper wires, Ag wires, and Ni wires are preferable, and the above-mentioned mixed varnish of polyborosiloxane resin and aromatic polyimide resin is applied and baked multiple times on these conductors using a conventional method.
Further, a varnish of grade H or higher is coated and baked on the varnish to obtain a heat-resistant insulated wire according to the present invention. Next, an example will be described. Example 1 50.0 mol% of diphenyldihydroxysilane, 34.0 mol% of boric acid, and 16.0 mol% of dimethyl silicone oil (average molecular weight 384) were placed in a reaction vessel equipped with a thermometer, a stirrer, and a condenser, and the temperature was gradually increased from room temperature to 400°C. The temperature was raised to (6 hours), and the reaction was further carried out at 400°C for 2 hours to effect condensation polymerization. This product was dissolved in cresol and the non-volatile content was 39.8%.
(300°C x 1 hour) to obtain a cresol solution of polyborosiloxane resin having a viscosity of 3.2 poise at 30°C. This polyborosiloxane resin solution and aromatic polyimide resin solution (TVE5051) have a resin solid content of 40% of the total resin solid content.
A varnish according to the present invention was obtained by mixing the varnish to 60%. This varnish had a non-volatile content of 21.3% (250°C x 1.5 hours) and a viscosity of 32.4 poise at 30°C.
Apply this varnish to a 1.0mmφ Ni plating wire (plating thickness
2μ), was coated and baked 8 times at a baking temperature of 450°C and a line speed of 8m/min using a vertical baking machine with a furnace length of 7.2m, and was dry-baked 3 times to produce an insulated wire with a coating thickness of 28μ. Then, apply TVE5051 three times on top of this.
An insulated wire with a total thickness of 37μ was obtained. The test results regarding the characteristics of the obtained insulated wire were as shown in Table 1. Example 2 HI-400, which is a polyamide-imide resin, was applied on the coating and baking layer of the mixed varnish of polyborosiloxane resin and aromatic polyimide resin obtained in Example 1.
(trade name, manufactured by Hitachi Chemical Co., Ltd.) was applied twice to obtain an insulated wire with a total thickness of 38 μm. Example 3 The polyborosiloxane resin obtained in Example 1 was mixed with TVE5051 so that the proportions were 50% and 50%,
This was baked under the baking conditions shown in Table 1, and TVE5051 was further applied three times to obtain an insulated wire with a total thickness of 37μ. Examples 4, 5, 6 54.6 mol% of diphenyldihydroxysilane, 36.3 mol% of boric acid, and 9.1 mol% of dimethyl silicone oil (average molecular weight 384) were subjected to a polycondensation reaction in the same manner as in Example 1, and dissolved in NMP. Non-volatile content 41.1%
(300°C x 1 hour) to obtain an NMP solution of polyborosiloxane resin having a viscosity of 0.5 poise at 30°C.
This is used as pile ML, 10%, 90% (Example 4),
50%, 50% (Example 5) 90%, 10% (Example 6)
Mixed so that
In Example 5, HI-400 (polyamideimide)
In Example 6, Isomid RH (trade name, manufactured by Nissoku Schenectaday Co., Ltd.), which is a THEIC polyester imide, was applied twice to obtain insulated wires having coating thicknesses of 39μ, 37μ, and 36μ, respectively. The test results for this product were as shown in Table 1. The comparative examples listed in the table do not have an upper layer, and Comparative Example 1 is coated with only the polyborosiloxane resin obtained in Example 1, and Comparative Example 2 is coated with the mixed varnish obtained in Example 3. The case of only the baked layer is shown.

【表】【table】

【表】 以上の実施例から明らかなように、本発明に係
る耐熱性絶縁電線は、耐摩耗性が改善され、極め
て有用である。
[Table] As is clear from the above examples, the heat-resistant insulated wire according to the present invention has improved wear resistance and is extremely useful.

Claims (1)

【特許請求の範囲】 1 芳香族ポリイミド樹脂溶液にポリボロシロキ
サン樹脂又はその溶液を混合して成るワニス状樹
脂溶液を導体上に直接あるいは他の絶縁皮膜を介
して塗布焼付けし、更にその上にH種以上の耐熱
性を有する絶縁被覆を設けて成ることを特徴とす
る耐熱性絶縁電線。 2 H種以上の耐熱性を有する絶縁被覆の厚さ
は、全皮膜厚の30%以下である特許請求の範囲第
1項記載の耐熱性絶縁電線。
[Claims] 1. A varnish-like resin solution prepared by mixing a polyborosiloxane resin or its solution with an aromatic polyimide resin solution is coated and baked on a conductor directly or through another insulating film, and then A heat-resistant insulated wire characterized by being provided with an insulation coating having heat resistance of class H or higher. 2. The heat-resistant insulated wire according to claim 1, wherein the thickness of the insulation coating having heat resistance of class H or higher is 30% or less of the total coating thickness.
JP55118818A 1980-08-28 1980-08-28 Heat resistant insulating wire Granted JPS5743309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55118818A JPS5743309A (en) 1980-08-28 1980-08-28 Heat resistant insulating wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55118818A JPS5743309A (en) 1980-08-28 1980-08-28 Heat resistant insulating wire

Publications (2)

Publication Number Publication Date
JPS5743309A JPS5743309A (en) 1982-03-11
JPS6342804B2 true JPS6342804B2 (en) 1988-08-25

Family

ID=14745891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55118818A Granted JPS5743309A (en) 1980-08-28 1980-08-28 Heat resistant insulating wire

Country Status (1)

Country Link
JP (1) JPS5743309A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123714A (en) * 1990-09-14 1992-04-23 Tatsuta Electric Wire & Cable Co Ltd Heat resistant magnet wire

Also Published As

Publication number Publication date
JPS5743309A (en) 1982-03-11

Similar Documents

Publication Publication Date Title
US20130000951A1 (en) Insulated electric wire and coil using same
JP5405696B1 (en) Square wires, winding coils, and motors for motor windings of vehicle ships
JPS6342804B2 (en)
JP2012046619A (en) Insulated wire, electric appliance coil using the same, and motor
JP3724922B2 (en) Polyimide-based insulating paint and insulated wire
US4217389A (en) Curable mixture of water soluble polyester and polyimide precursor, process of coating and products
US3440204A (en) Polyamide amide-acid coating solutions containing a silicone,method of using said solutions and surfaces coated therewith
JP2013155281A (en) Insulating coating, insulated wire using the insulating coating, and coil using the insulated wire
JPS639326B2 (en)
JP3164949B2 (en) Self-fusing insulated wire and rotating electric machine using the same
JPS638566B2 (en)
US4459383A (en) Polyamide-imide resin compositions and electrical conductors insulated therewith
KR100644338B1 (en) The manufacture method of the polyamideimide resin solution for enamel copper wire clothing that the antiwear characteristic was strengthened
JP2968641B2 (en) Insulated wire
JPH0358121B2 (en)
JPS5854444B2 (en) Heat resistant insulated wire
JP4794719B2 (en) Self-bonding insulated wire
JP2012097177A (en) Polyamideimide varnish, and insulated wire, electric coil and motor using the same
JPS6362845B2 (en)
JP6863161B2 (en) Varnish manufacturing method, enamel wire manufacturing method, coil manufacturing method and electrical parts manufacturing method
JP2011159577A (en) Insulated electrical wire and electric coil and motor using the same
JPS58127B2 (en) insulated wire
JPS6344243B2 (en)
CA1167595A (en) Polyetheramideimide resins and electrical conductors insulated therewith
JP2012051966A (en) Epoxy-modified polyphenylene ether, insulated wire using the same, electric machine coil and motor