JPH0358121B2 - - Google Patents

Info

Publication number
JPH0358121B2
JPH0358121B2 JP56014135A JP1413581A JPH0358121B2 JP H0358121 B2 JPH0358121 B2 JP H0358121B2 JP 56014135 A JP56014135 A JP 56014135A JP 1413581 A JP1413581 A JP 1413581A JP H0358121 B2 JPH0358121 B2 JP H0358121B2
Authority
JP
Japan
Prior art keywords
resin
heat
solution
resistant
polyborosiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56014135A
Other languages
Japanese (ja)
Other versions
JPS57128409A (en
Inventor
Etsuo Hosokawa
Misao Wake
Kozo Arahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP56014135A priority Critical patent/JPS57128409A/en
Publication of JPS57128409A publication Critical patent/JPS57128409A/en
Publication of JPH0358121B2 publication Critical patent/JPH0358121B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐熱性絶縁電線特に300℃以上の高温
で使用できる耐熱性絶縁電線に関する。 従来より、耐熱性エナメル線として知られてい
るものにはポリイミド線、ポリアミドイミド線、
ポリエステルイミド線等があり、それぞれ220〜
250℃、180〜220℃、155〜180℃の耐熱性を有し
ており、かなりの耐熱性を有すると言えるがいず
れも有機物の絶縁皮膜から成るため、400℃位の
高温になると分解し、従つて250℃位までの使用
に限られていた。一方ガラス糸を導体に巻きつけ
て絶縁したガラス巻線も耐熱性絶縁電線として知
られているが、このようなガラス巻線には通常絶
縁性の向上とほつれ防止の目的でガラス糸とガラ
ス糸の間に有機物の絶縁塗料が塗布されており、
そのため耐熱性はたかだか180℃位にとどまり、
更にスペースフアクターに劣るという欠点があつ
た。 近年原子力発電、地熱発電その他特殊用途に
300℃以上の高温で使用できるマグネツトワイヤ
ーの要求があり、無機物をコーテイングした無機
電線等が検討されているが、このような無機電線
は一般にポーラスであるため可撓性、絶縁性が悪
く実用化されていないのが現状である。一方本発
明者らはケイ素、ホウ素、酸素を骨格とする、電
気絶縁塗料として使用できるポリボロシロキサン
樹脂について検討し、先に出願したが、このもの
は焼度を強くすると耐熱性、耐湿性は充分満足す
るが、可焼性、電気絶縁性が低下し、焼度を弱く
すると逆の結果になり、エナメル線として要求さ
れる全ての特性を満足するものは今だ得られてい
なかつた。 本発明者らは上述のポリボロシロキサン樹脂に
芳香族ポリイミド樹脂を混合すれば、300℃以上
の高温においても使用でき、しかも可撓性、絶縁
性の低下のない絶縁電線が得られることを見いだ
し、先に出願したが、本発明者らは更にこの芳香
族ポリイミド樹脂以外に後述する耐熱性樹脂も有
効であることを見い出した。 本発明はこのような知見に基づいてなされたも
ので、ポリイミダゾピロロン、ポリアミドイミ
ド、ポリヒダントイン、ポリイミダゾール、ポリ
キナゾロン、ポリイミダゾキノサリン、ポリスル
ホン、ポリエーテルスルホン、ポリオキサゾー
ル、ポリオキサジアゾール、ポリトリアゾール、
ポリフエニレンオキサイド、ポリパラバン酸、シ
リコン樹脂から選ばれた1種又は2種以上の耐熱
性樹脂の溶液にポリボロシロキサン樹脂又はその
溶液を混合して成るワニス状樹脂溶液を導体上に
直接あるいは他の絶縁皮膜を介して塗布焼付けた
ことを特徴とする耐熱性絶縁電線に関する。 本発明に使用する耐熱性樹脂としては、ポリイ
ミダゾピロロン、ポリアミドイミド、ポリヒダン
トイン、ポリイミダゾール、ポリキナゾロン、ポ
リイミダゾキノサリン、ポリスルホン、ポリエー
テルスルホン、ポリオキサゾール、ポリオキサジ
アゾール、ポリトリアゾール、ポリフエニレンオ
キサイド、ポリパラバン酸、シリコン樹脂があ
り、これらは単独あるいは併用しても良い。これ
らは通常溶剤に溶解され、ワニス状で市販されて
おり、例えばポリアミドイミドワニスとしては日
立化成社製HI400、ポリイミダゾピロロンワニス
としては昭和電線社製サーモタイトH−8、シリ
コン樹脂ワニスとしては東芝シリコーン社製
TSR116等がある。又樹脂そのもので市販されて
いる場合はN−メチルピロリドン(NMP)、ジ
メチルアセトアミド(DMAc)等の極性溶剤に溶
解させて使用に供する。なおポリヒダントインは
クレゾール等のフエノール系溶剤に可溶なのでク
レゾール溶液とすることもできる。 本発明に使用するポリボロシロキサン樹脂は、
(a)オルトホウ酸、メタホウ酸、無水ホウ酸、ホウ
酸メチルエステル、ホウ砂等のホウ酸化合物と、
(b)SiX4、SiRX3、SiRR′X2で表わされるシラン化
合物(式中R、R′はメチル基又はフエニル基、
Xは水酸基又は塩素であつて、Xが水酸基の場合
はその脱水縮合物も含む)とを1:10〜10:1好
ましくは1:3〜3:1の当量モル比(モルに官
能基の数を乗じたもの)で50〜800℃に加熱して
縮重合反応を行なわせて得られる。而して反応温
度が300℃以上の場合は不活性雰囲気下で行なう
のが望ましく、又反応を2段階に分けて行なつて
も良い。ポリボロシロキサン樹脂の製造に際して
は(b)の塩素含有シランは塩化水素を発生し作業環
境上好ましくないのでシラノール化合物(ヒドロ
キシシラン)を使用するのが望ましい。又(a)のホ
ウ酸化合物と(b)のシラン化合物の全量に対して、
5重量%以上のシリコンオイルを添加して重縮合
反応を行なえば、電線皮膜とした場合により優れ
た可撓性を有するものが得られるのでその使用が
望ましい。シリコンオイルは25℃における粘度が
1.0センチストークス好ましくは10センチストー
クス以上のジメチルシリコン又はメチルフエニル
シリコン又はそれらの混合物が適切である。 又出発物質にトリエタノールアミン、フエニレ
ンジアミン等の含窒素化合物を加えれば耐水性が
向上し、ヒドロキノン、芳香族アルコール等を加
えれば重合度、耐水性が向上するのでその使用が
望ましい。 本発明においては前記耐熱性樹脂溶液にポリボ
ロシロキサン樹脂を添加溶解させてワニス状樹脂
溶液とすることもできるが、ポリボロシロキサン
樹脂は有機溶剤に可溶なので、これを溶液とし、
溶液同士を混合する方がやりやすく、その場合同
種の溶剤を使用するのが望ましい。例えばポリヒ
ダントイン樹脂溶液の溶剤がクレゾール等のフエ
ノール系溶剤の場合は、ポリボロシロキサン樹脂
溶液もフエノール系溶剤を使用するのが望まし
く、又NMP、DMAc等の極性溶剤の場合は、ポ
リボロシロキサン樹脂溶液もNMP、DMAcを使
用するのが望ましい。その理由は異種の溶剤が混
入すると耐熱性樹脂の溶解性が異なり、分離、沈
殿するおそれがあるからである。 本発明においては耐熱性樹脂溶液とポリボロシ
ロキサン樹脂又は樹脂溶液の混合比率は要求され
る特性に応じて適宜選択することができる。例え
ば機械特性はあまり必要でないが耐熱性に非常に
要求される場合はポリボロシロキサン樹脂の比率
を大きくすればよく、逆の場合は耐熱性樹脂の比
率を大きくすればよい。 好ましい比率はポリボロシロキサン樹脂固形分
が全体の樹脂固形分の30〜70%が適切である。 本発明におけるこれら混合物の特性は、それぞ
れ単独の特性の相和平均ではなく、両者混合によ
り特性は著しく改善される。 なお、このようにして得られた塗料を塗布焼付
けるに際しては、通常の条件で焼付けた後、ある
いは交互に、空焼を行なうのが好ましい。 次に実施例について説明する。 (ポリボロシロキサン樹脂の製造) ジフエニルジヒドロキシシラン432g(2モル)
とホウ酸83g(1.3モル)と10センチストークス
のジメチルシリコンオイル256gとを温度計、撹
拌機およびコンデンサーを備えた反応容器に入
れ、常温から徐々に400℃まで温度をあげてゆき
(6時間)、更に400℃で2時間反応させて縮重合
させた。この反応生成物の数平均分子量は2500で
あり、700℃までの焼成残存量は55%であつた。
この生成物350gをNMPに溶解しポリボロシロ
キサン樹脂のNMP溶液(No.1)を得た。 又ジフエニルジヒドロキシシラン432g、ホウ
酸メチル104g、100センチストークスのメチルフ
エニルシリコンオイル368gを使用し、同様に縮
重合反応させ、生成物をNMPとキシレンの混合
溶剤に溶解させてポリボロシロキサン樹脂の
NMP−キシレン溶液(No.2)を得た。 実施例 このポリボロシロキサン樹脂溶液と第1表に示
す耐熱性樹脂の溶液とを表に示す割合になるよう
混合し、得られるワニス状溶液を1.0mmφのNiメ
ツキ銅線(メツキ厚2μ)に、長7.2mの縦型焼
付機を用い、第1表の条件で塗布焼付けることに
より、30μの塗膜厚を有する外観の良好な絶縁電
線を得た。得られた絶縁電線の特性についての試
験結果は第1表の通りであつた。
The present invention relates to a heat-resistant insulated wire, particularly a heat-resistant insulated wire that can be used at high temperatures of 300° C. or higher. Traditionally known heat-resistant enamelled wires include polyimide wire, polyamide-imide wire,
There are polyester imide wires, etc., each starting from 220
It has heat resistance of 250℃, 180~220℃, and 155~180℃, and can be said to have considerable heat resistance, but since they are all made of organic insulation films, they decompose at high temperatures of around 400℃. Therefore, its use was limited to temperatures up to about 250°C. On the other hand, glass windings made by wrapping glass threads around a conductor to insulate them are also known as heat-resistant insulated wires, but such glass windings usually include glass threads and glass threads for the purpose of improving insulation and preventing fraying. An organic insulating paint is applied between the
Therefore, the heat resistance is only around 180℃,
Furthermore, it had the disadvantage of being inferior to Space Factor. In recent years, it has been used for nuclear power generation, geothermal power generation, and other special purposes.
There is a demand for magnet wires that can be used at high temperatures of 300°C or higher, and inorganic wires coated with inorganic materials are being considered, but such inorganic wires are generally porous and have poor flexibility and insulation, making them impractical. The current situation is that it has not been standardized. On the other hand, the present inventors have studied and previously applied for a polyborosiloxane resin that has a skeleton of silicon, boron, and oxygen and can be used as an electrically insulating paint. Although it is fully satisfactory, the sinterability and electrical insulation properties are lowered, and if the degree of sintering is made weaker, the opposite results occur, and so far no enameled wire has been obtained that satisfies all the properties required for an enameled wire. The present inventors have discovered that by mixing an aromatic polyimide resin with the above-mentioned polyborosiloxane resin, an insulated wire can be obtained that can be used even at high temperatures of 300°C or higher without deteriorating its flexibility or insulation properties. However, the present inventors have further discovered that, in addition to this aromatic polyimide resin, heat-resistant resins described below are also effective. The present invention was made based on this knowledge, and includes polyimidazopyrrolones, polyamideimides, polyhydantoins, polyimidazole, polyquinazolone, polyimidazoquinosalines, polysulfones, polyethersulfones, polyoxazoles, polyoxadiazoles, and polyimidazoquinosalines. triazole,
A varnish-like resin solution made by mixing a polyborosiloxane resin or its solution with a solution of one or more heat-resistant resins selected from polyphenylene oxide, polyparabanic acid, and silicone resin is applied directly onto the conductor or otherwise. The present invention relates to a heat-resistant insulated wire characterized in that it is coated and baked through an insulating film. The heat-resistant resins used in the present invention include polyimidazopyrrolone, polyamideimide, polyhydantoin, polyimidazole, polyquinazolone, polyimidazoquinosaline, polysulfone, polyethersulfone, polyoxazole, polyoxadiazole, polytriazole, and polyphenylene. Examples include nylene oxide, polyparabanic acid, and silicone resin, and these may be used alone or in combination. These are usually dissolved in a solvent and are commercially available in the form of varnish, such as polyamide-imide varnish HI400 manufactured by Hitachi Chemical, polyimidazopyrrolone varnish Thermotite H-8 manufactured by Showa Denko Co., Ltd., and silicone resin varnish manufactured by Toshiba Co., Ltd. Manufactured by Silicone
There are TSR116 etc. If the resin itself is commercially available, it can be used after being dissolved in a polar solvent such as N-methylpyrrolidone (NMP) or dimethylacetamide ( DMAc ). Note that since polyhydantoin is soluble in phenolic solvents such as cresol, it can also be prepared as a cresol solution. The polyborosiloxane resin used in the present invention is
(a) boric acid compounds such as orthoboric acid, metaboric acid, boric anhydride, boric acid methyl ester, borax,
(b) Silane compounds represented by SiX 4 , SiRX 3 , SiRR'X 2 (wherein R and R' are methyl or phenyl groups,
X is a hydroxyl group or chlorine, and in the case where It is obtained by heating the polycondensate at 50 to 800°C to carry out a polycondensation reaction. When the reaction temperature is 300°C or higher, it is preferable to carry out the reaction under an inert atmosphere, and the reaction may be carried out in two stages. In the production of polyborosiloxane resins, it is desirable to use silanol compounds (hydroxysilanes), since the chlorine-containing silane (b) generates hydrogen chloride, which is unfavorable in terms of the working environment. Also, based on the total amount of boric acid compound (a) and silane compound (b),
If 5% by weight or more of silicone oil is added and the polycondensation reaction is carried out, it is desirable to use this method because a wire coating having superior flexibility can be obtained. The viscosity of silicone oil at 25℃ is
Dimethylsilicon or methylphenylsilicon or mixtures thereof of 1.0 centistokes, preferably 10 centistokes or more are suitable. Further, adding a nitrogen-containing compound such as triethanolamine or phenylenediamine to the starting material improves water resistance, and adding hydroquinone, aromatic alcohol, etc. improves the degree of polymerization and water resistance, so it is desirable to use them. In the present invention, a varnish-like resin solution can be obtained by adding and dissolving a polyborosiloxane resin in the heat-resistant resin solution, but since the polyborosiloxane resin is soluble in organic solvents, this can be used as a solution,
It is easier to mix the solutions, and in that case it is preferable to use the same type of solvent. For example, if the solvent for the polyhydantoin resin solution is a phenolic solvent such as cresol, it is desirable to use a phenolic solvent for the polyborosiloxane resin solution, and if the solvent is a polar solvent such as NMP or DMA c , polyborosiloxane It is also desirable to use NMP or DMAc as the resin solution. The reason for this is that if different types of solvents are mixed, the solubility of the heat-resistant resin will differ and there is a risk of separation and precipitation. In the present invention, the mixing ratio of the heat-resistant resin solution and the polyborosiloxane resin or resin solution can be appropriately selected depending on the required characteristics. For example, if mechanical properties are not so required but heat resistance is highly required, the proportion of polyborosiloxane resin may be increased, and in the opposite case, the proportion of heat resistant resin may be increased. The preferred ratio is that the polyborosiloxane resin solid content is 30 to 70% of the total resin solid content. The properties of these mixtures in the present invention are not the sum of the individual properties, but are significantly improved by mixing both. When applying and baking the paint thus obtained, it is preferable to perform dry baking after baking under normal conditions or alternately. Next, an example will be described. (Manufacture of polyborosiloxane resin) Diphenyldihydroxysilane 432g (2 mol)
83 g (1.3 mol) of boric acid and 256 g of 10 centistoke dimethyl silicone oil were placed in a reaction vessel equipped with a thermometer, stirrer, and condenser, and the temperature was gradually raised from room temperature to 400°C (6 hours). , and further reacted at 400°C for 2 hours to carry out condensation polymerization. The number average molecular weight of this reaction product was 2500, and the amount remaining after calcination up to 700°C was 55%.
350 g of this product was dissolved in NMP to obtain an NMP solution (No. 1) of polyborosiloxane resin. Also, using 432 g of diphenyldihydroxysilane, 104 g of methyl borate, and 368 g of methylphenyl silicone oil of 100 centistokes, a condensation reaction was performed in the same manner, and the product was dissolved in a mixed solvent of NMP and xylene to form a polyborosiloxane resin. of
An NMP-xylene solution (No. 2) was obtained. Example This polyborosiloxane resin solution and the solution of the heat-resistant resin shown in Table 1 were mixed in the proportions shown in the table, and the resulting varnish-like solution was applied to a 1.0 mmφ Ni-plated copper wire (plating thickness 2μ). An insulated wire with a coating thickness of 30 μm and a good appearance was obtained by coating and baking using a vertical baking machine with a length of 7.2 m under the conditions shown in Table 1. The test results regarding the characteristics of the obtained insulated wire were as shown in Table 1.

【表】【table】

【表】 以上の実施例から明らかなように本願発明に係
る絶縁電線は熱軟化温度が従来の耐熱エナメル線
のそれに比べてはるかに高く、超耐熱電線として
300℃以上の高温でも使用可能であり、きわめて
有効である。
[Table] As is clear from the above examples, the heat softening temperature of the insulated wire according to the present invention is much higher than that of conventional heat-resistant enamelled wire, and it can be used as a super heat-resistant wire.
It can be used at high temperatures of 300℃ or higher and is extremely effective.

Claims (1)

【特許請求の範囲】 1 ポリイミダゾピロロン、ポリアミドイミド、
ポリヒダントイン、ポリイミダゾール、ポリキナ
ゾロン、ポリイミダゾキノサリン、ポリスルホ
ン、ポリエーテルスルホン、ポリオキサゾール、
ポリオキサジアゾール、ポリトリアゾール、ポリ
フエニレンオキサイド、ポリパラバン酸、シリコ
ン樹脂から選ばれた1種又は2種以上の耐熱性樹
脂の溶液に、ポリボロシロキサン樹脂又はその溶
液を混合して成るワニス状樹脂溶液を導体上に直
接あるいは他の絶縁皮膜を介して塗布焼付けたこ
とを特徴とする耐熱性絶縁電線。 2 ポリボロシロキサン樹脂はシリコンオイル、
フエニル又はメチルシラノール、ホウ酸化合物と
を、必要によりヒドロキノンを加えて縮重合させ
て成る特許請求の範囲第1項記載の耐熱性絶縁電
線。
[Claims] 1. Polyimidazopyrrolone, polyamideimide,
Polyhydantoin, polyimidazole, polyquinazolone, polyimidazoquinosaline, polysulfone, polyethersulfone, polyoxazole,
A varnish made by mixing polyborosiloxane resin or its solution with a solution of one or more heat-resistant resins selected from polyoxadiazole, polytriazole, polyphenylene oxide, polyparabanic acid, and silicone resin. A heat-resistant insulated wire characterized by coating and baking a resin solution directly onto a conductor or through another insulating film. 2 Polyborosiloxane resin is silicone oil,
The heat-resistant insulated wire according to claim 1, which is obtained by condensation polymerization of phenyl or methylsilanol and a boric acid compound, with the addition of hydroquinone if necessary.
JP56014135A 1981-02-02 1981-02-02 Refractory insulated wire Granted JPS57128409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56014135A JPS57128409A (en) 1981-02-02 1981-02-02 Refractory insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56014135A JPS57128409A (en) 1981-02-02 1981-02-02 Refractory insulated wire

Publications (2)

Publication Number Publication Date
JPS57128409A JPS57128409A (en) 1982-08-10
JPH0358121B2 true JPH0358121B2 (en) 1991-09-04

Family

ID=11852690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56014135A Granted JPS57128409A (en) 1981-02-02 1981-02-02 Refractory insulated wire

Country Status (1)

Country Link
JP (1) JPS57128409A (en)

Also Published As

Publication number Publication date
JPS57128409A (en) 1982-08-10

Similar Documents

Publication Publication Date Title
JP4384362B2 (en) COATING COMPOSITION FOR METAL CONDUCTOR AND COATING METHOD INCLUDING THE SAME
US3440197A (en) Coating solutions and methods for preparing and using the same
JPS61226000A (en) Manufacture of extremely heat resistant voice coil
JPH0358121B2 (en)
US3440203A (en) Polyamide acid solution containing a silicone and surface coated with said solution
CN110317340A (en) Be electrically insulated material, be electrically insulated coating and the electric wire and be polyesterimide by talan two of being electrically insulated
Mesaki et al. Hybrid composites of polyamide-imide and silica applied to wire insulation
JPS6342804B2 (en)
JPS5854444B2 (en) Heat resistant insulated wire
JPS639326B2 (en)
JPS638566B2 (en)
JPS6254144B2 (en)
JPS58127B2 (en) insulated wire
KR100644338B1 (en) The manufacture method of the polyamideimide resin solution for enamel copper wire clothing that the antiwear characteristic was strengthened
JPS6344243B2 (en)
JP2968641B2 (en) Insulated wire
JPS6362845B2 (en)
JPS6357886B2 (en)
JP4794719B2 (en) Self-bonding insulated wire
JPS58212114A (en) Impregnation treatment of coil
JPS6357885B2 (en)
JPS6139692B2 (en)
JPS633401B2 (en)
KR100962914B1 (en) Highly heat-resistant electrical wire
JPS5814416A (en) Refractory insulated wire