JPS634205A - Production of grating of phase diffraction grating type optical modulating element - Google Patents

Production of grating of phase diffraction grating type optical modulating element

Info

Publication number
JPS634205A
JPS634205A JP14598186A JP14598186A JPS634205A JP S634205 A JPS634205 A JP S634205A JP 14598186 A JP14598186 A JP 14598186A JP 14598186 A JP14598186 A JP 14598186A JP S634205 A JPS634205 A JP S634205A
Authority
JP
Japan
Prior art keywords
grating
resist
resin
light
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14598186A
Other languages
Japanese (ja)
Inventor
Etsuro Kishi
悦朗 貴志
Ryoji Fujiwara
良治 藤原
Akihiko Nagano
明彦 長野
Yukitoshi Okubo
大久保 幸俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14598186A priority Critical patent/JPS634205A/en
Publication of JPS634205A publication Critical patent/JPS634205A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fine grating with a simple stage by providing a resist layer on a transparent substrate, then etching said layer to form a grating negative pattern, coating a heat resistant thermosetting resin thereon, subjecting the coating to a heating treatment to cure the coating, and removing the generated org. components and residues of ashing. CONSTITUTION:The resist 12 consisting of cyclized rubber, polycinnamic acid, novolak resin, etc., is uniformly coated onto the transparent resin 14 while the film thickness is adjusted to about 1-2mum. The resist is exposed over the entire surface through a mask 11 to form the latent image of the negative pattern in the resist 12. The resist is then subjected to post baking at 50-200 deg.C after development to form the negative pattern 13 consisting of the resist on the substrate 14. The heat resistant thermosetting resin 15 such as silicone org. polymer is coated over the entire surface while the recesses formed between the patterns are filled by the resin. The resin is then subjected to a heat treatment at 450-500 deg.C for 30min-2hr to evaporate the org. components of the residue. The residues 13' of ashing are removed. The fine grating having 1-3mum pitch and 1-2mum grating height is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、光表示用、光記録用、光結合用、光通信用、
光演算用等の各種装置に好適な位相回折格子型光変調素
子(以下、光変調素子と記す)の微細なグレーティング
の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Fields] The present invention is applicable to optical display, optical recording, optical coupling, optical communication,
The present invention relates to a method of manufacturing a fine grating of a phase diffraction grating type light modulation element (hereinafter referred to as a light modulation element) suitable for various devices such as optical calculations.

[従来の技術] 従来、光変調素子は入射光の進行方向に並んだ複数のグ
レーティングより成り、該複数のグレーティングは透明
光学部材と所定の光学軸を有する物質とから構成され、
且つ該物質の光学軸方向が前記複数のグレーティングの
個々によって異なり、前記物質の光学軸方向を制御する
事により任意の偏光特性を有する光の変調を行う光変調
装置として知られている。
[Prior Art] Conventionally, a light modulation element is composed of a plurality of gratings arranged in the direction of propagation of incident light, and the plurality of gratings are composed of a transparent optical member and a substance having a predetermined optical axis,
In addition, the optical axis direction of the substance differs depending on each of the plurality of gratings, and it is known as a light modulation device that modulates light having arbitrary polarization characteristics by controlling the optical axis direction of the substance.

第2図は複数のグレーティングと所定の光学軸を有する
物質との組み合わせによる光変調素子の構成例である。
FIG. 2 shows an example of the configuration of a light modulation element using a combination of a plurality of gratings and a material having a predetermined optical axis.

1は透明スペーサー、2,2′は透明電極、3はグレー
ティング形状をした透明光学部材、4は所定の光学軸を
有する物質の一例として正の誘電性を持つネマティック
液晶、5は基板である。
1 is a transparent spacer, 2 and 2' are transparent electrodes, 3 is a grating-shaped transparent optical member, 4 is a nematic liquid crystal having positive dielectricity as an example of a substance having a predetermined optical axis, and 5 is a substrate.

基板5および透明スペーサー1は、−般にガラス板によ
って形成されるか、プラスチック板、アクリル板等も用
いられている。透明スペーサー1の厚さは像ズレ等を考
慮し0.3■以下が望ましく、また上下のグレーティン
グは互いに直交する様に構成されている。
The substrate 5 and the transparent spacer 1 are generally formed of a glass plate, or a plastic plate, an acrylic plate, etc. are also used. The thickness of the transparent spacer 1 is desirably 0.3 mm or less in consideration of image deviation, etc., and the upper and lower gratings are configured to be perpendicular to each other.

第3図は第2図に示した光変調素子の原理説明図である
。同第3図において、26は入射光、27゜27′は各
々入射光26における互いに直交する偏光成分、液晶2
4.24’は前記液晶4,4′の光学軸の方向を示す。
FIG. 3 is a diagram explaining the principle of the light modulation element shown in FIG. 2. In FIG. 3, 26 is the incident light, 27° and 27' are the mutually orthogonal polarization components of the incident light 26, and the liquid crystal 2
4.24' indicates the direction of the optical axis of the liquid crystals 4, 4'.

第3図において、液晶24.24′の光学軸はグレーテ
ィングの溝方向に配向し、1層目と2層目との液晶の光
学軸は直交する。又、液晶24及び24′の屈折率は電
界によって制御するものとする。
In FIG. 3, the optical axes of the liquid crystals 24, 24' are oriented in the groove direction of the grating, and the optical axes of the liquid crystals of the first and second layers are perpendicular to each other. Further, the refractive index of the liquid crystals 24 and 24' is controlled by an electric field.

電界の印加されていない静的状態では、1層目において
、入射光26の偏光成分27′は液晶24の異常屈折率
n@を感し、偏光成分27は液晶24の常屈折率n。を
感じる。又、2層目に於て、偏光成分27′は液晶24
′の常屈折率n′。を感じ、偏光成分27は液晶24′
の異常屈折率n′。を感じる。ここで、1層目のグレー
ティングを形成する透明光学部材23の屈折率をn、、
2層目のグレーティングを形成する透明光学部材23の
屈折率をn′8、入射光の波長を入、15目及び2層目
のグレーティングの厚さを各々T、T’ とすれば、各
層のグレーティングに於る零次透過回折光の回折効率η
。及びη′。は次の(1)式、 (1)’式で表すこと
かできる。
In a static state where no electric field is applied, in the first layer, the polarized light component 27' of the incident light 26 senses the extraordinary refractive index n@ of the liquid crystal 24, and the polarized light component 27 senses the ordinary refractive index n of the liquid crystal 24. I feel it. In addition, in the second layer, the polarized light component 27' is connected to the liquid crystal 24.
′ is the ordinary refractive index n′. , the polarized light component 27 is displayed on the liquid crystal 24'
extraordinary refractive index n'. I feel it. Here, the refractive index of the transparent optical member 23 forming the first layer grating is n,
If the refractive index of the transparent optical member 23 forming the second layer grating is n'8, the wavelength of the incident light is input, and the thicknesses of the 15th and second layer gratings are T and T', respectively, then the thickness of each layer is Diffraction efficiency η of zero-order transmitted diffracted light in grating
. and η′. can be expressed by the following equations (1) and (1)'.

へ 上式からΔn=0、又はΔn′=0の時η。=1又はη
′。=1となり、ΔnT=a+入、又はΔn″T′=1
人(1” l + 2 + 3 + ””)の条件を満
足する時、η。=0又はη′o=Oとなることか解る。
From the above equation, when Δn=0 or Δn'=0, η. =1 or η
'. = 1, ΔnT=a+in, or Δn″T′=1
It can be seen that when the condition for a person (1"l + 2 + 3 + "") is satisfied, η.=0 or η'o=O.

1層目に於てno=n、、もしくはn、= n、を満足
させておけば偏光成分27及び27′のどちらか一方は
素通りし、もう−方は(1)式に従い変調される。
If no=n, or n,=n, is satisfied in the first layer, one of the polarized light components 27 and 27' will pass through, and the other will be modulated according to equation (1).

2層目に於ても、 n′。;n′8もしくは t、= 
 nr。
Also in the second layer, n'. ;n'8 or t,=
nr.

を満足させておけば、偏光成分27及び27′のどちら
か一方は素通りし、もう−方は(1)′式に従い変調さ
れる。
If the equation (1) is satisfied, one of the polarized light components 27 and 27' will pass through, and the other will be modulated according to equation (1)'.

次に、液晶24及び24′に電界を印加した場合、液晶
24.24′の光学軸の方向は変化し、それに従って偏
光成分27.27’の感じる屈折率か変化する為、各々
1層目、2層目に於て(1)式及び(1)′式に応じた
変調が行われることになる。
Next, when an electric field is applied to the liquid crystals 24 and 24', the direction of the optical axis of the liquid crystals 24 and 24' changes, and the refractive index felt by the polarized light components 27 and 27' changes accordingly. , modulation according to equations (1) and (1)' is performed in the second layer.

例えば、液晶24及び24′に同じ液晶を用いたとすれ
ば、n、= n’、 、 no= n’。てあり、初期
条件としてQ、=n’、;n6. T=T’、  l 
ne  n、I a 7=mλを設定すれば、1層目及
び2層目における零次透過回折光の回折効率を表わす式
はどちらも(1)式となる。
For example, if the same liquid crystal is used for the liquid crystals 24 and 24', n,=n', , no=n'. and the initial condition is Q,=n',;n6. T=T', l
If ne n, I a 7=mλ, the equations expressing the diffraction efficiency of the zero-order transmitted diffracted light in the first layer and the second layer both become equation (1).

尚、透明スペーサー21の屈折率はほぼn、と等しいと
する。この時、静的状態ては入射光26の偏光成分27
′は1層目を素通りし、偏光成分27′は(1)式より
η。=0となり零次透過光は出射せず全て高次回折光と
なる。又、2層目において偏光成分27は(1)式より
η。−〇となり零次透過光は出射せず全て高次回折光と
なる。
It is assumed that the refractive index of the transparent spacer 21 is approximately equal to n. At this time, in a static state, the polarization component 27 of the incident light 26
' passes through the first layer, and the polarized light component 27' is η from equation (1). = 0, and zero-order transmitted light is not emitted and all becomes high-order diffracted light. Also, in the second layer, the polarization component 27 is η from equation (1). −〇, the zero-order transmitted light is not emitted and all becomes higher-order diffracted light.

尚、偏光成分27′は高次回折光のまま2層目を素通り
する。従って、零次方向へ出射する光はないことになる
。次に所定の電界を印加し、液晶24及び24′の光軸
方向(配向方向)をグレーテイング面に垂直、即ち光束
の入射方向に向けた場合、偏光成分27及び27′は1
層目及び2層目において全て液晶の常屈折率n0を感じ
、素通りして零次透過光となる。従って電界印加により
任意の偏光性を有する光の零次透過回折光の透過率を制
御てきることになる。尚、以上の説明においては変調光
として零次回折光を考えたか、高次回折光を利用できる
ことは言うまでもない。
Note that the polarized light component 27' passes through the second layer as high-order diffracted light. Therefore, there is no light emitted in the zero-order direction. Next, when a predetermined electric field is applied and the optical axes (orientation directions) of the liquid crystals 24 and 24' are directed perpendicular to the grating surface, that is, in the direction of incidence of the luminous flux, the polarization components 27 and 27' are 1
In the first and second layers, the ordinary refractive index n0 of the liquid crystal is sensed, and the light passes through the layer and becomes zero-order transmitted light. Therefore, by applying an electric field, it is possible to control the transmittance of zero-order transmitted diffracted light of light having arbitrary polarization properties. In the above description, zero-order diffracted light was considered as the modulated light, but it goes without saying that higher-order diffracted light can also be used.

以上述べた光変調素子のグレーティング部の製造方法と
しては、比較的工程の簡単な方法として、レジストによ
るリフトオフ法、レプリカ法、ルーリングエンジンを用
いた切削法あるいはエンボス法等の方法があるか、ピッ
チ 1.0〜3.0μ■、格子高1〜2JLl程度の微
細加工を必要とする微細なグレーティングを製造するこ
とは困難である。
As for the manufacturing method of the grating part of the light modulation element mentioned above, there are methods such as a lift-off method using a resist, a replica method, a cutting method using a ruling engine, an embossing method, a pitch method, etc., which have relatively simple processes. It is difficult to manufacture fine gratings that require microfabrication of 1.0 to 3.0 μι and grating height of 1 to 2 JLl.

他方SiO□等の透明無機膜を真空蒸着又は塗布加熱焼
成等の方法で形成した上に、フォトリソグラフィーによ
りレジストポジパターンを形成した後、プラズマエツチ
ング等のドライエツチングによりグレーティング形状を
形成し、最後にレジストを剥離除去する方法がある。し
かし、この方法は複雑、高価な工程を必要とし、特にド
ライエツチング装置が高価格であること、lバッチ当り
の処理枚数が制限されること、あるいは真空引きに時間
を要する等の理由で製造コスト九゛高くなり、光変調素
子の実用化への障害となっている。
On the other hand, a transparent inorganic film such as SiO□ is formed by a method such as vacuum evaporation or coating heating and baking, a resist positive pattern is formed by photolithography, a grating shape is formed by dry etching such as plasma etching, and finally a grating shape is formed by dry etching such as plasma etching. There is a method of peeling off the resist. However, this method requires complicated and expensive processes, and production costs are particularly high due to the high cost of dry etching equipment, the limited number of sheets processed per batch, and the time required for vacuuming. This has become an obstacle to the practical application of optical modulation elements.

[発明が解決しようとする問題点] 本発明は、上記の従来技術の欠点を除去し、比較的簡単
な工程て、ピッチ1.0〜3.04va、格子高1.0
〜2.0μ■程度の微細なグレーティングを形成でき、
製造コストか大幅に安く、実用的な価格で得ることがで
きる光変調素子のグレーティングめ製造方法を提供する
ことを目的とするものである。
[Problems to be Solved by the Invention] The present invention eliminates the drawbacks of the above-mentioned prior art, and uses a relatively simple process to solve the problem.
A fine grating of ~2.0μ■ can be formed,
It is an object of the present invention to provide a method for manufacturing a grating of an optical modulation element that can be obtained at a practical price with significantly lower manufacturing costs.

[問題点を解決するための手段]及び[作用コ即ち、本
発明は光変調素子の微細なりレーティングの製造方法に
おいて、透明基板上にレジスト層を設けた後、エツチン
グを行いレジストのグレーティングネガパターンを形成
し、次いでその上に耐熱性熱硬化型樹脂を塗布し、加熱
処理して前記耐熱性熱硬化型樹脂を焼成硬化せしめると
共にレジスト中の有機成分を酸化分解して蒸発させた後
、灰化残留物を除去して透明グレーティングを形成する
ことを特徴とする光変調素子のグレーティングの製造方
法である。
[Means for Solving the Problems] and [Operations] The present invention is a method for manufacturing a fine grating for a light modulation element, in which a resist layer is provided on a transparent substrate, and then etching is performed to form a grating negative pattern of the resist. Then, a heat-resistant thermosetting resin is applied thereon, heat-treated to harden the heat-resistant thermosetting resin, and the organic components in the resist are oxidized and decomposed and evaporated. The present invention is a method for manufacturing a grating for a light modulation element, characterized in that a transparent grating is formed by removing chemical residues.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図(a)〜(e)は本発明の光変調素子のグレーテ
ィングの製造方法の一例を示す工程図である。以下、順
に説明する。
FIGS. 1(a) to 1(e) are process diagrams showing an example of a method for manufacturing a grating of an optical modulation element of the present invention. Below, they will be explained in order.

先ず、第1図(a)において透明基板14上にレジスト
12を1〜2μm程度の膜厚で、スピンコード法、デイ
ツプ法、スプレー法等により塗布する。
First, in FIG. 1(a), a resist 12 is coated on a transparent substrate 14 to a thickness of about 1 to 2 .mu.m by a spin code method, a dip method, a spray method, or the like.

このレジスト12は一般に環化ゴム系、ポリけい皮酸、
ノボラック樹脂あるいはポリメチルメタアクリレート(
PMMA)、ポリメチルイソプロペニルケトン(PMI
PK)等を1原料とする有機物が用いられ、それ等の有
機物は感光基の種類により、UV光(紫外光)、Dee
p−UV光、電子線、X線等様々なタイプのリソグラフ
ィー用に分類される。
This resist 12 is generally made of cyclized rubber, polycinnamic acid,
Novolak resin or polymethyl methacrylate (
PMMA), polymethyl isopropenyl ketone (PMI
Depending on the type of photosensitive group, these organic substances can be exposed to UV light (ultraviolet light), Dee.
Classified for various types of lithography such as p-UV light, electron beam, and X-ray.

レジスト12のエツチングはフォトリソグラフィー又は
電子線、X&lリソグラフィー等により行う。
Etching of the resist 12 is performed by photolithography, electron beam, X&I lithography, or the like.

特に、本発明の光変調素子のグレーティングの大きさく
ピッチ1〜54m、格子高1〜3H程度)に対しては、
量産上UV光又はDeep−UV光によるリソグラフィ
ーか望ましい。
In particular, for the grating size of the light modulation element of the present invention (pitch 1 to 54 m, grating height 1 to 3 H),
Lithography using UV light or deep-UV light is desirable for mass production.

次いで、マスク11を通して全面露光し、レジスト中に
ネガパターンの潜像を形成する。
Next, the entire surface is exposed through the mask 11 to form a negative latent image in the resist.

次に、第1図(b)において、現像後ポストベーク(5
0〜200°c)を行い、基板14上にレジストによる
ネガパターン13を形成する。
Next, in FIG. 1(b), after development, post-bake (5
0 to 200°C) to form a negative pattern 13 of resist on the substrate 14.

さらに第1図(c)において、デイツプ法(Dip法)
又はスピンコード法等によりレジストによるネガパター
ン13の格子のスペース部に耐熱性熱硬化型樹脂15を
充填する。該耐熱性熱硬化型樹脂15は、例えばオウエ
ンス・イリノイズ(0vens −111inois)
社(米)製、グラス・レジン(GlassResin 
) 、東京応化社製MOF等であり、シリコン系有機ポ
リマー又はオリゴマ−[5i(OH)n。
Furthermore, in FIG. 1(c), the Dip method (Dip method)
Alternatively, the spaces in the lattice of the negative pattern 13 made of resist are filled with heat-resistant thermosetting resin 15 by a spin code method or the like. The heat-resistant thermosetting resin 15 is made of, for example, Owens-111inois.
(USA), Glass Resin (Glass Resin)
), MOF manufactured by Tokyo Ohka Co., Ltd., etc., and silicon-based organic polymers or oligomers [5i(OH)n.

5i(OCOCTo)4.3i(OCH3)n、5x(
OCJn)4等]を主成分とするもので、熱処理による
焼成硬化により、Sin、又はSiO□と金属酸化物(
M、Oy)との混合膜を形成するタイプの熱硬化性樹脂
である。
5i(OCOCTo)4.3i(OCH3)n, 5x(
The main component is Sin or SiO□ and metal oxide (
This is a type of thermosetting resin that forms a mixed film with M, Oy).

透明基板14は通常、ガラス板を用い、 SOO’C程
度の耐熱性を持っている。
The transparent substrate 14 is usually a glass plate and has a heat resistance comparable to that of SOO'C.

次に、第1図(d)において、ネガレジストパターン及
びそのスペース部に充填されたシリコン系ポリマー(オ
リゴマ−)樹脂を450〜soo”c程度の加熱処理を
30分〜2時間程度行うと、レジスト部は有機成分が熱
酸化分解を起こして蒸発し、灰化残留物13’のみが残
される。−方、耐熱性熱硬化型樹脂15のシリコン系ポ
リマー(オリゴマ−)樹1部分は加熱下で酸化分解する
と有機成分が蒸発して無機化し、SiO□もしくはSi
O□と金属酸化物(M、0)との混合物の焼成物15′
が形成される。
Next, in FIG. 1(d), when the negative resist pattern and the silicon-based polymer (oligomer) resin filled in the space thereof are heated to about 450 to soo"c for about 30 minutes to 2 hours, In the resist part, the organic components undergo thermal oxidative decomposition and evaporate, leaving only the ashing residue 13'. When decomposed by oxidation, the organic components evaporate and become inorganic, forming SiO□ or Si
Calcined product 15' of a mixture of O□ and metal oxide (M, 0)
is formed.

焼成%j Is’にはピンホール、クラック等の発生は
認められず良好な透明状態を示す。
No pinholes, cracks, etc. were observed in the fired %j Is', and a good transparent state was observed.

最後に、第1図(e)において、前記工程の加熱あ理に
よって灰化した有機レジストの残留物を適当な溶媒によ
る超音波洗浄、又は高圧水洗浄等により除去し、所望の
透明格子を得ることができる。
Finally, in FIG. 1(e), the residue of the organic resist that has been ashed by the heating process in the above step is removed by ultrasonic cleaning with an appropriate solvent or high-pressure water cleaning to obtain the desired transparent grid. be able to.

[実施例] 以下、実施例を示し本発明をさらに具体的に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例ま たて37+*+s、よこ2611曹、厚さ0.7mmの
ガラス板上に、東京応化型、Deep−IV用レジスト
0DUR1013(主成分PMIPK)を約1 、5p
mの膜厚でスピンコード法により形成した。
Example: Approximately 1.5p of Tokyo Ohka type Deep-IV resist 0DUR1013 (main component PMIPK) was applied on a glass plate of 37++s, width 2611mm, thickness 0.7mm.
The film was formed with a film thickness of m by a spin code method.

次いで、該レジストの上にピッチ 1.5=層のストラ
イプ状のマスクを被覆し、マスクの上から2〜5 m1
11cm2の遠紫外線を数秒間照射した後、専用現像液
(主成分M!:K、キシレン)で現像を行い、100℃
でポストベークしてネガパターンを形成した。
Next, a striped mask with a pitch of 1.5 = layers is coated on top of the resist, and 2-5 m1 from the top of the mask is coated.
After irradiating with 11cm2 of far ultraviolet light for a few seconds, develop with a special developer (main components M!: K, xylene) at 100°C.
A negative pattern was formed by post-baking.

次に、形成されたストライプ状のネガパターンの上にシ
リコン系有機ポリマー(東京応化社製、MOF )をD
IP法により塗布し、 450℃で60分間加熱したと
ころ、シリコン系有機ポリマーは焼結して焼成物とな9
、レジストは灰化残留物を生成したため、MEK溶媒で
高音波洗浄を行い、ピッチ1.5gm 、格子高さ1.
51zmの微細グレーティングを得た。
Next, a silicon-based organic polymer (manufactured by Tokyo Ohka Co., Ltd., MOF) was deposited on the formed striped negative pattern.
When applied using the IP method and heated at 450°C for 60 minutes, the silicon-based organic polymer sintered and became a fired product.
, the resist produced ashing residue, so high-sonic cleaning was performed with MEK solvent, and the pitch was 1.5 gm and the grating height was 1.5 gm.
A fine grating of 51 zm was obtained.

得られた微細グレーティングを回折格子が直交する様に
2枚組合わせ、液晶としてTN403 (ROCHE製
)を用いて、第2図に示す構成の光変調素子を作製した
Two pieces of the obtained fine gratings were combined so that the diffraction gratings were perpendicular to each other, and a light modulation element having the configuration shown in FIG. 2 was fabricated using TN403 (manufactured by ROCHE) as the liquid crystal.

この光変調素子の電界ON、OFF時の白色光透過率の
測定を行フたところ、15%(OFF時)→90%(O
N時)の透過率変化を得た。
When we measured the white light transmittance of this light modulation element when the electric field was ON and OFF, we found that it was 15% (when OFF) → 90% (when OFF)
The change in transmittance was obtained (at N time).

[発明の効果] 以上説明したように、本発明の製造方法によれば、従来
の真空蒸着、プラズマエツチング等のコスト高でスルー
ブツトの低いドライプロセスを一切使用せず、5in2
系透明格子の形成とレジストの除去を加熱処理時に同時
に行うことによって、安価な製造コストで微細なグレー
ティングを得ることかできる。
[Effects of the Invention] As explained above, according to the manufacturing method of the present invention, a 5in2
By simultaneously forming a transparent grating and removing the resist during heat treatment, it is possible to obtain a fine grating at a low manufacturing cost.

また1本発明の方法により製造された微細なグレーティ
ングを使用することにより透明部材の微細加工を必要と
する光変調素子を実用的な価格で提供できる。
Furthermore, by using a fine grating manufactured by the method of the present invention, a light modulation element that requires fine processing of a transparent member can be provided at a practical price.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光変調素子のグレーティングの製造方
法の一例を示す工程図、第2図は光変調素子の構成図お
よび第3図は光変調素子の光変調原理を示す説明図であ
る。 1.21−・・透明スペーサー 2.2’ 、22.22’・・・透明電極3.23−・
・透明光学部材 4.4’ 、24.24’・・・液晶 5・・・基板 11・・・マスク 12・・・レジスト 13・・・ネガパターン 1:l’ −・・沃化残留物 14・・・透明基板 15・・・耐熱性熱硬化型樹脂 15′・・・焼成物 26−・・入射光 27.27’・・・偏光成分
FIG. 1 is a process diagram showing an example of a method for manufacturing a grating of a light modulation element of the present invention, FIG. 2 is a configuration diagram of the light modulation element, and FIG. 3 is an explanatory diagram showing the light modulation principle of the light modulation element. . 1.21-...Transparent spacer 2.2', 22.22'...Transparent electrode 3.23-.
・Transparent optical members 4.4', 24.24'...Liquid crystal 5...Substrate 11...Mask 12...Resist 13...Negative pattern 1:l' -...Iodide residue 14 ...Transparent substrate 15...Heat-resistant thermosetting resin 15'...Sintered product 26-...Incoming light 27.27'...Polarized light component

Claims (2)

【特許請求の範囲】[Claims] (1)位相回折格子型光変調素子の微細なグレーティン
グの製造方法において、透明基板上にレジスト層を設け
た後、エッチングを行いレジストのグレーティングネガ
パターンを形成し、次いでその上に耐熱性熱硬化型樹脂
を塗布し、加熱処理して前記耐熱性熱硬化型樹脂を焼成
硬化せしめると共にレジスト中の有機成分を酸化分解し
て蒸発させた後、灰化残留物を除去して透明グレーティ
ングを形成することを特徴とする位相回折格子型光変調
素子のグレーティングの製造方法。
(1) In a method for manufacturing a fine grating for a phase diffraction grating type light modulation element, a resist layer is provided on a transparent substrate, etching is performed to form a grating negative pattern of the resist, and then a heat-resistant thermosetting layer is formed on the resist layer. A mold resin is applied and heated to harden the heat-resistant thermosetting resin, and the organic components in the resist are oxidized and decomposed and evaporated, and the ashing residue is removed to form a transparent grating. A method for manufacturing a grating for a phase grating type optical modulator, characterized in that:
(2)前記耐熱性熱硬化型樹脂がシリコン系ポリマー又
はオリゴマ−を主成分として含有する特許請求の範囲第
1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the heat-resistant thermosetting resin contains a silicone polymer or oligomer as a main component.
JP14598186A 1986-06-24 1986-06-24 Production of grating of phase diffraction grating type optical modulating element Pending JPS634205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14598186A JPS634205A (en) 1986-06-24 1986-06-24 Production of grating of phase diffraction grating type optical modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14598186A JPS634205A (en) 1986-06-24 1986-06-24 Production of grating of phase diffraction grating type optical modulating element

Publications (1)

Publication Number Publication Date
JPS634205A true JPS634205A (en) 1988-01-09

Family

ID=15397432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14598186A Pending JPS634205A (en) 1986-06-24 1986-06-24 Production of grating of phase diffraction grating type optical modulating element

Country Status (1)

Country Link
JP (1) JPS634205A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326112A2 (en) * 1988-01-29 1989-08-02 Toppan Printing Co., Ltd. Electrode plate for display device and method for preparation thereof
JP2005316348A (en) * 2004-04-30 2005-11-10 Chiba Univ Holographic optical element comprising noble metal film fixed on substrate
WO2011142788A2 (en) * 2009-12-31 2011-11-17 Cornell University Microscopically structured polymer monoliths and fabrication methods
JP2020522023A (en) * 2017-06-02 2020-07-27 ディスペリックス オーイー Method for manufacturing a height-adjusted optical diffraction grating
US11065166B2 (en) 2011-07-06 2021-07-20 Max Mobility, Llc Motion-based power assist system for wheelchairs

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326112A2 (en) * 1988-01-29 1989-08-02 Toppan Printing Co., Ltd. Electrode plate for display device and method for preparation thereof
JP2005316348A (en) * 2004-04-30 2005-11-10 Chiba Univ Holographic optical element comprising noble metal film fixed on substrate
JP4500996B2 (en) * 2004-04-30 2010-07-14 国立大学法人 千葉大学 Holographic optical element consisting of a noble metal film fixed to a substrate
WO2011142788A2 (en) * 2009-12-31 2011-11-17 Cornell University Microscopically structured polymer monoliths and fabrication methods
WO2011142788A3 (en) * 2009-12-31 2012-02-23 Cornell University Microscopically structured polymer monoliths and fabrication methods
US9494865B2 (en) 2009-12-31 2016-11-15 Cornell University Microscopically structured polymer monoliths and fabrication methods
US11065166B2 (en) 2011-07-06 2021-07-20 Max Mobility, Llc Motion-based power assist system for wheelchairs
JP2020522023A (en) * 2017-06-02 2020-07-27 ディスペリックス オーイー Method for manufacturing a height-adjusted optical diffraction grating
US11448876B2 (en) 2017-06-02 2022-09-20 Dispelix Oy Method of manufacturing a height-modulated optical diffractive grating

Similar Documents

Publication Publication Date Title
CN104698515A (en) Method of making microarrays
KR100288742B1 (en) Fabrication method for optical waveguide
JP2006084776A (en) Wire-grid polarizer and its manufacturing method
JPS634205A (en) Production of grating of phase diffraction grating type optical modulating element
JP3617846B2 (en) Microlens / microlens array and manufacturing method thereof
JP2010197821A (en) Method of producing lens
JP4436848B2 (en) Method for manufacturing periodic domain inversion structure
US20230194788A1 (en) Grating, method for manufacturing grating, and optical waveguide
JPH0616121B2 (en) Fresnel lens and manufacturing method thereof
US20080102641A1 (en) Grayscale reticle for precise control of photoresist exposure
JP2008046428A (en) Method for manufacturing optical element having fine rugged pattern on surface
JP2002277663A (en) Method for manufacturing optical waveguide
JPH03132602A (en) Diffraction grating for color separation
JPH07113905A (en) Production of diffraction grating
US11009789B2 (en) Pattern formation method and method for manufacturing polarizing plate
US11966068B2 (en) Inorganic wave plate and manufacturing method therefor
EP1305672A2 (en) Process for making a periodic profile
JP2006058720A (en) Microlens and its manufacturing method
JP3409482B2 (en) Halftone phase shift mask, mask blank therefor, and method of manufacturing halftone phase shift mask
CN116609871B (en) Manufacturing method of unequal-height straight tooth grating
US20210072446A1 (en) Inorganic wave plate and manufacturing method therefor
JPH0361931B2 (en)
JP2000241615A (en) Diffraction grating and manufacture for duplicate thereof
JPH0772331A (en) Divided wavelength plate and its production
JPS61201428A (en) Formation of reverse trapezoid pattern