JPS6341862B2 - - Google Patents
Info
- Publication number
- JPS6341862B2 JPS6341862B2 JP59050807A JP5080784A JPS6341862B2 JP S6341862 B2 JPS6341862 B2 JP S6341862B2 JP 59050807 A JP59050807 A JP 59050807A JP 5080784 A JP5080784 A JP 5080784A JP S6341862 B2 JPS6341862 B2 JP S6341862B2
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- silicon carbide
- glass
- matrix
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000835 fiber Substances 0.000 claims abstract description 85
- 239000002131 composite material Substances 0.000 claims abstract description 72
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 38
- 239000011159 matrix material Substances 0.000 claims abstract description 34
- 239000011521 glass Substances 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 24
- 239000000843 powder Substances 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 15
- 239000002241 glass-ceramic Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052593 corundum Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 abstract description 11
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 abstract description 11
- 239000000395 magnesium oxide Substances 0.000 abstract description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 abstract description 7
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 abstract description 7
- -1 barium modified magnesium aluminosilicate Chemical class 0.000 abstract description 2
- 238000007731 hot pressing Methods 0.000 description 12
- HZVVJJIYJKGMFL-UHFFFAOYSA-N almasilate Chemical compound O.[Mg+2].[Al+3].[Al+3].O[Si](O)=O.O[Si](O)=O HZVVJJIYJKGMFL-UHFFFAOYSA-N 0.000 description 10
- 239000002002 slurry Substances 0.000 description 10
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 8
- 229910000502 Li-aluminosilicate Inorganic materials 0.000 description 7
- 238000000280 densification Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 229910000601 superalloy Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- GOLCXWYRSKYTSP-UHFFFAOYSA-N Arsenious Acid Chemical compound O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000006112 glass ceramic composition Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000011222 crystalline ceramic Substances 0.000 description 1
- 229910002106 crystalline ceramic Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011156 metal matrix composite Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910001732 osumilite Inorganic materials 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000002683 reaction inhibitor Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011226 reinforced ceramic Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C14/00—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
- C03C14/002—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of fibres, filaments, yarns, felts or woven material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0036—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
- C03C10/0045—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2214/00—Nature of the non-vitreous component
- C03C2214/02—Fibres; Filaments; Yarns; Felts; Woven material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2214/00—Nature of the non-vitreous component
- C03C2214/20—Glass-ceramics matrix
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Glass Compositions (AREA)
- Ceramic Products (AREA)
- Inorganic Fibers (AREA)
- Laminated Bodies (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
本発明は繊維強化複合材料の製造方法に係る。
高温度に於て安定な従来の多くの構造用金属が
不足しそのコストが増大していることにより、高
温度に於て使用される従来の金属含有材料に対す
る代替材料として非金属を含有する複合材料に対
する関心が高まつてきている。かくして金属に対
する代替材料、即ち高強度繊維にて強化された樹
脂マトリツクス複合材料や更に高強度な繊維にて
強化された金属マトリツクス複合材料を使用する
ことは、スポーツ用品から高度なジエツト航空機
の構成要素に至るまで種々の製品に於て商業的に
適用されるに到つている。しかしこれらの複合材
料に於ける重大な問題の一つはそれらの使用可能
な最高温度が比較的低いということである。 セラミツク、ガラス、ガラス−セラミツク等の
材料は高温度の用途に於ても採用され得る材料で
あることが従来より知られている。しかしこれら
の材料は所望の機械的強度を有していないことが
多く、また靭性及び耐衝撃性の点で不十分であ
る。かかる状況から、無機繊維が連続的に又は不
連続的に分散されたセラミツク、ガラス、又はガ
ラス−セラミツクのマトリツクスよりなる複合材
料が製造されるようになつてきた。 これらの複合材料、例えば黒鉛繊維にて強化さ
れたガラスやアルミナ繊維にて強化されたガラス
は従来の高温度にて使用される構造用金属よりも
高い温度に於て使用可能なものであるが、これら
の複合材料は未だに改善されるべき余地が大きい
ものである。例えば黒鉛繊維にて強化されたガラ
ス複合材料は強度、耐疲労性、破壊靭性等のレベ
ルが高いものであるが、この複合材料は高温度に
於て有害な繊維の酸化を受け易いものである。ま
たアルミナ繊維にて強化されたガラスの如き複合
材料は高温度に於て酸化に対し安定なものではあ
るが、これらの複合材料に於ける全体としての強
度及び靭性のレベルは例えば黒鉛繊維にて強化さ
れたガラス複合材料の場合に比して低い。 同様に炭化ケイ素繊維強化ガラス複合材料(米
国特許第4314852号)や炭化ケイ素繊維強化セラ
ミツク複合材料(米国特許第4324843号)によれ
ば高強度及び高靭性特性を得ることができる。 ガラス−セラミツク材料は一般にそれを製造す
る基礎となるガラスに比してより高い耐熱性及び
強度を有しているが、ガラス−セラミツク材料に
対し更に高い機械的強度を付与する必要性があ
る。しかし炭化ケイ素繊維は高温度に於てガラス
−セラミツクマトリツクスと反応する傾向を有し
ており、かかる反応現象は炭化ケイ素繊維を強化
繊維として使用することに関し制限的な因子とな
つていた。 本発明の目的は、高温度に於ける高強度、高破
壊靭性、及び酸化に対する安定性を有する複合材
料を製造する製造方法を提供することである。 本発明は従来の複合材料に存在する高温度に於
ける強度、破壊靭性、酸化に対する安定性に関す
る問題を解決するものであり、炭化ケイ素繊磯に
て強化されたガラス−セラミツク複合材料を含ん
でおり、この場合ガラス−セラミツクマトリツク
スは基礎となるマグネシウム・アルミノシリケー
ト系内の組成を有しており、酸化マグネシウム
(MgO)及び酸化バリウム(BaO)を含有してい
る。 本発明による高強度複合材料は約5〜15wt%
の酸化マグネシウムと約5〜25wt%の酸化バリ
ウムとを含有するマグネシウム・アルミノシリケ
ートのガラス−セラミツクマトリツクス内に分散
された炭化ケイ素繊維を含んでいる。本発明の複
合材料は1200℃以上の温度に於て高強度及び熱的
安定性を有しており、約800℃以上の温度に於て
ニツケル超合金との反応性を実質的に有しないも
のである。 本発明は、炭化ケイ素繊維と上述のガラス−セ
ラミツクマトリツクスとの混合物を約1200〜1500
℃の温度に於てホツトプレスすることにより上述
の如き複合材料を製造する方法を含んでいる。ホ
ツトプレスの後には複合材料はそのガラス状のマ
トリツクス材料を結晶構造のセラミツク相に転換
すべく空気中に於て約1100〜1200℃の温度にて熱
処理される。 以下に添付の図を参照しつつ、本発明を実施例
について詳細に説明する。 ガラス−セラミツクに転換され得るガラスは本
発明の複合材料を形成するための理想的なマトリ
ツクス材料である。複合材料の稠密化中には、マ
トリツクスはガラス状に保持され、これにより繊
維に対する損傷が回避され、また低圧化に於ける
稠密化が促進される。所望の繊維及びマトリツク
ス構造にまで稠密化されると、ガラス状のマトリ
ツクスは結晶状態に転換され、その場合の結晶化
の程度及び範囲はマトリツクスの組成及び採用さ
れる熱処理スケジユールにより制御される。特
に、バリウムにて充填されたコージライト及びバ
リウム・オスミライト系のなかには、MgO(7.1
〜12.9wt%)及びBaO(5.7〜14.1wt%)を含有
し、少なくともバルツク状態に於ては1100℃〜
1200℃に於て高融点の結晶相に結晶化され得る或
る範囲の組成物が存在することが解つている。こ
れらの組成物が下記の表1に示されている。表1
に於て組成物1〜3はバリウムにて充填されたコ
ージライトであり、組成物4〜6は十分に充填さ
れたバリウム・オスミライトであり、組成物7〜
9は半分充填されたバリウム・オスミライトであ
る。組成物2、5、8及び組成物3、6、9に
は、1982年5月20日付にて出願された米国特許出
願第380458号に詳細に記載されている如く、複合
材料の形成中炭化ケイ素繊維の周りに形成される
NbC及びTaCの反応障壁層が上述の米国特許出
願に於ける同様の成分に匹敵するよう、それぞれ
Nb2O5及びTa2O5が存在する。 下記の表2にホツトプレスされたサンプルにつ
いて行われた曲げ強さ試験の結果が示されてい
る。この表2の試験結果により、少なくとも二つ
の組成物(No.4及びNo.9)は非常に強力な組成物
であることが解る。組成物No.9について行われた
熱処理試験により、これらのサンプルは結晶化さ
れることが非常に困難なものであり、1200℃にて
熱処理されると膨張するものであることが解つ
た。組成物No.4は、或る種のリチウム・アルミノ
シリケート/炭化ケイ素繊維複合材料ほど高くは
ないが非常に良好な室温強度を有し、空気中に於
ける1200℃の長時間に亙る(60時間)熱処理後に
も実質的に元の状態を保持する複合材料であるこ
とが解つた。マトリツクスをバリウム・オスミラ
イトに完全に結晶化させるための最適の熱処理は
正確には解つていないが、1200℃に於ける1時間
の熱処理では不十分であり、1200℃に於ける24時
間又は60時間の熱処理は十分なものであると思わ
れる。添付の図面に十分に結晶化された(1200℃
にて60時間)複合材料が走査電子顕微鏡のレプリ
カ断面として図示されている。縞状の相はバリウ
ム・オスミライト(BaMg2Al6Si9O30)であり、
ブロツク状の結晶はムライト(3Al2O3・2SiO2)
である。マグネシウム・アルミノシリケート/複
合材料(No.4)の1200℃に於ける曲げ強さ125〜
130×103psi(8789〜9140Kg/cm2)は、リチウム・
アルミノシリケート繊維複合材料に於てこれまで
記録された1200℃に於ける曲げ強さと同等又はそ
れよりも高い値であり、リチウム・アルミノシリ
ケート/炭化ケイ素繊維複合材料に於て発生する
如き空気中の高温度に於ける熱的不安定性の兆候
は存在しない。1200℃に於て試験されたマグネシ
ウム・アルミノシリケートマトリツクス/炭化ケ
イ素繊維複合材料(No.4)についての荷重−撓み
曲線は完全に直線的であり、このことはマトリツ
クスの耐熱性を示している。荷重−撓み曲線が直
線的ではないことは、一般にマトリツクス中に残
存する残留ガラスが高温度に於て軟化することを
示している。 バリウムにて修正されたマグネシウム・アルミ
ノシリケート/炭化ケイ素繊維複合材料の空気中
に於ける1200℃での熱的安定性は、これまで試験
されたリチウム・アルミノシリケートマトリツク
ス/炭化ケイ素繊維複合材料の熱的安定性よりも
遥かに優れている。下記の表3はNb2O5の反応抑
制剤が添加された一つの典型的な高融点リチウ
ム・アルミノシリケートマトリツクス/炭化ケイ
素繊維複合材料及びバリウムにて修正されたマグ
ネシウム・アルミノシリケートマトリツクス/炭
化ケイ素繊維複合材料(No.4)についての空気中
に於ける1200℃での長時間時効試験の結果を示し
ている。No.4の複合材料はプレスされたままの状
態に於てはそれ程強力ではないが、1200℃に於け
る空気中に於てはリチウム・アルミノシリケート
マトリツクス/炭化ケイ素繊維複合材料よりも遥
かに強力であり、繊維とマトリツクスとの間の反
応は存在せず、実際に空気中に於ける1200℃での
260時間に亙る時効処理後には160ksi(11.2×103
Kg/cm2)程の高い値にまで1200℃に於ける強度が
増大する。 室温から1200℃までの強度が高く、オキシデー
ト及び熱的安定性に優れていることに加えて、マ
グネシウム・アルミノシリケート/炭化ケイ素繊
維複合材料はリチウム・アルミノシリケート/炭
化ケイ素繊維複合材料に優る他の利点を有してい
る。ガラス−セラミツク/炭化ケイ素繊維複合材
料を空気中に於て1000℃までの温度に於て作動す
る超合金部材に取付ける場合に問題が存在するか
否かを求めるべく行われたニツケル基超合金と複
合材料との間の相互反応に関する研究により、約
800℃以上の温度に於てはリチウム・アルミノシ
リケート/炭化ケイ素繊維複合材料はニツケル基
超合金と反応するが、マグネシウム・アルミノシ
リケート/炭化ケイ素繊維複合材料はニツケル基
超合金とは反応しないことが解つた。この差異が
表4に示されている。このことは熱機関の用途に
これらの複合材料を使用する場合に重要である。
本発明の複合材料と従来の複合材料との間に於け
る性質上の他の差異は、バリウムにて修正された
マグネシウム・アルミノシリケート/炭化ケイ素
繊維複合材料はリチウム・アルミノシリケート/
炭化ケイ素繊維複合材料よりも高い熱伝導性を有
し且幾分か高い熱膨張係数を有しているというこ
とである。用途によつてはこれらの熱的性質の値
が高いことが重要である。
不足しそのコストが増大していることにより、高
温度に於て使用される従来の金属含有材料に対す
る代替材料として非金属を含有する複合材料に対
する関心が高まつてきている。かくして金属に対
する代替材料、即ち高強度繊維にて強化された樹
脂マトリツクス複合材料や更に高強度な繊維にて
強化された金属マトリツクス複合材料を使用する
ことは、スポーツ用品から高度なジエツト航空機
の構成要素に至るまで種々の製品に於て商業的に
適用されるに到つている。しかしこれらの複合材
料に於ける重大な問題の一つはそれらの使用可能
な最高温度が比較的低いということである。 セラミツク、ガラス、ガラス−セラミツク等の
材料は高温度の用途に於ても採用され得る材料で
あることが従来より知られている。しかしこれら
の材料は所望の機械的強度を有していないことが
多く、また靭性及び耐衝撃性の点で不十分であ
る。かかる状況から、無機繊維が連続的に又は不
連続的に分散されたセラミツク、ガラス、又はガ
ラス−セラミツクのマトリツクスよりなる複合材
料が製造されるようになつてきた。 これらの複合材料、例えば黒鉛繊維にて強化さ
れたガラスやアルミナ繊維にて強化されたガラス
は従来の高温度にて使用される構造用金属よりも
高い温度に於て使用可能なものであるが、これら
の複合材料は未だに改善されるべき余地が大きい
ものである。例えば黒鉛繊維にて強化されたガラ
ス複合材料は強度、耐疲労性、破壊靭性等のレベ
ルが高いものであるが、この複合材料は高温度に
於て有害な繊維の酸化を受け易いものである。ま
たアルミナ繊維にて強化されたガラスの如き複合
材料は高温度に於て酸化に対し安定なものではあ
るが、これらの複合材料に於ける全体としての強
度及び靭性のレベルは例えば黒鉛繊維にて強化さ
れたガラス複合材料の場合に比して低い。 同様に炭化ケイ素繊維強化ガラス複合材料(米
国特許第4314852号)や炭化ケイ素繊維強化セラ
ミツク複合材料(米国特許第4324843号)によれ
ば高強度及び高靭性特性を得ることができる。 ガラス−セラミツク材料は一般にそれを製造す
る基礎となるガラスに比してより高い耐熱性及び
強度を有しているが、ガラス−セラミツク材料に
対し更に高い機械的強度を付与する必要性があ
る。しかし炭化ケイ素繊維は高温度に於てガラス
−セラミツクマトリツクスと反応する傾向を有し
ており、かかる反応現象は炭化ケイ素繊維を強化
繊維として使用することに関し制限的な因子とな
つていた。 本発明の目的は、高温度に於ける高強度、高破
壊靭性、及び酸化に対する安定性を有する複合材
料を製造する製造方法を提供することである。 本発明は従来の複合材料に存在する高温度に於
ける強度、破壊靭性、酸化に対する安定性に関す
る問題を解決するものであり、炭化ケイ素繊磯に
て強化されたガラス−セラミツク複合材料を含ん
でおり、この場合ガラス−セラミツクマトリツク
スは基礎となるマグネシウム・アルミノシリケー
ト系内の組成を有しており、酸化マグネシウム
(MgO)及び酸化バリウム(BaO)を含有してい
る。 本発明による高強度複合材料は約5〜15wt%
の酸化マグネシウムと約5〜25wt%の酸化バリ
ウムとを含有するマグネシウム・アルミノシリケ
ートのガラス−セラミツクマトリツクス内に分散
された炭化ケイ素繊維を含んでいる。本発明の複
合材料は1200℃以上の温度に於て高強度及び熱的
安定性を有しており、約800℃以上の温度に於て
ニツケル超合金との反応性を実質的に有しないも
のである。 本発明は、炭化ケイ素繊維と上述のガラス−セ
ラミツクマトリツクスとの混合物を約1200〜1500
℃の温度に於てホツトプレスすることにより上述
の如き複合材料を製造する方法を含んでいる。ホ
ツトプレスの後には複合材料はそのガラス状のマ
トリツクス材料を結晶構造のセラミツク相に転換
すべく空気中に於て約1100〜1200℃の温度にて熱
処理される。 以下に添付の図を参照しつつ、本発明を実施例
について詳細に説明する。 ガラス−セラミツクに転換され得るガラスは本
発明の複合材料を形成するための理想的なマトリ
ツクス材料である。複合材料の稠密化中には、マ
トリツクスはガラス状に保持され、これにより繊
維に対する損傷が回避され、また低圧化に於ける
稠密化が促進される。所望の繊維及びマトリツク
ス構造にまで稠密化されると、ガラス状のマトリ
ツクスは結晶状態に転換され、その場合の結晶化
の程度及び範囲はマトリツクスの組成及び採用さ
れる熱処理スケジユールにより制御される。特
に、バリウムにて充填されたコージライト及びバ
リウム・オスミライト系のなかには、MgO(7.1
〜12.9wt%)及びBaO(5.7〜14.1wt%)を含有
し、少なくともバルツク状態に於ては1100℃〜
1200℃に於て高融点の結晶相に結晶化され得る或
る範囲の組成物が存在することが解つている。こ
れらの組成物が下記の表1に示されている。表1
に於て組成物1〜3はバリウムにて充填されたコ
ージライトであり、組成物4〜6は十分に充填さ
れたバリウム・オスミライトであり、組成物7〜
9は半分充填されたバリウム・オスミライトであ
る。組成物2、5、8及び組成物3、6、9に
は、1982年5月20日付にて出願された米国特許出
願第380458号に詳細に記載されている如く、複合
材料の形成中炭化ケイ素繊維の周りに形成される
NbC及びTaCの反応障壁層が上述の米国特許出
願に於ける同様の成分に匹敵するよう、それぞれ
Nb2O5及びTa2O5が存在する。 下記の表2にホツトプレスされたサンプルにつ
いて行われた曲げ強さ試験の結果が示されてい
る。この表2の試験結果により、少なくとも二つ
の組成物(No.4及びNo.9)は非常に強力な組成物
であることが解る。組成物No.9について行われた
熱処理試験により、これらのサンプルは結晶化さ
れることが非常に困難なものであり、1200℃にて
熱処理されると膨張するものであることが解つ
た。組成物No.4は、或る種のリチウム・アルミノ
シリケート/炭化ケイ素繊維複合材料ほど高くは
ないが非常に良好な室温強度を有し、空気中に於
ける1200℃の長時間に亙る(60時間)熱処理後に
も実質的に元の状態を保持する複合材料であるこ
とが解つた。マトリツクスをバリウム・オスミラ
イトに完全に結晶化させるための最適の熱処理は
正確には解つていないが、1200℃に於ける1時間
の熱処理では不十分であり、1200℃に於ける24時
間又は60時間の熱処理は十分なものであると思わ
れる。添付の図面に十分に結晶化された(1200℃
にて60時間)複合材料が走査電子顕微鏡のレプリ
カ断面として図示されている。縞状の相はバリウ
ム・オスミライト(BaMg2Al6Si9O30)であり、
ブロツク状の結晶はムライト(3Al2O3・2SiO2)
である。マグネシウム・アルミノシリケート/複
合材料(No.4)の1200℃に於ける曲げ強さ125〜
130×103psi(8789〜9140Kg/cm2)は、リチウム・
アルミノシリケート繊維複合材料に於てこれまで
記録された1200℃に於ける曲げ強さと同等又はそ
れよりも高い値であり、リチウム・アルミノシリ
ケート/炭化ケイ素繊維複合材料に於て発生する
如き空気中の高温度に於ける熱的不安定性の兆候
は存在しない。1200℃に於て試験されたマグネシ
ウム・アルミノシリケートマトリツクス/炭化ケ
イ素繊維複合材料(No.4)についての荷重−撓み
曲線は完全に直線的であり、このことはマトリツ
クスの耐熱性を示している。荷重−撓み曲線が直
線的ではないことは、一般にマトリツクス中に残
存する残留ガラスが高温度に於て軟化することを
示している。 バリウムにて修正されたマグネシウム・アルミ
ノシリケート/炭化ケイ素繊維複合材料の空気中
に於ける1200℃での熱的安定性は、これまで試験
されたリチウム・アルミノシリケートマトリツク
ス/炭化ケイ素繊維複合材料の熱的安定性よりも
遥かに優れている。下記の表3はNb2O5の反応抑
制剤が添加された一つの典型的な高融点リチウ
ム・アルミノシリケートマトリツクス/炭化ケイ
素繊維複合材料及びバリウムにて修正されたマグ
ネシウム・アルミノシリケートマトリツクス/炭
化ケイ素繊維複合材料(No.4)についての空気中
に於ける1200℃での長時間時効試験の結果を示し
ている。No.4の複合材料はプレスされたままの状
態に於てはそれ程強力ではないが、1200℃に於け
る空気中に於てはリチウム・アルミノシリケート
マトリツクス/炭化ケイ素繊維複合材料よりも遥
かに強力であり、繊維とマトリツクスとの間の反
応は存在せず、実際に空気中に於ける1200℃での
260時間に亙る時効処理後には160ksi(11.2×103
Kg/cm2)程の高い値にまで1200℃に於ける強度が
増大する。 室温から1200℃までの強度が高く、オキシデー
ト及び熱的安定性に優れていることに加えて、マ
グネシウム・アルミノシリケート/炭化ケイ素繊
維複合材料はリチウム・アルミノシリケート/炭
化ケイ素繊維複合材料に優る他の利点を有してい
る。ガラス−セラミツク/炭化ケイ素繊維複合材
料を空気中に於て1000℃までの温度に於て作動す
る超合金部材に取付ける場合に問題が存在するか
否かを求めるべく行われたニツケル基超合金と複
合材料との間の相互反応に関する研究により、約
800℃以上の温度に於てはリチウム・アルミノシ
リケート/炭化ケイ素繊維複合材料はニツケル基
超合金と反応するが、マグネシウム・アルミノシ
リケート/炭化ケイ素繊維複合材料はニツケル基
超合金とは反応しないことが解つた。この差異が
表4に示されている。このことは熱機関の用途に
これらの複合材料を使用する場合に重要である。
本発明の複合材料と従来の複合材料との間に於け
る性質上の他の差異は、バリウムにて修正された
マグネシウム・アルミノシリケート/炭化ケイ素
繊維複合材料はリチウム・アルミノシリケート/
炭化ケイ素繊維複合材料よりも高い熱伝導性を有
し且幾分か高い熱膨張係数を有しているというこ
とである。用途によつてはこれらの熱的性質の値
が高いことが重要である。
【表】
【表】
ンプルが膨張
ンプルが膨張
【表】
シリケート
ツクスとが反応
バリウムにて 室温 105(7.4) 95(6.7)
91(6.4) 87 (6.1) 空気中に於て1200
修正されたマ
℃に260時間加熱
1200 −− 125(8.8)
130(9.1) 160(11.2)
グネシウム・
処理後にも繊維と
アルミノシリ
マトリツクスとは
ケート(No.4)
反応せず
ツクスとが反応
バリウムにて 室温 105(7.4) 95(6.7)
91(6.4) 87 (6.1) 空気中に於て1200
修正されたマ
℃に260時間加熱
1200 −− 125(8.8)
130(9.1) 160(11.2)
グネシウム・
処理後にも繊維と
アルミノシリ
マトリツクスとは
ケート(No.4)
反応せず
【表】
ート/炭化ケイ素繊維複合材料
本発明による複合材料に関連する好ましい組成
物は、重量比率で約5〜15%のMgOと、約20〜
40%のAl2O3と、約40〜60%のSiO2と、約5〜25
%のBaOと、約0.5〜3%のAs2O3と、約0〜10
%のNb2O5と、約0〜10%Ta2O5とを含んでい
る。繊維とマトリツクスとの間の相互反応が問題
となる場合には、必要に応じてTa及びNbの酸化
物が添加されて良い。この点に関しては前述の米
国特許出願第380458号を参照されたい。 これらの組成物は約750〜1200℃の温度に曝す
ことによつて結晶化される。高度に結晶化された
結晶体を得るべく組成物を高温度に曝す時間は採
用される温度次第である。最も一般的なドエル時
間は約0.25〜60時間である。 一般に、本発明の方法に於ける出発原料はガラ
ス粉末の形態にて存在するものである。原料が結
晶状態にて存在する場合には、その原料を溶融さ
せ、かくして得られた融液をガラス体を形成する
に十分なほど迅速に冷却させ、しかる後好ましく
はNo.325の米国標準篩(44μ)を通過する粉末に
ガラスを粉末化する必要がある。 本発明の一つの重要な局面は、完全な稠密化を
行い得るほど粘性が小さいガラス状の状態にて炭
化ケイ素繊維と組合された状態で稠密化され得る
ものであり、その後実質的に完全な結晶状態に転
換され得るものであり、これにより1200℃以上の
温度に於て使用可能な複合材料を形成し得る前述
の如きガラス−セラミツクマトリツクス材料を選
定することである。また稠密化のための圧力を付
与するに先立ち予備的な熱処理中に出発原料であ
る結晶粉末をガラス状に転換することも可能であ
る。 所要の強度を有する任意の炭化ケイ素繊維が使
用されて良いが、50μまでの平均繊維径を有する
複フイラメント炭化ケイ素繊維のヤーンが好まし
く、特に5〜50μの平均繊維径を有するヤーンが
好ましい。日本炭素株式会社は1トウ当たり約
500本の繊維を有し平均繊維径が約10μである上
述の如きヤーンを製造している。この繊維の平均
強度は約2000MPa(300000psi)(21000Kg/cm2)
であり、その使用可能温度は1500℃までである。
このヤーンは約2.6g/ccの密度を有し、約
221GPa(32×106psi)(2.3×106Kg/cm2)の弾性係
数を有している。添付の図に於てAは炭化ケイ素
繊維であり、Bは結晶化処理後に於けるマトリツ
クス材料である。 不連続繊維を含む複合材料が製造される場合に
は、繊維は任意の従来の装置によりペーパー長さ
(例えば約1.0〜3.0cm)に裁断され、従来の製紙
法によりシートに形成される。炭化ケイ素繊維は
一般に等方的に、即ち或る平面内に於ける繊維の
数が何れの方向に於ても実質的に同数であるよう
に積層されるが、主に一方向に応力を受けること
が解つている物品を製造する場合には或る特定の
面内方向に繊維が積層されることが好ましい。し
かし本発明による複合材料の性質を改善するため
には、上述の如き一方向に配向される繊維は全繊
維数の90%を越えてはならず、繊維は平面内にて
積層されなければならず、平均繊維長は約1〜3
cmであることが好ましい。 本発明による複合材料は、不連続繊維を含む複
合材料である場合には、上述の如く形成されたシ
ートを所望の複合材料の形状に切断し、しかる後
例えば各シートを溶媒中に浸漬すること又は各シ
ートをブンゼンバーナの火炎に曝してバインダを
焼失させることにより製紙バインダを除去するこ
とにより形成されることが好ましい。次いでかく
して処理されたシートはガラスのスラリー中に浸
漬され、又は各シートの間の空隙を実質的に充填
するに十分な量にて各シート間にガラス粉末の層
が配置された状態にて積層される。次いでかくし
て形成された物品が高温度に於てホツトプレスさ
れることにより複合材料が形成される。 本発明の複合材料製の物品を形成する好ましい
方法は、上述の如く炭化ケイ素繊維とガラス粉末
との混合物をホツトプレスすることである。この
方法によれば繊維の配向に関し特に設計上の融通
性が得られ、かかる方法により形成されたシート
はホツトプレスにより所望の形状に形成されるに
特に適している。一つの例示的な方法は、或る適
度な速度にてスプールより炭化ケイ素繊維の不連
続繊維よりなるシート又は炭化ケイ素繊維の連続
繊維若しくはヤーンのロールを連続的に巻き戻
し、その繊維をガラス粉末と溶媒と可塑剤とより
なるスラリー中に通して繊維をそのスラリーにて
含浸させることを含んでいる。次いでかくしてス
ラリーにて含浸された繊維はより大型の回転スプ
ールに巻き取られる。一つの例示的なスラリーの
組成は130gのガラス粉末と390mlのプロパノール
とよりなるものである。他の一つのスラリーの組
成は100gのガラス粉末と200mlの水と100mlの
RHOPLEX(登録商標)の如きラテツクスバイン
ダとを含むものである。RHOPLEXはアメリカ
合衆国ペンシルバニア州フイラデルフイア所在の
Rohm and Hassより販売されている樹脂懸濁液
又は分散液である。過剰のガラス及び溶媒はシー
トが巻き取られる際にドラムに対しスキージを押
付けることによつて除去される。粉砕されたガラ
スの大きさはその90%が−325メツシユの篩を通
過するような大きさであることが好ましい。次い
でかくしてスラリーにて含浸されたシートは溶媒
を除去すべく室温に於て又は放射熱源を用いて乾
燥される。有機バインダ又は他のより融点の高い
有機補助剤が使用されている場合には、ホツトプ
レスに先立ち有機物質を燃焼によつて除去すべく
幾分か高い温度に於てシートを火炎処理する必要
がある。 含浸工程の後には、繊維のシートはドラムより
除去され、形成されるべき物品の寸法に一致する
ようストリツプに裁断される。複合材料を形成す
るためにホツトプレスが採用される場合には、ホ
ツトプレスの工程は、コロイド状の窒化ボロンに
て被覆された金型又は窒化ボロン粉末にてスプレ
ーされた黒鉛型内にて、約10000psi(703Kg/cm2)
までの圧力(好ましい圧力範囲は1000〜2000psi
(70.3〜141Kg/cm2)である)及び約1100℃〜1500
℃の温度にて真空中又はアルゴンの如き不活性ガ
ス中にて行われることが好ましい。ホツトプレス
の時間は複合材料の構造に応じて変化されて良い
がホツトプレスは一般には約1分乃至1時間にて
行われる。圧力をより高くすれば温度はより低く
ドエル時間はより短くて良い。複合材料中に於け
る炭化ケイ素繊維の量は約15〜70vol%であるこ
とが好ましい。また金型の如き型は積層された繊
維の表面上にガラス粉末が一様に分配されるよう
加振されて良い。ホツトプレスにより複合材料の
稠密化を行い得るようガラス状のマトリツクス材
料にて処理を開始し、しかる後そのガラスを結晶
状態に転換することは、得られる複合材料の性質
を改善することに大きく寄与する。ホツトプレス
の後に於てもマトリツクス材料のかなりの部分が
ガラス状態にあることが解つた場合には、最適の
高温性能を得るためにはマトリツクスを実質的に
完全に結晶化させるべく更に熱処理が行われる必
要がある。またマトリツクス材料を完全に結晶状
態にすることが好ましいが、マトリツクスの一
部、例えば25wt%までが複合材料中に於てガラ
ス状態に留まつていたとしても許容し得る複合材
料としての性質が得られる。但し最も高い耐熱性
は一般にマトリツクスのガラス成分が非常に低い
場合に得られる。 処理パラメータ及び使用される材料の組成は物
品の究極的な用途に応じて広範囲に変化されて良
い。繊維のシートを任意の特定の方向に配向して
積層する必要はないが、不連続繊維にて強化され
たガラス−セラミツクマトリツクス複合材料の最
良の強度特性は、不織布物品の場合には個々のシ
ートが同一の方向に積層される場合に、即ち全て
のシートがその積層体内に於てそれらの元の方向
がシートのロール軸線に対し同一の方向になるよ
う整合される場合に得られることが解つている。 連続繊維にて強化された複合材料の場合には、
繊維は互に他に対し任意の所望の順序にて積層さ
れて良く、例えば一方向(0゜方向)の繊維を含む
各シートは互に隣接するシートの繊維が0゜及び
90゜、又は0゜/30゜/60゜/90゜、又は0゜/±45゜/
90゜
をなすよう積層されて良い。 処理パラメータ及び本発明により得られる好ま
しい特性を説明すべく、以下の例が実施された。 例 前述の日本炭素株式会社より販売されている炭
化ケイ素繊維の連続的なトウが燃焼によつてバイ
ンダを除去すべくブンビンバーナの火炎に通され
た。次いでトウは水とバインダとよりなる分散媒
体中に分散されたバリウムにて修正されたマグネ
シウム・アルミノシリケートガラス粉末のスラリ
ー中に通された。この場合ガラスは下記の表5に
示されている如き組成を有するものであつた。表
5のガラスは酸化物を基準に重量部にて示されて
いるが、各成分の合計が100又はほぼ100になるの
で、この表に示された値は実際的な目的からは重
量百分率を示すものと考えられて良い。 表 5 SiO249.7% BaO14.1% Al2O328.1% As2O3 0.7% MgO 7.4% 一つの例示的なスラリー組成物は200mlの水と
100mlのラテツクスバインダとよりなる分散媒体
中に分散された100gのガラス粉末よりなるもの
であつた。ガラスはその90%−325メツシユの篩
を通過するよう粉砕されることが好ましい。トウ
は上述の如くスラリー中に通された後には、ガラ
ス粉末にて含浸された繊維テープを形成すべく回
転するドラム上に巻き取られる。次いでかくして
ガラス粉末にて含浸された繊維テープはバインダ
を除去すべく空気中にて約600℃に加熱される。
かくして処理されたテープは高温度に於て稠密化
されるよう型組立体内に約16層の厚さにて積層さ
れた。次いで約6.9MPa(1×103psi)(70.3Kg/
cm2)の圧力にてアルゴン中に於て約5分間1500℃
の制御熱電対温度にてホツトプレスによる稠密化
が行われた。かくして得られた複合材料は約
50vol%の炭化ケイ素繊維を含んでおり、残りの
部分はガラス状のバリウムにて修正されたマグネ
シウム・アルミノシリケートガラス−セラミツク
であつた。このサンプルの厚さは約0.10inch(0.25
cm)であつた。 下記の表6はホツトプレスによる稠密化の直後
及び複合材料のサンプルが空気中に於ける熱処理
を施された後に於ける複合材料の曲げ強さを示し
ている。曲げ強さの測定は室温及びアルゴン中に
於ける1200℃に於て行われた。
本発明による複合材料に関連する好ましい組成
物は、重量比率で約5〜15%のMgOと、約20〜
40%のAl2O3と、約40〜60%のSiO2と、約5〜25
%のBaOと、約0.5〜3%のAs2O3と、約0〜10
%のNb2O5と、約0〜10%Ta2O5とを含んでい
る。繊維とマトリツクスとの間の相互反応が問題
となる場合には、必要に応じてTa及びNbの酸化
物が添加されて良い。この点に関しては前述の米
国特許出願第380458号を参照されたい。 これらの組成物は約750〜1200℃の温度に曝す
ことによつて結晶化される。高度に結晶化された
結晶体を得るべく組成物を高温度に曝す時間は採
用される温度次第である。最も一般的なドエル時
間は約0.25〜60時間である。 一般に、本発明の方法に於ける出発原料はガラ
ス粉末の形態にて存在するものである。原料が結
晶状態にて存在する場合には、その原料を溶融さ
せ、かくして得られた融液をガラス体を形成する
に十分なほど迅速に冷却させ、しかる後好ましく
はNo.325の米国標準篩(44μ)を通過する粉末に
ガラスを粉末化する必要がある。 本発明の一つの重要な局面は、完全な稠密化を
行い得るほど粘性が小さいガラス状の状態にて炭
化ケイ素繊維と組合された状態で稠密化され得る
ものであり、その後実質的に完全な結晶状態に転
換され得るものであり、これにより1200℃以上の
温度に於て使用可能な複合材料を形成し得る前述
の如きガラス−セラミツクマトリツクス材料を選
定することである。また稠密化のための圧力を付
与するに先立ち予備的な熱処理中に出発原料であ
る結晶粉末をガラス状に転換することも可能であ
る。 所要の強度を有する任意の炭化ケイ素繊維が使
用されて良いが、50μまでの平均繊維径を有する
複フイラメント炭化ケイ素繊維のヤーンが好まし
く、特に5〜50μの平均繊維径を有するヤーンが
好ましい。日本炭素株式会社は1トウ当たり約
500本の繊維を有し平均繊維径が約10μである上
述の如きヤーンを製造している。この繊維の平均
強度は約2000MPa(300000psi)(21000Kg/cm2)
であり、その使用可能温度は1500℃までである。
このヤーンは約2.6g/ccの密度を有し、約
221GPa(32×106psi)(2.3×106Kg/cm2)の弾性係
数を有している。添付の図に於てAは炭化ケイ素
繊維であり、Bは結晶化処理後に於けるマトリツ
クス材料である。 不連続繊維を含む複合材料が製造される場合に
は、繊維は任意の従来の装置によりペーパー長さ
(例えば約1.0〜3.0cm)に裁断され、従来の製紙
法によりシートに形成される。炭化ケイ素繊維は
一般に等方的に、即ち或る平面内に於ける繊維の
数が何れの方向に於ても実質的に同数であるよう
に積層されるが、主に一方向に応力を受けること
が解つている物品を製造する場合には或る特定の
面内方向に繊維が積層されることが好ましい。し
かし本発明による複合材料の性質を改善するため
には、上述の如き一方向に配向される繊維は全繊
維数の90%を越えてはならず、繊維は平面内にて
積層されなければならず、平均繊維長は約1〜3
cmであることが好ましい。 本発明による複合材料は、不連続繊維を含む複
合材料である場合には、上述の如く形成されたシ
ートを所望の複合材料の形状に切断し、しかる後
例えば各シートを溶媒中に浸漬すること又は各シ
ートをブンゼンバーナの火炎に曝してバインダを
焼失させることにより製紙バインダを除去するこ
とにより形成されることが好ましい。次いでかく
して処理されたシートはガラスのスラリー中に浸
漬され、又は各シートの間の空隙を実質的に充填
するに十分な量にて各シート間にガラス粉末の層
が配置された状態にて積層される。次いでかくし
て形成された物品が高温度に於てホツトプレスさ
れることにより複合材料が形成される。 本発明の複合材料製の物品を形成する好ましい
方法は、上述の如く炭化ケイ素繊維とガラス粉末
との混合物をホツトプレスすることである。この
方法によれば繊維の配向に関し特に設計上の融通
性が得られ、かかる方法により形成されたシート
はホツトプレスにより所望の形状に形成されるに
特に適している。一つの例示的な方法は、或る適
度な速度にてスプールより炭化ケイ素繊維の不連
続繊維よりなるシート又は炭化ケイ素繊維の連続
繊維若しくはヤーンのロールを連続的に巻き戻
し、その繊維をガラス粉末と溶媒と可塑剤とより
なるスラリー中に通して繊維をそのスラリーにて
含浸させることを含んでいる。次いでかくしてス
ラリーにて含浸された繊維はより大型の回転スプ
ールに巻き取られる。一つの例示的なスラリーの
組成は130gのガラス粉末と390mlのプロパノール
とよりなるものである。他の一つのスラリーの組
成は100gのガラス粉末と200mlの水と100mlの
RHOPLEX(登録商標)の如きラテツクスバイン
ダとを含むものである。RHOPLEXはアメリカ
合衆国ペンシルバニア州フイラデルフイア所在の
Rohm and Hassより販売されている樹脂懸濁液
又は分散液である。過剰のガラス及び溶媒はシー
トが巻き取られる際にドラムに対しスキージを押
付けることによつて除去される。粉砕されたガラ
スの大きさはその90%が−325メツシユの篩を通
過するような大きさであることが好ましい。次い
でかくしてスラリーにて含浸されたシートは溶媒
を除去すべく室温に於て又は放射熱源を用いて乾
燥される。有機バインダ又は他のより融点の高い
有機補助剤が使用されている場合には、ホツトプ
レスに先立ち有機物質を燃焼によつて除去すべく
幾分か高い温度に於てシートを火炎処理する必要
がある。 含浸工程の後には、繊維のシートはドラムより
除去され、形成されるべき物品の寸法に一致する
ようストリツプに裁断される。複合材料を形成す
るためにホツトプレスが採用される場合には、ホ
ツトプレスの工程は、コロイド状の窒化ボロンに
て被覆された金型又は窒化ボロン粉末にてスプレ
ーされた黒鉛型内にて、約10000psi(703Kg/cm2)
までの圧力(好ましい圧力範囲は1000〜2000psi
(70.3〜141Kg/cm2)である)及び約1100℃〜1500
℃の温度にて真空中又はアルゴンの如き不活性ガ
ス中にて行われることが好ましい。ホツトプレス
の時間は複合材料の構造に応じて変化されて良い
がホツトプレスは一般には約1分乃至1時間にて
行われる。圧力をより高くすれば温度はより低く
ドエル時間はより短くて良い。複合材料中に於け
る炭化ケイ素繊維の量は約15〜70vol%であるこ
とが好ましい。また金型の如き型は積層された繊
維の表面上にガラス粉末が一様に分配されるよう
加振されて良い。ホツトプレスにより複合材料の
稠密化を行い得るようガラス状のマトリツクス材
料にて処理を開始し、しかる後そのガラスを結晶
状態に転換することは、得られる複合材料の性質
を改善することに大きく寄与する。ホツトプレス
の後に於てもマトリツクス材料のかなりの部分が
ガラス状態にあることが解つた場合には、最適の
高温性能を得るためにはマトリツクスを実質的に
完全に結晶化させるべく更に熱処理が行われる必
要がある。またマトリツクス材料を完全に結晶状
態にすることが好ましいが、マトリツクスの一
部、例えば25wt%までが複合材料中に於てガラ
ス状態に留まつていたとしても許容し得る複合材
料としての性質が得られる。但し最も高い耐熱性
は一般にマトリツクスのガラス成分が非常に低い
場合に得られる。 処理パラメータ及び使用される材料の組成は物
品の究極的な用途に応じて広範囲に変化されて良
い。繊維のシートを任意の特定の方向に配向して
積層する必要はないが、不連続繊維にて強化され
たガラス−セラミツクマトリツクス複合材料の最
良の強度特性は、不織布物品の場合には個々のシ
ートが同一の方向に積層される場合に、即ち全て
のシートがその積層体内に於てそれらの元の方向
がシートのロール軸線に対し同一の方向になるよ
う整合される場合に得られることが解つている。 連続繊維にて強化された複合材料の場合には、
繊維は互に他に対し任意の所望の順序にて積層さ
れて良く、例えば一方向(0゜方向)の繊維を含む
各シートは互に隣接するシートの繊維が0゜及び
90゜、又は0゜/30゜/60゜/90゜、又は0゜/±45゜/
90゜
をなすよう積層されて良い。 処理パラメータ及び本発明により得られる好ま
しい特性を説明すべく、以下の例が実施された。 例 前述の日本炭素株式会社より販売されている炭
化ケイ素繊維の連続的なトウが燃焼によつてバイ
ンダを除去すべくブンビンバーナの火炎に通され
た。次いでトウは水とバインダとよりなる分散媒
体中に分散されたバリウムにて修正されたマグネ
シウム・アルミノシリケートガラス粉末のスラリ
ー中に通された。この場合ガラスは下記の表5に
示されている如き組成を有するものであつた。表
5のガラスは酸化物を基準に重量部にて示されて
いるが、各成分の合計が100又はほぼ100になるの
で、この表に示された値は実際的な目的からは重
量百分率を示すものと考えられて良い。 表 5 SiO249.7% BaO14.1% Al2O328.1% As2O3 0.7% MgO 7.4% 一つの例示的なスラリー組成物は200mlの水と
100mlのラテツクスバインダとよりなる分散媒体
中に分散された100gのガラス粉末よりなるもの
であつた。ガラスはその90%−325メツシユの篩
を通過するよう粉砕されることが好ましい。トウ
は上述の如くスラリー中に通された後には、ガラ
ス粉末にて含浸された繊維テープを形成すべく回
転するドラム上に巻き取られる。次いでかくして
ガラス粉末にて含浸された繊維テープはバインダ
を除去すべく空気中にて約600℃に加熱される。
かくして処理されたテープは高温度に於て稠密化
されるよう型組立体内に約16層の厚さにて積層さ
れた。次いで約6.9MPa(1×103psi)(70.3Kg/
cm2)の圧力にてアルゴン中に於て約5分間1500℃
の制御熱電対温度にてホツトプレスによる稠密化
が行われた。かくして得られた複合材料は約
50vol%の炭化ケイ素繊維を含んでおり、残りの
部分はガラス状のバリウムにて修正されたマグネ
シウム・アルミノシリケートガラス−セラミツク
であつた。このサンプルの厚さは約0.10inch(0.25
cm)であつた。 下記の表6はホツトプレスによる稠密化の直後
及び複合材料のサンプルが空気中に於ける熱処理
を施された後に於ける複合材料の曲げ強さを示し
ている。曲げ強さの測定は室温及びアルゴン中に
於ける1200℃に於て行われた。
【表】
例 ままの状態 時間加熱後
時間加熱後 時間加熱後 時間加熱後
時間加熱後 時間加熱後 時間加熱後
Claims (1)
- 1 炭化ケイ素繊維強化ガラス―セラミツク複合
材料を製造する方法にして、実質的に重量百分率
にて5〜15%のMgO、20〜40%のAl2O3、40〜60
%のSiO2、0〜10%のNb2O5、0〜10%の
Ta2O5、5〜15%のBaO、0.5〜3%のAs2O3を
含むガラス粉末マトリツクスに体積百分率にて15
〜70%の炭化ケイ素繊維を混入した混合物を1200
〜1500℃の温度に加熱し且圧縮し、その後この混
合物を24〜60時間1100〜1200℃に保つことを特徴
とする方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US476301 | 1983-03-17 | ||
US06/476,301 US4588699A (en) | 1983-03-17 | 1983-03-17 | High strength, thermally stable magnesium aluminosilicate glass-ceramic matrix-sic fiber composites |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59182249A JPS59182249A (ja) | 1984-10-17 |
JPS6341862B2 true JPS6341862B2 (ja) | 1988-08-19 |
Family
ID=23891301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59050807A Granted JPS59182249A (ja) | 1983-03-17 | 1984-03-16 | 炭化ケイ素繊維強化ガラス‐セラミック複合材料の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US4588699A (ja) |
EP (1) | EP0126017B1 (ja) |
JP (1) | JPS59182249A (ja) |
AT (1) | ATE27258T1 (ja) |
CA (1) | CA1220495A (ja) |
DE (2) | DE3463754D1 (ja) |
IL (1) | IL71285A (ja) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4642271A (en) * | 1985-02-11 | 1987-02-10 | The United States Of America As Represented By The Secretary Of The Navy | BN coating of ceramic fibers for ceramic fiber composites |
JPS62119175A (ja) * | 1985-11-18 | 1987-05-30 | 工業技術院長 | 炭化珪素繊維強化スピネル複合焼結体の製造法 |
US4788162A (en) * | 1985-12-23 | 1988-11-29 | General Electric Company | Composite by compression |
US4769346A (en) * | 1986-10-24 | 1988-09-06 | Corning Glass Works | Whisker composite ceramics for metal extrusion or the like |
US4769349A (en) * | 1986-12-03 | 1988-09-06 | General Electric Company | Ceramic fiber casting |
US4776865A (en) * | 1986-12-16 | 1988-10-11 | Corning Glass Works | Method of forming a fiber-reinforced inorganic composite |
US4897509A (en) * | 1987-04-27 | 1990-01-30 | Corning Incorporated | Glass-ceramics for electronic packaging |
US4897370A (en) * | 1987-06-30 | 1990-01-30 | Lion Corporation | Process for preparing ceramics composite sintered bodies |
DE3731650A1 (de) * | 1987-09-19 | 1989-03-30 | Schott Glaswerke | Verfahren zur herstellung von faserverstaerkten verbundwerkstoffen |
US4857485A (en) * | 1987-10-14 | 1989-08-15 | United Technologies Corporation | Oxidation resistant fiber reinforced composite article |
FR2655327B1 (fr) * | 1989-12-04 | 1993-04-16 | Onera (Off Nat Aerospatiale) | Composition vitroceramique li-al-si-o et son procede de fabrication. |
US5067998A (en) * | 1987-12-21 | 1991-11-26 | General Electric Company | Fibrous material-containing composite |
EP0383933B1 (en) * | 1988-07-21 | 1995-06-07 | Japan Fine Ceramics Center | Ceramic composite material and process for its production |
US5190895A (en) * | 1988-07-21 | 1993-03-02 | Sumitomo Electric Industries, Ltd. | Ceramics composite material |
US5312787A (en) * | 1988-07-21 | 1994-05-17 | Japan Fine Ceramics Center | Ceramics composite material and method of producing the same |
US4948758A (en) * | 1988-10-24 | 1990-08-14 | Corning Incorporated | Fiber-reinforced composite comprising mica matrix or interlayer |
US4935387A (en) * | 1988-10-24 | 1990-06-19 | Corning Incorporated | Fiber-reinforced composite comprising mica matrix or interlayer |
FR2648805B1 (fr) * | 1989-06-21 | 1992-11-13 | Ceramiques Composites | Materiaux composites a matrice vitreuse renforcee et leur procede de preparation |
US5080977A (en) * | 1990-07-31 | 1992-01-14 | United States Of America, As Represented By The Administrator, Nat'l. Aero. And Space Admin. | Composite thermal barrier coating |
GB9104227D0 (en) * | 1991-02-28 | 1991-04-17 | British Aerospace | Glass ceramic components |
US5250243A (en) * | 1991-12-02 | 1993-10-05 | Corning Incorporated | Method for making ceramic matrix composites |
US5214004A (en) * | 1992-06-04 | 1993-05-25 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Ceramic fiber reinforced glass-ceramic matrix composite |
US5869146A (en) * | 1997-11-12 | 1999-02-09 | United Technologies Corporation | Plasma sprayed mullite coatings on silicon based ceramic materials |
DE102006056209B4 (de) * | 2006-11-29 | 2009-09-10 | Schott Ag | Panzermaterial und Verfahren zu dessen Herstellung |
US7892652B2 (en) * | 2007-03-13 | 2011-02-22 | United Technologies Corporation | Low stress metallic based coating |
WO2013180764A1 (en) | 2012-01-20 | 2013-12-05 | Free Form Fibers Llc | High strength ceramic fibers and methods of fabrication |
WO2019005525A1 (en) * | 2017-06-26 | 2019-01-03 | Free Form Fibers, Llc | HIGH-TEMPERATURE VITRO CERAMIC MATRIX WITH INCORPORATED FIBER REINFORCEMENT FIBERS |
WO2019005911A1 (en) | 2017-06-27 | 2019-01-03 | Free Form Fibers, Llc | HIGH PERFORMANCE FUNCTIONAL FIBROUS STRUCTURE |
EP4034061A4 (en) | 2019-09-25 | 2023-10-18 | Free Form Fibers, LLC | NON-WOVEN FABRICS IN MICRO-MATTS AND COMPOSITE OR HYBRID MATERIALS AND COMPOSITES REINFORCED THEREWITH |
US11761085B2 (en) | 2020-08-31 | 2023-09-19 | Free Form Fibers, Llc | Composite tape with LCVD-formed additive material in constituent layer(s) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59162146A (ja) * | 1983-01-13 | 1984-09-13 | コ−ニング・グラス・ワ−クス | オ−スミライトを含有するガラス−セラミツク |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3480452A (en) * | 1966-08-26 | 1969-11-25 | Us Navy | Cordierite ceramic process and product |
GB1459178A (en) * | 1972-11-21 | 1976-12-22 | Dostal K V | Glass and glass-ceramics and compositions therefor |
GB1535202A (en) * | 1976-10-07 | 1978-12-13 | Nat Res Dev | Low expansion glass ceramics |
US4324843A (en) * | 1980-02-13 | 1982-04-13 | United Technologies Corporation | Continuous length silicon carbide fiber reinforced ceramic composites |
US4314852A (en) * | 1980-05-07 | 1982-02-09 | United Technologies Corporation | Silicon carbide fiber reinforced glass composites |
US4410635A (en) * | 1982-02-05 | 1983-10-18 | United Technologies Corporation | Discontinuous silicon carbide fiber reinforced ceramic composites |
US4415672A (en) * | 1982-05-20 | 1983-11-15 | Corning Glass Works | Glass-ceramic compositions of high refractoriness |
CA1198744A (en) * | 1982-05-20 | 1985-12-31 | Kenneth Chyung | Reaction inhibited-silicon carbide fiber reinforced high temperature glass-ceramic composites; glass ceramic composition of high refractoriness |
-
1983
- 1983-03-17 US US06/476,301 patent/US4588699A/en not_active Expired - Lifetime
-
1984
- 1984-03-13 CA CA000449497A patent/CA1220495A/en not_active Expired
- 1984-03-16 DE DE8484630050T patent/DE3463754D1/de not_active Expired
- 1984-03-16 DE DE198484630050T patent/DE126017T1/de active Pending
- 1984-03-16 JP JP59050807A patent/JPS59182249A/ja active Granted
- 1984-03-16 EP EP84630050A patent/EP0126017B1/en not_active Expired
- 1984-03-16 AT AT84630050T patent/ATE27258T1/de not_active IP Right Cessation
- 1984-03-18 IL IL71285A patent/IL71285A/xx unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59162146A (ja) * | 1983-01-13 | 1984-09-13 | コ−ニング・グラス・ワ−クス | オ−スミライトを含有するガラス−セラミツク |
Also Published As
Publication number | Publication date |
---|---|
DE3463754D1 (en) | 1987-06-25 |
JPS59182249A (ja) | 1984-10-17 |
IL71285A (en) | 1987-09-16 |
DE126017T1 (de) | 1985-02-14 |
IL71285A0 (en) | 1984-06-29 |
EP0126017A1 (en) | 1984-11-21 |
CA1220495A (en) | 1987-04-14 |
ATE27258T1 (de) | 1987-06-15 |
US4588699A (en) | 1986-05-13 |
EP0126017B1 (en) | 1987-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6341862B2 (ja) | ||
US4589900A (en) | High-strength thermally stable magnesium aluminosilicate glass-ceramic matrix sic fiber composite | |
US4485179A (en) | Reaction inhibited-silicon carbide fiber reinforced high temperature glass-ceramic composites | |
US4324843A (en) | Continuous length silicon carbide fiber reinforced ceramic composites | |
EP0322295B1 (fr) | Procédé de fabrication d'un matériau composite à matrice vitro-céramique ou céramique par voie sol-gel et matériau composite ainsi obtenu | |
US4410635A (en) | Discontinuous silicon carbide fiber reinforced ceramic composites | |
KR930006322B1 (ko) | 섬유보강 복합재료 | |
US4626461A (en) | Gas turbine engine and composite parts | |
US4738902A (en) | Gas turbine engine and composite parts | |
JPS63297278A (ja) | 繊維強化セラミックスマトリックス合成物とその製法 | |
Levitt | High-strength graphite fibre/lithium aluminosilicate composites | |
US3681187A (en) | Carbon fibres embedded in glass matrix | |
JPS6257581B2 (ja) | ||
JPS61242930A (ja) | 強化アルカリ土類アルミノ珪酸ガラス複合体およびその製造方法 | |
JPS58217435A (ja) | 繊維強化ガラスマトリツクス複合材料物品の製造方法 | |
JPH04224174A (ja) | コーティングされた繊維強化材料、それを含んだセラミック複合物およびその製造方法 | |
US5422319A (en) | Fiber reinforced ceramic matrix composites exhibiting improved high-temperature strength | |
US5399440A (en) | Composite material with a glass-ceramic or ceramic matrix obtained by the sol-gel process and reinforced by fibers based on silicon carbide, its manufacture and its applications | |
US4666645A (en) | Method for forming fiber reinforced composite articles | |
GB2215719A (en) | Process for making a fiber reinforced composite article | |
US3875971A (en) | Ceramic coated articles | |
US4169182A (en) | Heat insulating material for high temperature use and process for manufacturing thereof | |
US5350716A (en) | Fiber-reinforced composites | |
JPH11508220A (ja) | 無機繊維に対するムライト含有コーテイング及びセラミックマトリックス複合物 | |
JP3195266B2 (ja) | 複層断熱材及びその製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |