JPS6341502B2 - - Google Patents

Info

Publication number
JPS6341502B2
JPS6341502B2 JP57169642A JP16964282A JPS6341502B2 JP S6341502 B2 JPS6341502 B2 JP S6341502B2 JP 57169642 A JP57169642 A JP 57169642A JP 16964282 A JP16964282 A JP 16964282A JP S6341502 B2 JPS6341502 B2 JP S6341502B2
Authority
JP
Japan
Prior art keywords
frequency
phase
signal
ferrous
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57169642A
Other languages
Japanese (ja)
Other versions
JPS5960274A (en
Inventor
Masahiro Tarui
Yasumoto Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP57169642A priority Critical patent/JPS5960274A/en
Publication of JPS5960274A publication Critical patent/JPS5960274A/en
Publication of JPS6341502B2 publication Critical patent/JPS6341502B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/104Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils
    • G01V3/105Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops
    • G01V3/107Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops using compensating coil or loop arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 この発明は、コンベア等で搬送されている被検
査体(特に食品)中に金属が混入しているか否か
を検出する金属検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal detection device for detecting whether metal is mixed in an object to be inspected (particularly food) being conveyed by a conveyor or the like.

まず、従来から使用されている金属検出装置の
概要について第1図で説明する。
First, an overview of a conventionally used metal detection device will be explained with reference to FIG.

この図において、1は発振器、2は前記発振器
1に接続されている送信コイル、3a,3bはこ
の送信コイル2に対向して配置されている受信コ
イルで、この受信コイル3a,3bは、送信コイ
ル2の交番磁界中におかれ、その磁力線が等しく
交錯するように配置されている。
In this figure, 1 is an oscillator, 2 is a transmitting coil connected to the oscillator 1, 3a and 3b are receiving coils arranged opposite to this transmitting coil 2, and these receiving coils 3a and 3b are It is placed in the alternating magnetic field of the coil 2 and arranged so that the lines of magnetic force intersect equally.

4a,4bは前記受信コイル3a,3bの誘起
電圧e〓1,e〓2の位相及び振幅の調整ボリユームを示
し、この調整ボリユーム4a,4bの調整によつ
て、受信コイル3a,3bの差動誘起電圧がe〓1
e〓2=0となるように設定される。5は差動誘起電
圧e〓1−e〓2を増幅する増幅器、6a,6bはそれぞ
れ鉄及び非鉄金属を検出する同期検波器、7a,
7bはローパスフイルタ、8a,8bは判別回路
である。なお、9a,9bは前記同期検波器6
a,6bに供給する同期信号を形成する第1,第
2の移相器を示す。
4a and 4b indicate adjustment volumes for the phase and amplitude of the induced voltages e〓 1 and e〓 2 of the receiving coils 3a and 3b, and by adjusting the adjustment volumes 4a and 4b, the differential voltage of the receiving coils 3a and 3b is The induced voltage is e〓 1
It is set so that e〓 2 =0. 5 is an amplifier that amplifies the differential induced voltage e〓 1 −e〓 2 ; 6a and 6b are synchronous detectors that detect ferrous and nonferrous metals, respectively; 7a,
7b is a low-pass filter, and 8a and 8b are discrimination circuits. Note that 9a and 9b are the synchronous detectors 6
Fig. 6 shows first and second phase shifters that form synchronization signals supplied to terminals a and 6b.

かゝる構成からなる金属検出装置は、送信コイ
ル2、及び受信コイル3a,3b間に被検査体W
が通過し該被検査体Wに金属が混入している時
は、その金属の種類(鉄,又は非鉄)によつて判
別回路8a,8bに検出信号が発生する。
The metal detection device having such a configuration has an object W to be inspected between the transmitting coil 2 and the receiving coils 3a and 3b.
When the inspected object W is contaminated with metal, a detection signal is generated in the discrimination circuits 8a and 8b depending on the type of metal (ferrous or non-ferrous).

この点を第2図a,bのベクトル図で説明する
と、通常、受信コイル3a,3bの誘起電圧e〓1
e〓2は増幅器5の入力側にいてe〓1−e〓2=0となるよ
うに設定されているが、鉄を含んだ被検査体Wが
矢印の方向から通過すると、まず第2図aに示す
ように受信コイル3aの誘起電圧e〓1がe〓′1に増大
し、次に受信コイル3bの誘起電圧e〓2が増大す
る。したがつて、e〓′1−e〓2=e〓Dfの差動誘起電圧

同期検波器6aに入力され、この同期検波器6a
に供給されている同位相の同期検波用の信号e〓F
よつて検出される。
To explain this point using the vector diagrams in Fig. 2 a and b, normally, the induced voltages e〓 1 ,
e〓 2 is on the input side of the amplifier 5 and is set so that e〓 1 −e〓 2 = 0, but when the object W containing iron passes from the direction of the arrow, first the As shown in a, the induced voltage e〓 1 of the receiving coil 3a increases to e〓' 1 , and then the induced voltage e〓 2 of the receiving coil 3b increases. Therefore, the differential induced voltage of e〓′ 1 −e〓 2 =e〓 Df is input to the synchronous detector 6a, and this synchronous detector 6a
It is detected by the in-phase synchronous detection signal e〓 F supplied to the.

一方、非鉄金属(ステンレス・アルミ等)が混
入した被検査体Wが通過すると発振器1の交流磁
界の影響をうけて、非鉄金属内に渦電流が流れ
る。するとこの渦電流の影響によつて、受信コイ
ル3a,3bの誘起電圧e〓1,e〓2の位相が変化する
ことになる。
On the other hand, when the inspected object W containing non-ferrous metals (stainless steel, aluminum, etc.) passes through, eddy currents flow in the non-ferrous metals under the influence of the alternating current magnetic field of the oscillator 1. Then, due to the influence of this eddy current, the phases of the induced voltages e〓 1 , e〓 2 of the receiving coils 3a, 3b change.

すなわち、第2図b図に示すように受信コイル
3aの誘起電圧e〓1の位相がe〓″1に変化すると、差
動誘起電圧e〓″1−e〓2=e〓DSは、図示したようにほ

90゜位相がずれた点に発生する。そこで、この差
動誘起電圧e〓DSとほぼ同位相のe〓Sで示した同期検
波用の信号が供給されている同期検波器6bにお
いて位相検波することにより、非鉄を検出するこ
とができる。(誘起電圧e〓2がe〓″2に変化する時も同
様な理由で検出できる。) 以上、被検査体Wの金属検出動作について簡単
に説明したが、次に発振器1から供給される周波
数と金属の検出感度について考察する。
That is, when the phase of the induced voltage e〓1 of the receiving coil 3a changes to e〓''1 as shown in Fig. 2b, the differential induced voltage e〓''1 - e〓2 = e〓DS becomes Almost like I did
Occurs at a point with a 90° phase shift. Therefore, non-ferrous metals can be detected by performing phase detection in the synchronous detector 6b, which is supplied with a signal for synchronous detection indicated by e〓S having approximately the same phase as this differential induced voltage e〓 DS . (When the induced voltage e〓 2 changes to e〓″ 2 , it can be detected for the same reason.) The metal detection operation of the inspected object W has been briefly explained above, but next, the frequency supplied from the oscillator 1 and metal detection sensitivity.

第3図は発振器1の周波数を変化した場合の鉄
(Fe)と非鉄{ステンレス(SUS)}及び製品
(ソーセージ)おける感度指数を示したものであ
る。この図から、鉄(Fe)は周波数(横軸)を
変化した場合も、一定の感度指数を示し、検出感
度は変化しないが、非鉄(SUS)及び製品は渦
電流損が周波数の2乗に比例することから、周波
数が高くなると鉄より感度指数が高くなり、結
局、鉄(Fe)を検出するためには製品に対して
渦電流を発生しないような低い周波数の信号
l)の方が良いことが分かる。
FIG. 3 shows the sensitivity index for ferrous (Fe), non-ferrous (stainless steel (SUS)), and a product (sausage) when the frequency of the oscillator 1 is changed. From this figure, iron (Fe) shows a constant sensitivity index even when the frequency (horizontal axis) changes, and the detection sensitivity does not change, but non-ferrous (SUS) and products have eddy current loss that increases to the square of the frequency. Because of the proportionality, as the frequency increases, the sensitivity index becomes higher than that of iron, and in the end, in order to detect iron (Fe), it is better to use a low frequency signal ( l ) that does not generate eddy currents in the product. I know it's good.

一方、非鉄(SUS)と製品を比較すると、第
4図に示すように検出信号の検波する位相により
感度指数が変化し、SUSでは0゜附近で最大とな
り、90゜附近で最低となつているが、製品の場合
は破線で示すようにその物性により非鉄(SUS)
と異なる位相で最低点が存在する。
On the other hand, when comparing products with non-ferrous metals (SUS), as shown in Figure 4, the sensitivity index changes depending on the phase of the detection signal, with SUS reaching a maximum around 0° and lowest around 90°. However, in the case of products, they are non-ferrous (SUS) due to their physical properties as shown by the broken line.
The lowest point exists in a phase different from .

そして、非鉄(SUS)と、製品の最低感度と
なる点の位相差は、低い周波数lに比較して高い
周波数hになる程に大きくなることが分かる。
It can also be seen that the phase difference between the non-ferrous metal (SUS) and the point at which the product has the lowest sensitivity becomes larger as the frequency h becomes higher than that of the lower frequency l .

すなわち、非鉄(SUS)と製品の感度差は、
低い周波数lでは同期検波信号の位相差を80゜位に
選んだ時、a―b間の大きさになるが、高い周波
hの時はa′―b′の感度差(位相はほぼ70゜位に選
ぶ)が得られるので、周波数は高い方が製品と非
鉄を判別する時に有利であることが分かる。
In other words, the sensitivity difference between nonferrous (SUS) and the product is
At low frequency l , if the phase difference of the synchronous detection signal is chosen to be around 80°, the magnitude will be between a and b, but at high frequency h , the sensitivity difference will be between a' and b' (the phase is approximately 70°). It can be seen that the higher the frequency, the more advantageous it is when distinguishing between products and non-ferrous metals.

この発明は、上述したようなデータの解析結果
から、鉄,非鉄金属の感度指数のいずれも高くな
るよう時分割方式で金属検出装置を動作させるよ
うにしたものである。
According to the present invention, the metal detection device is operated in a time-sharing manner so that the sensitivity index for both ferrous and non-ferrous metals becomes high based on the data analysis results as described above.

以下、この発明の金属検出装置の一実施例を第
5図のブロツク回路図により説明する。
Hereinafter, one embodiment of the metal detection device of the present invention will be explained with reference to the block circuit diagram of FIG.

この回路において、10は発振器、11は1/
nの第1の分周器、12は1/mの第2の分周器
である。第1の分周器11は発振器10の周波数
hよりより低い周波数lを形成し、第2の分周器
12は後述するように時分割切換用のスイツチ2
0〜22の駆動パルス(タイミングパルス)を形
成する。
In this circuit, 10 is an oscillator, 11 is 1/
12 is a first frequency divider of n, and 12 is a second frequency divider of 1/m. The first frequency divider 11 is the frequency of the oscillator 10
The second frequency divider 12 forms a frequency l lower than h , and the second frequency divider 12 is connected to a time division switching switch 2, as will be described later.
0 to 22 drive pulses (timing pulses) are formed.

13,14は前述した送信コイル、及び受信コ
イルを示し、15は前記受信コイル14の差動誘
起電圧を出力する増幅器である。
Reference numerals 13 and 14 indicate the above-mentioned transmitting coil and receiving coil, and 15 is an amplifier that outputs the differential induced voltage of the receiving coil 14.

16は同期検波器、17a,17bはバンドパ
スフイルタ、18a,18bは判別回路を示す。
16 is a synchronous detector, 17a and 17b are band pass filters, and 18a and 18b are discrimination circuits.

前記同期検波器16には、2つの移相器19
a,19bから2つの同期検波用の信号が供給さ
れている。
The synchronous detector 16 includes two phase shifters 19.
Two signals for synchronous detection are supplied from a and 19b.

つづいて、上記実施例の動作を第6図の波形図
に基づいて説明する。
Next, the operation of the above embodiment will be explained based on the waveform diagram of FIG.

発振器10の信号波形Bは、第4図のデータで
説明したように非鉄(SUS)と製品の感度指数
の差が大きくなる周波数hとする。この周波数h
は第1の分周器11によつて逓降され、第3図の
データで説明した鉄と非鉄(製品)の感度指数の
差が大きくなる周波数lとなるように分周する。
第6図Aは分周比を1/2とした場合の周波数l
の波形を示している。
The signal waveform B of the oscillator 10 is set to a frequency h at which the difference in sensitivity index between non-ferrous metal (SUS) and the product becomes large, as explained using the data in FIG. This frequency h
is stepped down by the first frequency divider 11, and is divided to a frequency l at which the difference in sensitivity index between ferrous and non-ferrous (products) explained using the data in FIG. 3 becomes large.
Figure 6A shows the frequency l when the division ratio is set to 1/2.
The waveform is shown.

この2つの周波数hlの信号は、第2の分周
器12によつて形成されるタイミングパルスHに
よつて切り換えられるスイツチ20を介して送信
コイル13に供給されるので、その供給波形Cは
タイミングパルスHの周期T0hlの周波数成
分が交互に出力されることになる。
These two signals of frequencies h and l are supplied to the transmitting coil 13 via the switch 20 which is switched by the timing pulse H formed by the second frequency divider 12, so that the supplied waveform C The h and l frequency components are output alternately at the period T0 of the timing pulse H.

送信コイル13と、受信コイル14の間に被検
査体Wが存在しない時は、受信コイル14の誘起
電圧の差出力は零となるように調整されているの
で同期検波器16には何んらの検出信号も発生し
ない。
When the object W to be inspected does not exist between the transmitting coil 13 and the receiving coil 14, the differential output of the induced voltage of the receiving coil 14 is adjusted to be zero, so there is no effect on the synchronous detector 16. No detection signal is generated.

今、この状態で鉄を含んだ被検査体Wが矢印の
ように通過すると、受信コイル14の誘起電圧
e〓1,e〓2のバランス、特に振幅の平衝性がくずれる
ので第6図の波形C′に示すような差信号が出力さ
れる。
Now, when the inspected object W containing iron passes in this state as shown by the arrow, the induced voltage in the receiving coil 14
Since the balance between e〓 1 and e〓 2 , especially the balance of the amplitudes, is lost, a difference signal as shown in waveform C' in FIG. 6 is output.

同期検波器16には第6図の波形Dに示すよう
に第1の周波数l、及び第2の周波数hに対応し
た周期の同期検波信号e〓F,及びe〓Sが、それぞれ位
相器18a,18bを介してタイミングパルスH
で切り換わるスイツチ21から供給されているの
で、前記差信号C′は期間Tr及び期間Tl毎に第1
の同期検波信号e〓S,第2の同期検波信号e〓Fで同期
検波される。
As shown in the waveform D in FIG. 6, the synchronous detector 16 receives synchronous detection signals e〓 F and e〓 S with periods corresponding to the first frequency l and the second frequency h , respectively, through the phase shifter 18a. , 18b to the timing pulse H
Since the difference signal C' is supplied from the switch 21 which switches at
The second synchronous detection signal e〓 S and the second synchronous detection signal e〓 F are used for synchronous detection.

そして、同期検波された波形Eは、さらに、ス
イツチ22においてバンドパスフイルタ17a,
17bに分離され入力されるので、この入力波形
はそれぞれF及びGに示す検波信号となる。
Then, the synchronously detected waveform E is further filtered through the bandpass filter 17a and the switch 22.
Since the input waveforms are separated and inputted to 17b, the input waveforms become detected signals shown in F and G, respectively.

第1の同期検波信号e〓Sは周波数hの信号に対し
て位相がほぼ70゜おくれているため、その検波信
号Fの平均値はほぼ零であり非鉄の判別回路18
aは動作しない。しかし、第2の同期検波信号e〓F
によつて検波された検波信号Gは、その平均値が
Efとなるので、判別回路18bが動作し、鉄が混
入されているという信号を出力する。
Since the phase of the first synchronous detection signal e〓 S is delayed by approximately 70° with respect to the signal of frequency h , the average value of the detection signal F is approximately zero, and the non-ferrous discrimination circuit 18
a does not work. However, the second synchronous detection signal e〓 F
The average value of the detected signal G detected by is
Since it becomes E f , the discrimination circuit 18b operates and outputs a signal indicating that iron is mixed.

前記被検査体Wに非鉄(SUS)が混入してい
る場合についても、ほぼ同様に動作するが、この
場合は第3図のデータ図で説明したように低い周
波数lに対しては渦電流の影響が小さく、周波数
l成分は受信コイル14内でキヤンセルされてほ
とんど出力されないと考えられる。
The operation is almost the same when non-ferrous metal (SUS) is mixed in the object W to be inspected, but in this case, as explained in the data diagram of Fig. 3, the eddy current is Small effect, frequency
It is considered that the l component is canceled within the receiving coil 14 and is hardly output.

したがつて、第6図においてはThの期間のみ
非鉄(SUS)及び製品に流れる渦電流によつて
受信コイル14の誘起電圧に差出力が生じること
になるが、この差出力は位相変動によつて生じた
ものであるから、第4図のデータ図で示したよう
に、製品に対する感度指数が最低となるような位
相(例えば70゜)に第1の同期検波信号esが設定
されているから、その検出感度は第4図のb′点に
相当し、第6図Fの点線で示す位相変動による波
形にみられるように非鉄(SUS)を検出するこ
とができる。
Therefore, in FIG. 6, a differential output is generated in the induced voltage of the receiving coil 14 due to the eddy current flowing in the non-ferrous metal (SUS) and the product only during the period T h , but this differential output is caused by phase fluctuation. Therefore, as shown in the data diagram of Figure 4, the first synchronous detection signal e s is set at a phase (for example, 70°) that has the lowest sensitivity index for the product. Therefore, the detection sensitivity corresponds to point b' in FIG. 4, and non-ferrous metals (SUS) can be detected as seen in the waveform due to phase fluctuation shown by the dotted line in FIG. 6F.

また、被検査体Wに非鉄が混入していない場合
にも、被検査体が導電性である場合は、渦電流に
よつて検出信号が出力されるが、本発明の場合
は、第1の同期検波信号e〓sが製品に対しては最低
の感度指数となるような位相に設定され、かつ、
非鉄と製品の感度差が大きくなるように高い周波
数とされているので、被検査体Wでは検出信号が
きわめて小さくなり、被検査体Wに非鉄が混入さ
れているか否かを高い精度で判別することができ
る。
Furthermore, even if non-ferrous metal is not mixed in the object to be inspected W, if the object to be inspected is conductive, a detection signal is output due to eddy current, but in the case of the present invention, the first The phase of the synchronous detection signal e〓 s is set to the lowest sensitivity index for the product, and
Since the frequency is set to be high so as to increase the sensitivity difference between non-ferrous metals and the product, the detection signal becomes extremely small on the object W to be inspected, and it is possible to determine with high accuracy whether or not non-ferrous metals are mixed in the object W to be inspected. be able to.

第7図は時分割で動作させるために切換スイツ
チを送受信コイル内にも設けたこの発明の他の実
施例を示す。
FIG. 7 shows another embodiment of the present invention in which a changeover switch is also provided in the transmitter/receiver coil for time-division operation.

すなわち、2つの送信コイル13a,13bを
形成し、スイツチ23,24によつて周波数h
時は送信コイル13aのみを使用し、周波数l
時は送信コイル13aと13bを直列に接続する
ように制御し、かつ、周波数hlに対する共振
用のコンデンサC1,C2もスイツチ25によつて
切り換え挿入するようにタイミングパルスHで制
御する。
That is, two transmitting coils 13a and 13b are formed, and switches 23 and 24 are used to use only the transmitting coil 13a when the frequency is h , and to connect the transmitting coils 13a and 13b in series when the frequency is l . At the same time, the switch 25 controls the resonance capacitors C 1 and C 2 for the frequencies h and l using a timing pulse H.

受信コイル14a,14bもさらに2分割して
14a1,14a2,及び14b1,14b2とし、これ
をスイツチ26,27によつて周波数がlの時に
は直列になるように制御する。
The receiving coils 14a and 14b are further divided into two parts, 14a 1 , 14a 2 , and 14b 1 , 14b 2 , which are controlled by switches 26 and 27 so that they are connected in series when the frequency is l .

このようにすると、送受信コイルのインピーダ
ンスマツチングが2周波hlのいずれの場合で
も最適となるように制御できるので、さらに金属
検出装置の検出感度を向上させることができる。
In this way, the impedance matching of the transmitting and receiving coils can be controlled to be optimal for both the two frequencies h and l , so that the detection sensitivity of the metal detection device can be further improved.

なお、製品の種類によつてはその最低感度とな
る位相が異なるので、その時には周波数hと異な
る信号を使用してもよい。
Note that since the phase at which the lowest sensitivity is obtained differs depending on the type of product, a signal different from the frequency h may be used in that case.

以上説明したように、この発明の金属検出装置
は送信コイルを少なくとも2つの周波数hl
信号によつて駆動し、鉄の検出は、製品に影響を
与えない低い方の周波数lで検出し、非鉄金属の
検出には、感度指数が高くなり、かつ製品と非鉄
金属の位相識別の良好な高い周波数hで検出する
ようにし、同期検波信号として製品に対して最低
の感度指数となる位相を付加しているので、鉄、
非鉄とも高感度で検出することができる。
As explained above, the metal detection device of the present invention drives the transmitting coil with signals of at least two frequencies h and l , and detects iron at the lower frequency l that does not affect the product. , To detect non-ferrous metals, detect at a high frequency h that has a high sensitivity index and allows good phase discrimination between the product and non-ferrous metal, and selects the phase that has the lowest sensitivity index for the product as a synchronous detection signal. Since it is added, iron,
Nonferrous metals can also be detected with high sensitivity.

しかも、かゝる2つの周波数の信号を時分割で
供給し、時分割で検出する構成としたので、金属
検出装置を構成する殆んどの部分を従来と同様に
構成することができるという利点を有するもので
ある。
Moreover, since the two frequency signals are supplied in a time-division manner and the detection is performed in a time-division manner, most parts of the metal detection device can be configured in the same way as before. It is something that you have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の金属検出装置のブロツク図、第
2図a,bは鉄、非鉄金属を検出するときのベク
トル図、第3図、第4図は鉄、非鉄金属(SUS)
及び製品に対する感度指数と供給周波数、及び位
相関係を説明するためのデータ図、第5図はこの
発明の一実施例を示す金属検出装置のブロツク
図、第6図は第5図の主要波形図、第7図はこの
発明の他の実施例を示す送受信コイルの切換図で
ある。 図中、10は発振器、11は第1の分周器、1
2は第2の分周器、13は送信コイル、14は受
信コイル、15は増幅器、16は同期検波器、2
0〜27は時分割のタイミングパルスで動作する
スイツチを示す。
Figure 1 is a block diagram of a conventional metal detection device, Figures 2 a and b are vector diagrams for detecting ferrous and non-ferrous metals, and Figures 3 and 4 are for ferrous and non-ferrous metals (SUS).
5 is a block diagram of a metal detection device showing an embodiment of the present invention, and FIG. 6 is a diagram of the main waveforms of FIG. 5. , FIG. 7 is a switching diagram of transmitting and receiving coils showing another embodiment of the present invention. In the figure, 10 is an oscillator, 11 is a first frequency divider, 1
2 is a second frequency divider, 13 is a transmitting coil, 14 is a receiving coil, 15 is an amplifier, 16 is a synchronous detector, 2
0 to 27 indicate switches operated by time-division timing pulses.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の周波数(l)と、この第1の周波数よ
り高い第2の周波数(h)の信号が所定のタイミ
ングで交互に供給されている送信コイルと、該送
信コイルの磁界と交鎖し、通過する被検査体と被
検査体に含まれる金属に感応して誘起電圧が変化
するような位置に配置されている2つの受信コイ
ルと、この2つの受信コイルに誘起される信号の
差信号を出力する増幅器と、該増幅器の出力を検
波する同期検波器と、該同期検波器の出力を前記
タイミングに同期して切り換え、2つの判別回路
にそれぞれ供給するスイツチを備え;前記同期検
波器には前記第1の周波数(l)に対応し磁性金
属に対する検出信号がほぼ最高となるような位相
を有する第1の同期検波信号と、前記第2の周波
数(h)に対応し、前記被検査体に対する検出信
号が最低となるような位相を有する第2の同期検
波信号が前記タイミングに同期して供給されてい
ることを特徴とする金属検出装置。
1 A transmitting coil to which signals of a first frequency ( l ) and a second frequency ( h ) higher than the first frequency are alternately supplied at a predetermined timing, and a signal that intersects with the magnetic field of the transmitting coil. , two receiving coils placed in positions where the induced voltage changes in response to the passing object to be inspected and the metal contained in the object to be inspected, and the difference signal between the signals induced in these two receiving coils. an amplifier that outputs a signal, a synchronous detector that detects the output of the amplifier, and a switch that switches the output of the synchronous detector in synchronization with the timing and supplies each to two discrimination circuits; corresponds to the first frequency ( l ) and has a phase such that the detection signal for magnetic metal is almost the highest; A metal detection device characterized in that a second synchronous detection signal having a phase such that a detection signal for a body is the lowest is supplied in synchronization with the timing.
JP57169642A 1982-09-30 1982-09-30 Metal detector Granted JPS5960274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57169642A JPS5960274A (en) 1982-09-30 1982-09-30 Metal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169642A JPS5960274A (en) 1982-09-30 1982-09-30 Metal detector

Publications (2)

Publication Number Publication Date
JPS5960274A JPS5960274A (en) 1984-04-06
JPS6341502B2 true JPS6341502B2 (en) 1988-08-17

Family

ID=15890264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169642A Granted JPS5960274A (en) 1982-09-30 1982-09-30 Metal detector

Country Status (1)

Country Link
JP (1) JPS5960274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005119302A1 (en) * 2004-06-04 2005-12-15 Anritsu Industrial Solutions Co., Ltd. Metal detection device
KR100788711B1 (en) * 2004-06-04 2007-12-26 안리츠 산키 시스템 가부시키가이샤 Metal detection device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619468B2 (en) * 1984-09-13 1994-03-16 アンリツ株式会社 Metal detector
JPH0725735Y2 (en) * 1989-03-31 1995-06-07 アンリツ株式会社 Metal detector
US5654638A (en) * 1995-12-21 1997-08-05 White's Electronics, Inc. Plural Frequency method and system for identifying metal objects in a background environment
SE520723C2 (en) * 1998-09-01 2003-08-19 Abb Ab Method and apparatus for carrying out measurements based on magnetism
GB2462212B (en) * 2005-02-16 2010-05-12 Illinois Tool Works Metal detector
DE102005007803A1 (en) * 2005-02-21 2006-08-24 Robert Bosch Gmbh Method for detecting objects enclosed in a medium and measuring device for carrying out the method
EP2439560B1 (en) 2010-10-07 2013-05-29 Mettler-Toledo Safeline Limited Method for monitoring the operation of a metal detection system and metal detection system
WO2012045578A1 (en) 2010-10-07 2012-04-12 Mettlert-Toledo Safeline Limited Method for operating a metal detection system and metal detection system
EP2439559B1 (en) 2010-10-07 2013-05-29 Mettler-Toledo Safeline Limited Method for operating of a metal detection system and metal detection system
US9018935B2 (en) 2011-09-19 2015-04-28 Mettler-Toledo Safeline Limited Method for operating a metal detection apparatus and apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104661A (en) * 1973-02-05 1974-10-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104661A (en) * 1973-02-05 1974-10-03

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005119302A1 (en) * 2004-06-04 2005-12-15 Anritsu Industrial Solutions Co., Ltd. Metal detection device
KR100788711B1 (en) * 2004-06-04 2007-12-26 안리츠 산키 시스템 가부시키가이샤 Metal detection device

Also Published As

Publication number Publication date
JPS5960274A (en) 1984-04-06

Similar Documents

Publication Publication Date Title
AU686341B2 (en) Metal detection system
US5537041A (en) Discriminating time domain conducting metal detector utilizing multi-period rectangular transmitted pulses
US4486713A (en) Metal detector apparatus utilizing controlled phase response to reject ground effects and to discriminate between different types of metals
JPS6341502B2 (en)
US5034689A (en) Detector for detecting foreign matter in an object by detecting electromagnetic parameters of the object
US7579839B2 (en) Metal detector
US4658653A (en) Electromagnetic flowmeter
US20130249539A1 (en) Detection of a Metal or Magnetic Object
JPS642904B2 (en)
JPS5940287A (en) Apparatus for detecting metal
JPS637634B2 (en)
WO2002025318A1 (en) Metal detector
JPS6078378A (en) Metal detector
JPS6332157B2 (en)
JPS637633B2 (en)
JPH0411187Y2 (en)
EP0337783A2 (en) Foreign matter detector
JPH03279888A (en) Metal detector
JPH08271640A (en) Metal detection apparatus
JPH0619468B2 (en) Metal detector
JPS6025474A (en) Detector of metal
JP3096788B2 (en) Metal detector
JPS5960275A (en) Metal detector
JPS6335945B2 (en)
SU507777A1 (en) Electromagnetic Flowmeter with Drift Zero Compensation