JPS5960274A - Metal detector - Google Patents

Metal detector

Info

Publication number
JPS5960274A
JPS5960274A JP57169642A JP16964282A JPS5960274A JP S5960274 A JPS5960274 A JP S5960274A JP 57169642 A JP57169642 A JP 57169642A JP 16964282 A JP16964282 A JP 16964282A JP S5960274 A JPS5960274 A JP S5960274A
Authority
JP
Japan
Prior art keywords
signal
waveform
frequency
ferrous
synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57169642A
Other languages
Japanese (ja)
Other versions
JPS6341502B2 (en
Inventor
Masahiro Tarui
樽井 正博
Yasumoto Suzuki
鈴木 康元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP57169642A priority Critical patent/JPS5960274A/en
Publication of JPS5960274A publication Critical patent/JPS5960274A/en
Publication of JPS6341502B2 publication Critical patent/JPS6341502B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/104Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils
    • G01V3/105Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops
    • G01V3/107Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops using compensating coil or loop arrangements

Abstract

PURPOSE:To enable a highly sensitive detection of both ferrous and non-ferrous metal by driving a transmission coil with the time division of two frequencies. CONSTITUTION:When an object W to be inspected containing iron passes as shown by the arrow, the balance of induced voltage of a receiving coil 14, particularly the balance of the amplitude breaks and a differential signal of a waveform C is outputted. A synchronous detection signal of a waveform D is supplied to a synchronous detector 16 through a switch 21 and a differential signal C' is detected synchronously by synchronous detection signals eF and eS varied in the phase at each Tl during the period Th to obtain a synchronous detection signal of a waveform E. The waveform E is time divided with a switch 22 to be inputted separately into BPF17a and 17b and the input waveform gives a detection signal having frequency fh and fl components as shown by F and G. The signal F is zero in the mean value and a discriminator circuit 18a fails to operate while the signal G is Ef in the mean value and the discriminator 18b operates to output a signal indicating mixing-in of iron.

Description

【発明の詳細な説明】 この発明は、コンベア等で搬送されている被検査体(特
に食品)中に金属が混入しているか否かを検出する金属
検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal detection device for detecting whether metal is mixed in an object to be inspected (particularly food) being conveyed by a conveyor or the like.

まず、従来から使用されている金属検出装置の概侵につ
いて第1図で説明する。
First, the general invasion of a conventionally used metal detection device will be explained with reference to FIG.

この図において、1は発振器、2は前記発振器1に接続
されている送信コイル、3a、3bけこの送1gコイル
2に対向して配置aさ4てし・る受信コイルで、この受
信コイル3a、3bは、送信フィル2の交番磁界中にお
かれ、その磁力組が等しく交錯するように配置されてい
る。
In this figure, 1 is an oscillator, 2 is a transmitting coil connected to the oscillator 1, 3a, 3b is a receiving coil arranged opposite to the sending coil 2, and this receiving coil 3a is arranged opposite to the sending coil 2. , 3b are placed in the alternating magnetic field of the transmission filter 2, and arranged so that their magnetic force pairs are equally intersected.

4a、4bは前記受信コイル3a、3bの誘起電圧e、
+  e2  の位相及び振幅の調整ボリュームを示し
、この調整ボリコ・−ム4a、4bの調整によって、受
信コイル3a、3bの差動誘起電圧が6、−み、二〇と
なるように設定さねる。5は差動誘起電圧e+  e2
を増幅する増幅器、6a、6bはそれぞれ鉄及び非鉄金
属を検出する同期検波器、7a、7bはローパスフィル
タ、Qa、8bは判別回路である。なお、9a、9bは
前記同期検波器6a、6bに供給する同期信号を形成す
る第1゜第2の移相器を示す。
4a and 4b are induced voltages e of the receiving coils 3a and 3b,
Indicates the adjustment volume for the phase and amplitude of +e2, and by adjusting the adjustment voltages 4a and 4b, the differential induced voltage of the receiving coils 3a and 3b is set to 6, -mi, and 20. . 5 is differential induced voltage e+ e2
6a and 6b are synchronous detectors that detect ferrous and non-ferrous metals, 7a and 7b are low-pass filters, and Qa and 8b are discrimination circuits. Note that 9a and 9b indicate first and second phase shifters that form synchronizing signals to be supplied to the synchronous detectors 6a and 6b.

か〜る構成からなる金属検出装置は、送信コイル2.及
び受(、(コイル3a、31)間に被検査体Wが通過し
該被検査体WK金属が混入している時は、その金属の種
類(鉄、又は非鉄)VCよって判別回+J38a、B1
)に検出1よ号が発生する。
The metal detection device having the above configuration includes a transmitting coil 2. When the inspected object W passes between the coils 3a and 31 and the inspected object WK metal is mixed in, it is determined by the type of metal (ferrous or non-ferrous) VC + J38a, B1
) Detection 1 occurs.

この点をi22図(a)、(b)のベクトル図で説明す
ると、通常、・り信コイル3a、3bの誘起電圧el+
ミ、昏よ増幅器5の入力端において;!+  eJ二〇
となるように設定されているが、鉄を含んだ被検査体W
が矢印の方向から通過すると、まず第2図(alに示す
ように受信コイル3aのd起電圧61  がa;VC増
大し、次に受信コイル3bの誘起電圧み2が増大する。
To explain this point using the vector diagrams in Figure i22 (a) and (b), normally, the induced voltage el+ of the transmission coils 3a and 3b is
At the input terminal of amplifier 5;! + eJ is set to 20, but the test object W containing iron
When passing from the direction of the arrow, the electromotive force 61 of the receiving coil 3a increases by a; VC, as shown in FIG. 2 (al), and then the induced voltage 2 of the receiving coil 3b increases.

したがって、b′、−み、二eotの差動誘起電圧が同
期検波器6a&で入力され、この同期検波器6aに供給
さ4ている同位相の同期検波用の信号み4.によって検
出さ4.る。
Therefore, the differential induced voltages b', -mi, and 2eot are input to the synchronous detector 6a&, and only the same-phase synchronous detection signal 4 is supplied to the synchronous detector 6a. Detected by 4. Ru.

一方、非鉄金属(ステンレス・アルミ等)が混入した被
検査体Wが通過すると発振器10交b1ε磁界の影響を
うけて、非鉄金属内に渦電流が流れる。
On the other hand, when the inspected object W containing non-ferrous metals (stainless steel, aluminum, etc.) passes through, eddy currents flow in the non-ferrous metals under the influence of the oscillator 10-cross b1ε magnetic field.

するとこの渦電流の影響によって、受信コイル3a。Then, due to the influence of this eddy current, the receiving coil 3a.

3bの誘起電圧el  r  e@ の位相が変化する
ことになる。
The phase of the induced voltage el r e@ of 3b changes.

すなわち1.lJ(2図(b)図に示すように受信コイ
ル3aの誘起電圧りの位相がJl  に変化すると、差
m誘起電圧e I  @ 2 =e、sは、図示したよ
うにほぼ90°位相がずれた点に発生する。そこで、こ
の差動誘起電圧iD5とほぼ同位相のる。で示した同期
検波用の信号が供給されている同期検波器6bにおいて
位相検波することにより、非鉄を検出することができる
。(誘起紙圧″e2がv2  に変化する時も同様な理
由で検出できる。ン 以上、被検査体Wの金属検出動作について簡単に説明し
たが、次に発振器1から供給される周波数と金属の検出
感度について考察する。
That is, 1. lJ (as shown in Figure 2(b), when the phase of the induced voltage in the receiving coil 3a changes to Jl, the difference m induced voltage e I @ 2 = e, s has a phase of approximately 90° as shown in the figure). Therefore, the non-ferrous metal is detected by phase detection in the synchronous detector 6b, which is supplied with the signal for synchronous detection shown in . (When the induced paper pressure ``e2'' changes to v2, it can be detected for the same reason.) The metal detection operation of the object W to be inspected has been briefly explained above. Consider frequency and metal detection sensitivity.

第3図は発振器1の周波数を変化した場合の鉄(Fe)
と非鉄(ステンレス(SUS、)l及び製品(ソーセー
ジ)Kおける感度指数を示したものである。このし1か
ら、鉄(Fe )は周波数(横軸)を変化した場合も、
一定の感度指数を示し、検出感度は変化しないが、非鉄
(SUS)及び製品は渦電流損が周波数の2乗に比例す
ることがら、周波数が高くなると鉄より感度指数が高く
なり、結局、鉄(Fe)を検出するためには周波数が椿
iみ低い信号(f、)の方が良いことが分かる。
Figure 3 shows iron (Fe) when the frequency of oscillator 1 is changed.
This shows the sensitivity index for non-ferrous metals (stainless steel (SUS)) and products (sausages).
It shows a constant sensitivity index and the detection sensitivity does not change, but since the eddy current loss of non-ferrous (SUS) and products is proportional to the square of the frequency, as the frequency increases, the sensitivity index becomes higher than that of iron. It can be seen that in order to detect (Fe), it is better to use a signal (f,) with a lower frequency.

一方、非鉄(SUS)と製品を比較すると、第4図に示
すように検出18号の検波する位相により感度指数が変
化し、SUSでは00 附近で最大となり、qo’t(
Jl近で最低となっているが、製品の場合は破森で示す
ようにその物性により非鉄(SUS)と異なる位相で最
低点が存在する。
On the other hand, when comparing products with nonferrous steel (SUS), as shown in Figure 4, the sensitivity index changes depending on the phase detected by detector No. 18, and for SUS it reaches a maximum around 00, and qo't (
The lowest point is near Jl, but in the case of products, the lowest point exists at a phase different from that of nonferrous steel (SUS) due to its physical properties, as shown by Hamori.

そして、非鉄(SUS)と、製品の最低感度となる点の
位相差は、低い周波数f、 K比較して旨い周波数fh
Kなる程釦大きくなることが分かる。
And, the phase difference between the non-ferrous metal (SUS) and the point where the product has the lowest sensitivity is the lower frequency f, K.
You can see that the larger the button, the larger the button.

すなわち、非鉄(SUS)と製品の感度差は、低い周波
数flでは同期検波信号の位相差を80゜位に選んだ時
、a−b間の大きさになるが、縄い周波数fhの時はa
’ −b’の感度差(位相はほぼ70゜位に選ぷンが得
られるので、周波数は高い方が製品と非鉄を判別する時
に有利であることが分かる。
In other words, the sensitivity difference between non-ferrous metal (SUS) and the product is between a and b when the phase difference of the synchronous detection signal is selected to be around 80 degrees at low frequency fl, but at low frequency fh a
Since the sensitivity difference (phase) of '-b' can be selected at approximately 70°, it can be seen that a higher frequency is more advantageous when distinguishing between products and non-ferrous metals.

この発明は、上述したようなデータの解析結果から、鉄
、非鉄金属の感度指数のいずれも旨くなるよう時分割方
式で金属検出装置を動作させるようにしたものである。
According to the present invention, the metal detection device is operated in a time-sharing manner so that the sensitivity index for both ferrous and non-ferrous metals is improved based on the data analysis results as described above.

以下、この発明の金属検出装置の一実施例な第5図のブ
ロック回路図により説明する。
Hereinafter, an embodiment of the metal detection device of the present invention will be explained with reference to the block circuit diagram of FIG. 5.

この回路において、1oは発振器、11はl//rIの
l’E 1の分周器、12はl/m  の第2の分周器
で友)る。第1の分周器11は90伽器1oの周波数f
In this circuit, 1o is an oscillator, 11 is a frequency divider of l'E1 of l//rI, and 12 is a second frequency divider of l/m. The first frequency divider 11 has a frequency f of 90
.

よりより低い周波数it を形成し、第2の分周器12
は後述するように時分割切換用のスイッチ20〜22の
駆動パルス(タイミングパルス)を形成する。
forming a lower frequency it, the second frequency divider 12
As will be described later, the drive pulses (timing pulses) for the time-division switching switches 20 to 22 are formed.

13.14は前述した送46フイル、及び受信フィルを
示し、15は前記受信コイル14の差動誘起電圧を出力
する増幅器である。
Reference numerals 13 and 14 indicate the above-mentioned transmitting 46 filter and receiving filter, and 15 is an amplifier that outputs the differential induced voltage of the receiving coil 14.

1Gは同期検波器、17a、17bはバンドパスフィル
タ、18a、18bは判別回路を示す。
1G is a synchronous detector, 17a and 17b are band pass filters, and 18a and 18b are discrimination circuits.

1111記同期検波器16には、2つの移相器19a。The 1111th synchronous detector 16 includes two phase shifters 19a.

19bから2つの同期検波用の信号が供給さilている
Two signals for synchronous detection are supplied from 19b.

つづいて、上記実施例の動作を第6図の波形図に晶づい
て説明する。
Next, the operation of the above embodiment will be explained with reference to the waveform diagram of FIG.

)#3振器10の信号波形(B)は、第4図のデータで
説り]したように非鉄(SU S)と製品の感度指数の
差が大きくなる周波数fhとする。この周波数ら は第
1の分周器11によって逓降さす1、第3図のj′=夕
で説明した鉄と非鉄(製品)の感度指数の差が大きくな
る周波数f、 となるように分周する。第6図(A)は
分周比を+/2  とした場合の周波数ft の波形を
示している。
) The signal waveform (B) of the #3 vibrator 10 is set to a frequency fh at which the difference in sensitivity index between the non-ferrous metal (SUS) and the product becomes large, as explained using the data in FIG. These frequencies are stepped down by the first frequency divider 11, and are divided so that j' in Fig. 3 is the frequency f at which the difference in sensitivity index between ferrous and non-ferrous (products) becomes large as explained in the previous section. Go around. FIG. 6(A) shows the waveform of the frequency ft when the frequency division ratio is +/2.

この2つの周波Dfh+fLの信号は、第2の分周器1
2によって形成されるタイミングパルス(H)によって
切り換えられるスイッチ20を介して送18コイル13
に供給されるので、その供給波形(C)はタイミングパ
ルス(H)の周期T0でfhとfzの周波数成分が交互
に出力されることになる。
These two frequency signals Dfh+fL are sent to the second frequency divider 1.
18 coil 13 via a switch 20 which is switched by a timing pulse (H) formed by
Therefore, in the supplied waveform (C), the frequency components of fh and fz are alternately output at the period T0 of the timing pulse (H).

送4コイル13と、受信コイル140間に被検立本Wが
σ在しない時は、受信コイル14の誘起′市川の差出力
は零となるように調整されているので同期検波器16に
は何んらの検出イま号も発生しない。
When the standalone W to be tested is not σ between the transmitting coil 13 and the receiving coil 140, the induced 'Ichikawa' difference output of the receiving coil 14 is adjusted to be zero, so the synchronous detector 16 No detection error occurs.

今、この状態で鉄を含んだ被検査体Wが矢印のように通
過−[ると、受信コイル14.の誘起・1L圧−1゜シ
2のバランス、荷に振幅の平価性がくずれるので第6図
の波形(Cつに示すような差信号が出力さハる。
Now, in this state, the object to be inspected W containing iron passes through the receiving coil 14 as shown by the arrow. Since the balance between the induced voltage and the 1L pressure - 1° and 2 and the load destroys the equality of amplitude, a difference signal as shown in the waveform (C) of FIG. 6 is output.

同期検波器16には第6図の波形(D)に示すような同
期検波用の信号がスイッチ21を介し、て供給さハ、て
いるので、前記差信号(C′)は−期間Th 、及び期
間TL 毎に異なった位相の同期検波用の信号i、及び
み8 で同期検波され、結局は第6図の(E)波形に示
すような同期検波信号が得られる。
Since the synchronous detector 16 is supplied with a signal for synchronous detection as shown in the waveform (D) in FIG. Then, synchronous detection is performed using signals i and 8 for synchronous detection having different phases for each period TL, and a synchronous detection signal as shown in the waveform (E) in FIG. 6 is finally obtained.

この(E)波形は、さらにスイッチ22において時分割
されてバンドパスフィルタ17a、17bに分離入力さ
れるので、各々の入力波形は(F)。
This (E) waveform is further time-divided by the switch 22 and inputted separately to the bandpass filters 17a and 17b, so that each input waveform is (F).

(G)に示すように周波数f、l f、成分の検波信号
となる。
As shown in (G), it becomes a detected signal with frequencies f and l f components.

fh酸成分検波信号(F)は、その平均値が零であるか
ら判別回路18aは動作せず、11  成分の検波信号
(G)は、その平均値がEl となるので、判別回路1
8bが動作し、鉄が混入されているという信号を出力す
る。
Since the fh acid component detection signal (F) has an average value of zero, the discriminator circuit 18a does not operate, and the 11 component detection signal (G) has an average value of El, so the discriminator circuit 18a does not operate.
8b operates and outputs a signal indicating that iron is mixed.

前記被検査体Wに非鉄(SUS)が混入している場合に
ついても、はぼ同様に動作するが、この場合は第3図の
データ図で説明したように低い周波数ft  Kス・」
シては渦電流の影響が小さく、周波数f、酸成分受1g
コイル14内でキャンセルさ4てほとんど出力さtlな
いと考えられる。
When non-ferrous metal (SUS) is mixed in the object W to be inspected, the same operation is performed, but in this case, as explained in the data diagram of FIG.
The effect of eddy current is small, frequency f, acid component reception 1g.
It is considered that there is almost no output tl due to cancellation within the coil 14.

したがって、第6図においてはT、の期間のみ渦11t
流によって受信コイル14の誘起電圧に差出力が生じる
ことになるが、この差出力は位相変動によって生じたも
のであるから、第4図のデータ図で説明したように製品
の感度指数が最低となる第7図は時分割で動作させるた
めに切換スイッチを送受(Rフィル内にも設けたこの発
明の他の実施例を示す。
Therefore, in FIG. 6, the vortex 11t only during the period T.
The current causes a difference output in the induced voltage of the receiving coil 14, but since this difference output is caused by phase fluctuation, the sensitivity index of the product is the lowest as explained in the data diagram of Figure 4. FIG. 7 shows another embodiment of the present invention in which a changeover switch is also provided in the transmitter/receiver (R fill) for time-division operation.

すなわち、2つの送信コイル13a、13bを形成し、
スイッチ23.24VCよって周波数fhの時は送信コ
イル13aのみを使用し、周波数f。
That is, two transmitting coils 13a and 13b are formed,
With the switches 23 and 24VC, only the transmitting coil 13a is used when the frequency is fh, and the frequency is fh.

の時は送信コイル13aと13bを直列に接続するよう
に制御し、かつ、周波数fb r r、  に対する共
(膜用のコンデンサc1.c2もスイッチ25によって
切り換え挿入するようにタイミングパルス0()で制御
−する。
At this time, the transmitting coils 13a and 13b are controlled to be connected in series, and the timing pulse 0 () is used to connect the transmitting coils 13a and 13b in series, and to insert the capacitors c1 and c2 for the frequency fb r r, by switching them with the switch 25. control.

受信コイル14a、14bもさらに2分割して14a1
+14a2+ 及び14b+ 、14bzとし、こ才1
.をスイッチ26.27によって周波数がfL  の詩
には直列になるように制御てる。
The receiving coils 14a and 14b are further divided into two parts 14a1.
+14a2+ and 14b+, 14bz, young 1
.. is controlled by switches 26 and 27 so that the frequency is in series with fL.

このようにすると、送受信コイルのインピーダンスマツ
チングが2周波fb、fL  のいずれの場合でも最適
となるように制御できるので、さ1−)K金属検出装置
の検出感度を向上させることができる。
In this way, the impedance matching of the transmitting and receiving coils can be controlled to be optimal for both the two frequencies fb and fL, so that (1-) the detection sensitivity of the K metal detection device can be improved.

なお、製品の種類によってはその最低感度となる位相が
異なるので、その時には周波数fh と異なる信号を使
用してもよい。
Incidentally, since the phase at which the lowest sensitivity is obtained differs depending on the type of product, a signal different from the frequency fh may be used at that time.

以上説明したように、この発明の金属検出装置は送受信
コイルを少なくとも2つの周波数fh、flの信号によ
ってMAah L、鉄の検出は、製品に影響を与えない
低い方の周波数ftで検出し、非鉄金属の検出には、感
度指数が晶くなり、かつ位相識別の良好な高い周波数f
hで検出するようKしたので、鉄、非鉄とも?%感度で
検出することができしかイ1、か(る2つの周波数の信
号を時分割でUしキ・J(シ、Il、′ilI′jN:
、11で検出する構成としたので、金λ1(・1目1」
ル向を(I′4成−「る殆んどの部分を従来と同様に(
I′□S成ゴることができるどいつ利点を有するもので
ある。
As explained above, the metal detection device of the present invention detects the transmitting/receiving coil with signals of at least two frequencies fh and fl, detects iron at the lower frequency ft that does not affect the product, and detects non-ferrous metals at the lower frequency ft that does not affect the product. For metal detection, a high frequency f with a crystalline sensitivity index and good phase discrimination is required.
Since I set K to detect at h, is it ferrous or non-ferrous? It is possible to detect signals with two frequencies that can only be detected with % sensitivity in a time-sharing manner.
, 11, so gold λ1 (・1 eye 1''
Most of the parts of the file direction (I'4) are the same as before (
It has the advantage of being able to achieve I'□S.

・15図曲りl1i1単な1況明 rAlし1は七lr来の金属検出装置のブロック図、第
2図(a)、(b)は鉄、非鉄金属を検出するときのベ
クトルlゾ11..Ic :(t4 、第4図は鉄、非
鉄金属(S tJ S)及び製品に対する感度指斂と供
給周波舷、及び位相関係を説明1−るためのテータ図、
第5図はこの発明の一実施例を示す金属検出装置のブロ
ック図、第6図は第5図の主要波形図、第7図はこの発
明の他の実施例を示す送受信コイルの切換図である。
・Figure 15 curve l1i1 simple situation rAl21 is a block diagram of a conventional metal detection device, and Figures 2 (a) and (b) are vectors used to detect ferrous and non-ferrous metals11. .. Ic: (t4, Figure 4 is a theta diagram for explaining the sensitivity index, supply frequency range, and phase relationship for iron, nonferrous metals (S tJ S) and products,
FIG. 5 is a block diagram of a metal detection device showing one embodiment of this invention, FIG. 6 is a main waveform diagram of FIG. 5, and FIG. 7 is a switching diagram of a transmitting/receiving coil showing another embodiment of this invention. be.

図中、10は発振器、11は第1の分局器、12は第2
の分局器、13は送信コイル、14は受イδコイル、1
5は型幅器、16は同期検波器、20〜27は11、“
を分割のタイミングパルスで動作するスイッチを示す。
In the figure, 10 is an oscillator, 11 is a first branch, and 12 is a second
13 is a transmitting coil, 14 is a receiving δ coil, 1
5 is a type width detector, 16 is a synchronous detector, 20 to 27 are 11, "
shows a switch that operates with split timing pulses.

第1図 1+ 第2図 (a)(b) 366− 第3図 f+ong−第4図 位相□Figure 1 1+ Figure 2 (a)(b) 366- Figure 3 f+ong-Figure 4 Phase □

Claims (1)

【特許請求の範囲】[Claims] 少なくも2つの異なる周波数(fh、f、)の信号が時
分割で供給さilている送信コイルと、前記送イ3フィ
ルに対向して設けた2つの受信コイルと、この2つの受
Giコイルの誘起電圧の差出力を形成する増幅:侶と、
前記増@器の出力を検波する同期検波器とを備え、前記
2つの周波数(f)、、fx)のイば号を移相して得た
2つの同期検波用の信号を、1’?f分割で前記同期検
波器虻供給することをq1徴とする金属検出装置。
A transmitting coil to which signals of at least two different frequencies (fh, f,) are supplied in a time-division manner, two receiving coils provided opposite to the transmitting coil, and these two receiving coils. Amplification to form the difference output of the induced voltage of:
and a synchronous detector for detecting the output of the intensifier, and the two synchronous detection signals obtained by phase-shifting the signals of the two frequencies (f), fx) are 1'? A metal detection device having a q1 feature of supplying the synchronous detector by f division.
JP57169642A 1982-09-30 1982-09-30 Metal detector Granted JPS5960274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57169642A JPS5960274A (en) 1982-09-30 1982-09-30 Metal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169642A JPS5960274A (en) 1982-09-30 1982-09-30 Metal detector

Publications (2)

Publication Number Publication Date
JPS5960274A true JPS5960274A (en) 1984-04-06
JPS6341502B2 JPS6341502B2 (en) 1988-08-17

Family

ID=15890264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169642A Granted JPS5960274A (en) 1982-09-30 1982-09-30 Metal detector

Country Status (1)

Country Link
JP (1) JPS5960274A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168582A (en) * 1984-09-13 1986-04-08 Anritsu Corp Metal detector
JPH02129885U (en) * 1989-03-31 1990-10-25
EP0780704A3 (en) * 1995-12-21 1998-01-28 White's Electronics, Inc. Plural frequency method and system for identifying metal objects in a background environment
WO2000013045A1 (en) * 1998-09-01 2000-03-09 Abb Ab A method and a device for carrying out measurements based upon magnetism
JP2008530569A (en) * 2005-02-21 2008-08-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for detecting an object enclosed in a medium, and measuring apparatus for carrying out the detection method
CN100432702C (en) * 2004-06-04 2008-11-12 安立产业机械株式会社 Metal detection device
GB2462212A (en) * 2005-02-16 2010-02-03 Illinois Tool Works Multi-frequency metal detector for detecting metal in food products
US8278918B2 (en) 2010-10-07 2012-10-02 Mettler-Toledo Safeline Limited Method for operating of a metal detection system and metal detection system
US8314713B2 (en) 2010-10-07 2012-11-20 Mettler-Toledo Safeline Limited Method for monitoring the operation of a metal detection system and metal detection system
US8587301B2 (en) 2010-10-07 2013-11-19 Mettler-Toledo Safeline Limited Method for operating a metal detection system and metal detection system
US9018935B2 (en) 2011-09-19 2015-04-28 Mettler-Toledo Safeline Limited Method for operating a metal detection apparatus and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788711B1 (en) * 2004-06-04 2007-12-26 안리츠 산키 시스템 가부시키가이샤 Metal detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104661A (en) * 1973-02-05 1974-10-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104661A (en) * 1973-02-05 1974-10-03

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168582A (en) * 1984-09-13 1986-04-08 Anritsu Corp Metal detector
JPH02129885U (en) * 1989-03-31 1990-10-25
EP0780704A3 (en) * 1995-12-21 1998-01-28 White's Electronics, Inc. Plural frequency method and system for identifying metal objects in a background environment
WO2000013045A1 (en) * 1998-09-01 2000-03-09 Abb Ab A method and a device for carrying out measurements based upon magnetism
CN100432702C (en) * 2004-06-04 2008-11-12 安立产业机械株式会社 Metal detection device
GB2462212A (en) * 2005-02-16 2010-02-03 Illinois Tool Works Multi-frequency metal detector for detecting metal in food products
GB2462212B (en) * 2005-02-16 2010-05-12 Illinois Tool Works Metal detector
US8473235B2 (en) 2005-02-16 2013-06-25 Illinois Tool Works Inc. Metal detector
JP2008530569A (en) * 2005-02-21 2008-08-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for detecting an object enclosed in a medium, and measuring apparatus for carrying out the detection method
JP2011075574A (en) * 2005-02-21 2011-04-14 Robert Bosch Gmbh Method for detecting object enclosed in medium and measuring device for conducting this detection method
US8278918B2 (en) 2010-10-07 2012-10-02 Mettler-Toledo Safeline Limited Method for operating of a metal detection system and metal detection system
US8314713B2 (en) 2010-10-07 2012-11-20 Mettler-Toledo Safeline Limited Method for monitoring the operation of a metal detection system and metal detection system
US8587301B2 (en) 2010-10-07 2013-11-19 Mettler-Toledo Safeline Limited Method for operating a metal detection system and metal detection system
US9018935B2 (en) 2011-09-19 2015-04-28 Mettler-Toledo Safeline Limited Method for operating a metal detection apparatus and apparatus

Also Published As

Publication number Publication date
JPS6341502B2 (en) 1988-08-17

Similar Documents

Publication Publication Date Title
US7663361B2 (en) Metal detection device
CA2179993C (en) Metal detection system
JPS5960274A (en) Metal detector
JPS5960277A (en) Metal detector
GB2146128A (en) Metal detection apparatus
JPS637634B2 (en)
JPS637633B2 (en)
JPS6078378A (en) Metal detector
JPS6332157B2 (en)
US6100820A (en) Vehicle detector with at least one inductive loop as a sensor, and a method for performing vehicle detection
JPH08271640A (en) Metal detection apparatus
JPS6168582A (en) Metal detector
SU746278A1 (en) Method and apparatus for non-destructive testing
JPS5960275A (en) Metal detector
SU894651A2 (en) Metal detector
US3525036A (en) Process for the detection of hydrocarbons and apparatus for carrying it out
SU507777A1 (en) Electromagnetic Flowmeter with Drift Zero Compensation
SU1071926A1 (en) Electromagnetic measuring device
JPH0229996B2 (en)
SU834549A1 (en) Differential commutation pointer with periodic comparison of harmonic signals
US2423891A (en) Bifrequency magnetic testing apparatus
JPS5960276A (en) Metal detector
SU1117559A1 (en) Eddy-current metal detector
SU1359762A2 (en) Hysteresigraph
SU915048A1 (en) Metal finder