JPS6078378A - Metal detector - Google Patents

Metal detector

Info

Publication number
JPS6078378A
JPS6078378A JP58186370A JP18637083A JPS6078378A JP S6078378 A JPS6078378 A JP S6078378A JP 58186370 A JP58186370 A JP 58186370A JP 18637083 A JP18637083 A JP 18637083A JP S6078378 A JPS6078378 A JP S6078378A
Authority
JP
Japan
Prior art keywords
circuit
signal
phase
value
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58186370A
Other languages
Japanese (ja)
Other versions
JPH0229997B2 (en
Inventor
Yasumoto Suzuki
鈴木 康元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP58186370A priority Critical patent/JPS6078378A/en
Publication of JPS6078378A publication Critical patent/JPS6078378A/en
Publication of JPH0229997B2 publication Critical patent/JPH0229997B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/104Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils
    • G01V3/105Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops
    • G01V3/107Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops using compensating coil or loop arrangements

Abstract

PURPOSE:To adjust automatically phase so as to minimize material effect by providing a circuit which controls the phase adjustment in the direction where the peak value of the unbalance detection signal when an object to be inspected passes between two receiving coils and a transmission coil decreases. CONSTITUTION:An alternating magnetic field is generated from a transmission coil P by the oscillation signal of an oscillator 11. A differential voltage signal from a tuning circuit 13 is outputted when objects W to be inspected pass successively by each piece between the coil P and receiving coils S1, S2. The signal is inputted through an AC amplifier 14, a detecting circuit 16, a DC amplifier circuit 17, an AD converter 18 and a peak holding circuit 20 receiving the detection signal from an object detector 19 to a metal detecting circuit 21 which compares the signal with the reference signal from a reference setter 22 and outputs a metal detection signal when the signal exceeds the reference value. A decision circuit 23 makes relational decision of the peak value held in the circuit 20 and the stored peak value when the metal detection circuit is not inputted to said circuit. A change-over control circuit 24 controls the circuit 13 in the direction where the peak value decreases according to the decision circuit of said circuit.

Description

【発明の詳細な説明】 本発明は被検査体に混入した金属を検出する金属検出装
置に関し、特に被検査体の材質による金属検出への悪影
響を低減するだめの調整を金属検査中に自動的に行ない
得るようにした金属検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal detection device that detects metal mixed in an object to be inspected, and in particular, to an apparatus that automatically adjusts a mechanism to reduce the negative influence of the material of the object on metal detection during metal inspection. The present invention relates to a metal detection device that can be used to detect metals.

製品(例えばハム、ソーセージ、みそなど)中に混入し
た微小な金属を検出するなどの目的で用いられる金属検
出装置は、一般だ第1図に示す検出原理によっている。
Metal detection devices used for the purpose of detecting minute metals mixed into products (for example, ham, sausage, miso, etc.) are generally based on the detection principle shown in FIG.

第1図において、1は検出部で、発振器からの交番信号
を与えられて交番磁界を発生させる送信コイルPと、こ
の送信コイルPに対向して、送信コイルPによる交番磁
界の磁力線が等量交わり交番磁界によって生じる誘起電
圧E1、E2が等しくなるように配置された二つの受信
コイルs 1 ’+1’ s 2とを備えている。この
ように配置された送信コイルPと受信コイルE11.8
2との間を、一方の受信コイルS1から他方の受信コイ
ルS2方向へと、所定速度で被検査体Wを搬送装置(図
示せず)によって搬送する。被検前体W中に金属が混入
していれば、金属によって磁力線に変化が生じる。即ち
、被検査体Wに鉄が混入している場合には、第2図に示
すように、被検査体Wが例えば受信コイル81を通過す
るとき鉄の存在によって磁路が変形されて受信コイルS
1に交わる磁力線が増えて誘起電圧E1が増え、他方の
受信コイルS2の誘起電圧E2より犬となる。非鉄金属
が混入している場合には、第6図に示すように非鉄金属
内に渦電流が流れ、渦電流のエネルギーとして電磁束が
消費されて一方の受信コイルS1に交わる磁力線が減り
、誘起電圧E1が減り、他方の受信コイルS2の誘起電
圧E2より小となる。このように被検前体W中に金属が
混入している場合には、検出部通過時に第1、第2の受
信コイルS1、S2の誘起電圧E1、K21+11:l
差が生じ、この両者の差電圧を不平衡信号として出力し
て金属を検出している。
In Fig. 1, numeral 1 denotes a detection unit, which includes a transmitting coil P that generates an alternating magnetic field in response to an alternating signal from an oscillator, and a magnetic field line of the alternating magnetic field produced by the transmitting coil P that is located opposite to the transmitting coil P in equal amounts. It includes two receiving coils s 1 '+1' s 2 arranged so that the induced voltages E1 and E2 generated by the intersecting alternating magnetic fields are equal. Transmitting coil P and receiving coil E11.8 arranged in this way
2, the object W to be inspected is transported by a transport device (not shown) at a predetermined speed from one receiving coil S1 to the other receiving coil S2. If metal is mixed into the test sample W, the magnetic lines of force will change due to the metal. That is, when the inspected object W contains iron, as shown in FIG. 2, when the inspected object W passes, for example, the receiving coil 81, the presence of iron deforms the magnetic path and S
1, the number of lines of magnetic force that intersect with the receiving coil S2 increases, and the induced voltage E1 increases, making it higher than the induced voltage E2 of the other receiving coil S2. When non-ferrous metals are mixed in, eddy currents flow in the non-ferrous metals as shown in Figure 6, and electromagnetic flux is consumed as energy of the eddy currents, reducing the number of lines of magnetic force intersecting one receiving coil S1, causing the induced The voltage E1 decreases and becomes smaller than the induced voltage E2 of the other receiving coil S2. In this way, if metal is mixed in the test subject W, the induced voltages E1, K21+11:l of the first and second receiving coils S1 and S2 when passing through the detection section
A difference occurs, and the difference voltage between the two is output as an unbalanced signal to detect metal.

しかして、このような磁力線への影響は、被検査体Wの
材質自体によっても生じる。即ち、例えばハムなどの場
合には、物体中の水分や塩分が導電性を有するため磁力
線に変化が生じ、不平衡出力として現われる。このため
微量の金属まで高精度に検出するには、こ、の被検査体
の材質自体による影響(マテリアル・エフェクト)をで
きるだけ低減することが必要である。
Therefore, such an influence on the magnetic lines of force is also caused by the material of the object W to be inspected. That is, in the case of hum, for example, the moisture and salt in the object are conductive, causing changes in the magnetic lines of force, which appear as an unbalanced output. Therefore, in order to detect even trace amounts of metal with high precision, it is necessary to reduce the influence (material effect) caused by the material itself of the object to be inspected as much as possible.

しかして、前記したように金属のうち鉄の場合と非鉄金
属の場合とでは誘起電圧の変動に関して逆の現象が生じ
ており、送信コイルに印加される交番信号の位相と検出
感度との関係は、鉄の場合と非鉄金属の場合とでは異な
る位相でそれぞれ最良の検出感度となる。このため金属
検出装置では、二つの受信コイルから出力される差電圧
信号を、送信コイルを駆動する発振器の交番信号から作
った基準位相信号の位相を変化させて、あるいは受信コ
イルの同調回路の位相を変化させて、誘起電圧信号と基
準位相信号とを相対的に調整して検波して不平衡検波信
号を得ている。しかして、被検査体の材質による影響も
同様に位相によって影響の度合が異なるので、被検査体
の種類ごとに、影響の度合が最小となる位相に調整する
必要がある。
However, as mentioned above, opposite phenomena occur in the case of ferrous metals and non-ferrous metals regarding fluctuations in induced voltage, and the relationship between the phase of the alternating signal applied to the transmitting coil and the detection sensitivity is , the best detection sensitivity is achieved in different phases for iron and non-ferrous metals. For this reason, in a metal detection device, the differential voltage signal output from two receiving coils is changed by changing the phase of a reference phase signal made from an alternating signal of an oscillator that drives the transmitting coil, or by changing the phase of a reference phase signal made from an alternating signal of an oscillator that drives the transmitting coil, or by changing the phase of the tuned circuit of the receiving coil. The induced voltage signal and the reference phase signal are relatively adjusted and detected to obtain an unbalanced detection signal. Similarly, the degree of influence due to the material of the object to be inspected also differs depending on the phase, so it is necessary to adjust the phase to the minimum degree of influence for each type of object to be inspected.

このため従来の金属検出装置では、基準位相信号の位相
又は同調回路の位相を種々手動で変化させながら、金属
の混入していない良品の被検査体をサンプルとして送信
コイルと受信コイルの間を何度も通過させて、不平衡検
波信号の出力波形を観察し、マテリアル・エフェクトの
最小となる位相に手動調整を行なっていた。
For this reason, in conventional metal detection devices, while manually changing the phase of the reference phase signal or the phase of the tuning circuit, we use a good object to be inspected that does not contain any metal as a sample, and change the distance between the transmitting coil and the receiving coil. They also passed the signal through the signal, observed the output waveform of the unbalanced detection signal, and manually adjusted the phase to minimize the material effect.

しかしながら、このように被検査体の種類ごとに手動調
整する方法は極めて煩雑で時間がかがるばかりでなく、
高精度の調整は困難であった。
However, this manual adjustment method for each type of object is not only extremely complicated and time-consuming, but also
High-precision adjustment was difficult.

本発明は上記の欠点を改め、何らの手動調整を要さず金
属検出動作継続中に自動的にマテリアル・エフェクトが
最小となるように位相の調整ができるようにした金属検
出装置を提供することを目的としている。
The present invention corrects the above-mentioned drawbacks and provides a metal detection device that can automatically adjust the phase so that the material effect is minimized while the metal detection operation continues without requiring any manual adjustment. It is an object.

以下、図面に基づいて本発明の一実施例を説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第4図は本発明による金属検出装置の一実施例のブロッ
ク図である。
FIG. 4 is a block diagram of an embodiment of the metal detection device according to the present invention.

同図において、11は所定周波数の発振信号を出力する
発振器である。12は該発振信号で駆動されて交番磁界
を発生する送信コイルPと、これに対向して交番磁界の
磁力線が等量交わって各誘起電圧が等しくなるように配
置された第1、第2の受信コイルS1、S2とを備えた
検出部である。
In the figure, 11 is an oscillator that outputs an oscillation signal of a predetermined frequency. Reference numeral 12 denotes a transmitting coil P which is driven by the oscillation signal to generate an alternating magnetic field, and a first and second transmitting coil P which are arranged opposite to this so that the lines of magnetic force of the alternating magnetic field intersect by equal amounts so that the respective induced voltages are equal. This is a detection unit including receiving coils S1 and S2.

13は受信コイルS1、S2の同調回路である。13 is a tuning circuit for receiving coils S1 and S2.

この同調回路13はコンデンサの容量を切換スイッチで
切換えることによって受信コイルの誘起電圧の位相を変
化できるように構成されている。そしてこの切換スイッ
チは、被検査体の種類ごとに手動で切換えられる位相粗
調整用の手動スイッチ(図示せず)と、後述する切換制
御回路24からの切換制御信号によって切換えられる位
相微調整用の自動スイッチ(図示せず)とを備えている
This tuning circuit 13 is configured so that the phase of the induced voltage in the receiving coil can be changed by changing the capacitance of the capacitor with a changeover switch. This changeover switch consists of a manual switch (not shown) for coarse phase adjustment that can be manually changed for each type of object to be inspected, and a manual switch (not shown) for fine phase adjustment that can be changed by a switching control signal from a switching control circuit 24, which will be described later. automatic switch (not shown).

14は同調回路13から出力される受信コイルS1、S
2からの差電圧信号を増幅する交流増幅回路である。1
5は発振器11の発振信号の位相を調整して基準位相信
号として出力する移相回路である。
14 are receiving coils S1 and S output from the tuning circuit 13;
This is an AC amplification circuit that amplifies the differential voltage signal from 2. 1
5 is a phase shift circuit that adjusts the phase of the oscillation signal of the oscillator 11 and outputs it as a reference phase signal.

16は交流増幅回路14からの差電圧信号を移相回路1
5からの基準位相と比較して不平衡検波信号を出力する
検波回路である。17は検波回路16からの不平衡検波
信号を増幅する直流増幅回路、18は直線増幅回路17
の出力信号をA / D変換するA / D変換回路で
ある。
16 is a phase shift circuit 1 which transfers the differential voltage signal from the AC amplifier circuit 14.
This is a detection circuit that outputs an unbalanced detection signal by comparing it with the reference phase from 5. 17 is a DC amplifier circuit that amplifies the unbalanced detection signal from the detection circuit 16; 18 is a linear amplifier circuit 17;
This is an A/D conversion circuit that A/D converts the output signal of.

19は被検査体Wが検出部12を通過する際に、これを
検知して検知信号を出力する物体検知器である。
Reference numeral 19 denotes an object detector that detects the object W to be inspected when it passes through the detection section 12 and outputs a detection signal.

20は物体検知器19からの検知信号を受けるごとに(
即ち被検査体の通過ごとK)、A / D変換回路18
の出力値のうちのピーク値をホールドするピークホール
ド回路である。21は基準値設定器22に予め設定した
基準値(被検査体の種類によって異なる所定の値)とピ
ークホールド回路20にホールドされたピーク値とを比
較し、ピーク値が基準値より大きい場合に金属検知信号
を出力する金属検知回路である。
20 receives a detection signal from the object detector 19 (
That is, each time the object to be inspected passes, the A/D conversion circuit 18
This is a peak hold circuit that holds the peak value of the output values. 21 compares the reference value preset in the reference value setter 22 (a predetermined value that varies depending on the type of object to be inspected) and the peak value held in the peak hold circuit 20, and if the peak value is larger than the reference value, This is a metal detection circuit that outputs a metal detection signal.

23は、金属検知回路21からの金属検知信号が出力さ
れない場合のピークホールド回路20の出力値を記憶し
、この記憶値と次の被検査体通過時に新たにピークホー
ルド回路20にホールドされたピーク値(但し金属検知
信号が出力されない場合)とを比較し、新たにホールド
されたピーク値が記憶値(即ち前回のピーク値)より太
きいか、小さいかの判定信号を出力する判定回路である
23 stores the output value of the peak hold circuit 20 when the metal detection signal is not output from the metal detection circuit 21, and stores this stored value and the peak newly held in the peak hold circuit 20 when the next object to be inspected passes. This is a judgment circuit that outputs a judgment signal to determine whether the newly held peak value is thicker or smaller than the stored value (i.e., the previous peak value) by comparing the value (when no metal detection signal is output). .

2牛は判定信号に基づいて前記不平衡検波信号のピーク
値が減少する方向に、前記同調回路13の位相微調整用
の自動スイッチを切換えるように切換制御信号を出力す
る切換制御回路である。即ち、この切換制御回路2牛は
、同調回路13へ前回出力した切換制御信号が進み位相
方向(コンデ゛ンサの容量を犬にする方向)の制御であ
るか、遅れ位相方向(コンデンサの容量を小にする方向
)の制御であるかを記憶している。そして、この切換制
御回路2牛は、判定回路23から後のピークち、前回の
制御が進み位相方向の場合には遅れ位相方向への切換制
御信号を出力し、前回の制御が遅れ位相方向の場合には
進み位相方向への切換制御信号を出力する。また、後の
ピーク値が記憶値より小であるとの判定信号を受けると
、前回の制御と同方向の制御信号を出力する。即ち、前
回の制御が進み位相方向の場合には同じく進み位相方向
への切換制御信号を出力し、前回の制御が遅れ位相方向
の場合には同じく遅れ位相方向への切換制御信号を出力
する。(第5図にフローチャートを示している。) 次に上記実施例の動作を説明する。
Reference numeral 2 denotes a switching control circuit that outputs a switching control signal to switch the automatic switch for fine phase adjustment of the tuning circuit 13 in a direction in which the peak value of the unbalanced detection signal decreases based on the determination signal. In other words, this switching control circuit 2 controls whether the switching control signal previously output to the tuning circuit 13 is controlled in the leading phase direction (increasing the capacitor capacity) or in the lagging phase direction (increasing the capacitor capacity). It memorizes whether the control is in the direction of decreasing the value. Then, this switching control circuit 2 outputs a switching control signal from the determination circuit 23 to the lagging phase direction when the previous control is in the leading phase direction and the previous control is in the lagging phase direction. In this case, a switching control signal in the leading phase direction is output. Further, when receiving a determination signal indicating that the subsequent peak value is smaller than the stored value, it outputs a control signal in the same direction as the previous control. That is, if the previous control was in the leading phase direction, a switching control signal to the leading phase direction is outputted, and if the previous control was in the trailing phase direction, a switching control signal to the trailing phase direction is outputted as well. (A flowchart is shown in FIG. 5.) Next, the operation of the above embodiment will be explained.

まず被検査体の種類に応じて同調回路13の粗調整用の
手動スイッチ(図示せず)を切換える。
First, a manual switch (not shown) for rough adjustment of the tuning circuit 13 is switched depending on the type of object to be inspected.

発振器11の発振信号によって送信コイルPは交番磁界
を生じる。複数の被検査体Wが1個ずつ順次送信コイル
Pと第1、第2の受信コイルS1.82間を通過すると
、これによって受信コイル側に差電圧信号が生じる。こ
の差電圧信号は交流増幅回路14−で増幅され、その位
相が移相器15からの基準位相と検波回路16で比較さ
れて不平衡検波信号が出力される。検波回路16から出
方された不平衡検波信号は直流増幅回路17で増幅され
、A / D変換回路18でA / D変換される。被
検査体Wが1個通過するごとに、物体検知器19からの
検知信号を受けて、この1個の被検査体についてのA 
/ D変換回路18の出方値のピーク値がホールドされ
る。このピーク値が金属検知回路21で基準値と比較さ
れ、基準値より大の場合には金属検知信号が出力される
An oscillation signal from the oscillator 11 causes the transmitting coil P to generate an alternating magnetic field. When a plurality of objects W to be inspected pass one by one between the transmitting coil P and the first and second receiving coils S1.82, a differential voltage signal is generated on the receiving coil side. This differential voltage signal is amplified by an AC amplifier circuit 14-, and its phase is compared with a reference phase from a phase shifter 15 by a detection circuit 16 to output an unbalanced detection signal. The unbalanced detection signal output from the detection circuit 16 is amplified by a DC amplifier circuit 17 and A/D converted by an A/D conversion circuit 18. Every time one inspected object W passes, the detection signal from the object detector 19 is received, and A for this one inspected object is detected.
/ The peak value of the output value of the D conversion circuit 18 is held. This peak value is compared with a reference value in the metal detection circuit 21, and if it is greater than the reference value, a metal detection signal is output.

判定回路23は、該金属検知信号が出方されない場合の
ピークホールド回路2oの出方値を記憶し、この記憶値
と次の被検査体通過時に新たにピークホールド回路20
にホールドされたピーク値(但し金属検知信号が出力さ
れない場合)とを比較し、後のピーク値が記憶値(前回
のピーク値)より太きいか、小さいかの判定信号を出力
する。
The determination circuit 23 stores the output value of the peak hold circuit 2o when the metal detection signal is not output, and uses this stored value and a new value of the peak hold circuit 20 when the next object to be inspected passes.
It compares the held peak value with the peak value held (provided that no metal detection signal is output), and outputs a determination signal as to whether the subsequent peak value is thicker or smaller than the stored value (previous peak value).

切換制御回路24は、この判定信号を受けるごとに、第
5図のフローチャートに示すように切換制御信号を同調
回路13へ送って、受信コイルs1.82側の出力信号
の位相を微調整させる。
Every time the switching control circuit 24 receives this determination signal, it sends a switching control signal to the tuning circuit 13, as shown in the flowchart of FIG. 5, to finely adjust the phase of the output signal on the receiving coil s1.82 side.

即ち、切換制御回路は、後のピーク値が前回のピークよ
り以上となった場合には前回とは逆位相方向へ切換制御
信号を送り、後のピーク値が前回のピーク値より小とな
った場合には前回と同位相方向へ切換制御信号を送る。
That is, when the subsequent peak value is greater than or equal to the previous peak, the switching control circuit sends a switching control signal in the opposite phase direction from the previous peak, and the subsequent peak value becomes smaller than the previous peak value. In this case, a switching control signal is sent in the same phase direction as the previous time.

このようにピークホールド回路20にホールドされたピ
ーク値が基準値設定器22に設定された基準値より小の
場合には、被検査体中には金属は混入しておらず、不平
衡検波信号出力は被検査体の材質自体による磁力線への
影響のためと考えられる。従って、ピー°り値が基準値
より小の場合には、このピーク値を判定回路20で順次
比較し、そしてピーク値が前回より増大した場合には、
切換制御回路24によって前回と逆方向に位相を変化さ
せ、ピーク値が減少した場合には前回と同一方向に位相
を変化させるから、判定回路23からの判定ごとに不平
衡検波信号出力における被検査体の材質による影響は切
換制御信号の出力ごとに低減する方向に常に自動的に調
整されることになる。従って被検査体の種類を変えた場
合には手動スイッチ(図示せず)で粗調整するだけでよ
く、粗調整後は実際の検出動作中に自動的に最もマテリ
アル・エフェクトが少なくなるように微調整されること
になる。
If the peak value held in the peak hold circuit 20 is smaller than the reference value set in the reference value setter 22, no metal is mixed in the object to be inspected, and the unbalanced detection signal The output is thought to be due to the influence of the material itself of the object to be inspected on the lines of magnetic force. Therefore, when the peak value is smaller than the reference value, the peak values are sequentially compared in the judgment circuit 20, and when the peak value has increased from the previous time,
The switching control circuit 24 changes the phase in the opposite direction to that of the previous time, and when the peak value decreases, the phase is changed in the same direction as the previous time. The influence of the material of the body is always automatically adjusted in the direction of reduction each time the switching control signal is output. Therefore, if you change the type of object to be inspected, you only need to make coarse adjustments using a manual switch (not shown), and after the coarse adjustments are made, fine adjustments are automatically made during the actual detection operation to minimize material effects. It will be adjusted.

なお上記実施例では切換制御信号によって同調回路13
の同調コンデンサの容量を切換制御しているが、移相器
15に切換制御信号を出力して基準位相信号の位相を変
化させても同一の目的を果すことができる。
In the above embodiment, the tuning circuit 13 is controlled by the switching control signal.
Although the capacitance of the tuning capacitor is controlled to switch, the same purpose can also be achieved by outputting a switching control signal to the phase shifter 15 to change the phase of the reference phase signal.

また、直流増幅回路17へ、判定回路23の判定信号に
基づいて増幅感度を制御する信号を送って制御するよう
にすれば、増幅感度も自動調整できる。
Further, if a signal for controlling the amplification sensitivity is sent to the DC amplifier circuit 17 based on the determination signal of the determination circuit 23 for control, the amplification sensitivity can also be automatically adjusted.

また判定回路23で前回のピーク値を比較する場合を例
示したが、所定回数置き、あるいは所定時間経過ととに
判定するようにすることもできる。
Furthermore, although the previous peak value is compared in the determination circuit 23 as an example, the determination may be made every predetermined number of times or after a predetermined period of time has elapsed.

本発明は上記の如く構成されているので、被検査体を順
次搬送して金属検出動作を継続中においても、マテリア
ル・エフェクトが最小となるように自動的に調整される
から、たとえ経時変化があっても自動調整され、従来の
ような手動による煩雑な調整が全く不要となり、金属検
出動作の能率が格段に向上できる。
Since the present invention is configured as described above, the material effect is automatically adjusted to the minimum even when the objects to be inspected are sequentially transported and the metal detection operation is continued. Even if there is a difference, it is automatically adjusted, eliminating the need for complicated manual adjustments as in the past, and greatly improving the efficiency of metal detection operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は金属検出装置の動作原理を示す図、第4図
は本発明の一実施例を示すブロック図、第5図は本発明
の一実施例の要部の動作を示すフローチャートである。 11・・・発振器、12・・・検出部、13・・・同調
回路、15・・・移相回路、16・・・検波回路、18
・・・A / D変換回路、 19・・・物体検知器、
20・・・ピークホールド回路、21・・・金属検知回
路、 22・・・基準値設定器、 23・・・判定回路
、24・・・切換制御回路。 特許出願人 安立電気株式会社 代理人 弁理士 早 川 誠 志
1 to 3 are diagrams showing the operating principle of the metal detection device, FIG. 4 is a block diagram showing an embodiment of the present invention, and FIG. 5 is a flowchart showing the operation of essential parts of an embodiment of the present invention. be. DESCRIPTION OF SYMBOLS 11... Oscillator, 12... Detection part, 13... Tuning circuit, 15... Phase shift circuit, 16... Detection circuit, 18
...A/D conversion circuit, 19...object detector,
20...Peak hold circuit, 21...Metal detection circuit, 22...Reference value setter, 23...Judgment circuit, 24...Switching control circuit. Patent applicant: Anritsu Electric Co., Ltd. Agent: Makoto Hayakawa, patent attorney

Claims (1)

【特許請求の範囲】 交番磁界を発生する送信コイルと、該送信コイルに対向
させて前記交番磁界を受信するように配置された第1、
第2の受信コイルとを備えた検出部と; 前記送信コイルと前記第1、第2の受信コイルとの間を
被検査体を通過させた場合に生ずる前記第1、第2の受
信コイルの誘起電圧の位相変動を基準位相と比較して不
平衡検波信号を出力する検波回路と; 前記被検査体の材質による前記不平衡検波信号への影響
を低減するために、前記受信コイルの誘起電圧の位相と
前記基準位相とを相対的に調整するための位相調整回路
と; 前記被検査体が通過するごとに前記不平衡検波信号のピ
ーク値をホールドするピークホールド回路と; 前記ピークホールド回路の出力値を基準値と比較し、こ
の出力値が基準値より大きい場合に金属検知信号を出力
する金属検知回路と; 前記出力値が基準値と等しいか小さい場合に、前記ピー
クホールド回路の出力値を記憶し、該記憶された出力値
と前記ピークホールド回路に新たさいかの判定信号を出
力する判定回路と;前記位相調整回路へ前回出力した切
換制御信号が位相進み方向の制御であるか、位相遅れ方
向の制御であるかを記憶し、前記ピーク値を減少させる
ために前記判定回路から出力値以上を示す判定信号を受
けると前回の制御方向とは逆位相方向へ切換えるだめの
切換制御信号を出力し、出力値以上でないことを示す判
定信号を受けると前回の制御方向と同位相方向へ切換え
るだめの切換制御信号を前記位相調整回路へ出力する切
換制御回路とを具備し; 被検査体の材質による影響を低減するようにしたことを
特徴とする金属検出装置。
[Scope of Claims] A transmitting coil that generates an alternating magnetic field; a first coil disposed opposite to the transmitting coil to receive the alternating magnetic field;
a detection unit comprising a second receiving coil; a detection circuit that compares phase fluctuations of the induced voltage with a reference phase and outputs an unbalanced detection signal; a phase adjustment circuit for relatively adjusting the phase of the reference phase and the reference phase; a peak hold circuit for holding the peak value of the unbalanced detection signal each time the object to be inspected passes; a metal detection circuit that compares an output value with a reference value and outputs a metal detection signal when the output value is greater than the reference value; and a metal detection circuit that outputs a metal detection signal when the output value is equal to or smaller than the reference value; a determination circuit that stores the stored output value and outputs a new determination signal to the peak hold circuit; It memorizes whether the control is in the delay direction, and in order to reduce the peak value, when a judgment signal indicating an output value or more is received from the judgment circuit, a switching control signal is sent to switch to a direction opposite to the previous control direction. a switching control circuit that outputs a switching control signal for switching to the same phase direction as the previous control direction to the phase adjustment circuit upon receiving a judgment signal indicating that the output value is not greater than the output value; A metal detection device characterized by reducing the influence of materials.
JP58186370A 1983-10-05 1983-10-05 Metal detector Granted JPS6078378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58186370A JPS6078378A (en) 1983-10-05 1983-10-05 Metal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58186370A JPS6078378A (en) 1983-10-05 1983-10-05 Metal detector

Publications (2)

Publication Number Publication Date
JPS6078378A true JPS6078378A (en) 1985-05-04
JPH0229997B2 JPH0229997B2 (en) 1990-07-03

Family

ID=16187190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58186370A Granted JPS6078378A (en) 1983-10-05 1983-10-05 Metal detector

Country Status (1)

Country Link
JP (1) JPS6078378A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269183A (en) * 1985-09-17 1987-03-30 アイデンティテック・コ−ポレ−ション Synchronous detector
JPS6427676U (en) * 1987-08-07 1989-02-17
JPS6454281A (en) * 1987-08-25 1989-03-01 Anritsu Corp Metal detecting apparatus
JPH01262494A (en) * 1988-04-13 1989-10-19 Yamato Scale Co Ltd Inclusion detector for foreign matter such as metal or the like
JPH0236390A (en) * 1988-07-26 1990-02-06 Yamato Scale Co Ltd Foreign matter mixture detector for metal or the like
JPH02129885U (en) * 1989-03-31 1990-10-25
JPH02133689U (en) * 1989-04-12 1990-11-06

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189084A (en) * 1981-02-09 1982-11-20 Gooring Kaa Ltd Detector for metal
JPS5820944U (en) * 1981-08-01 1983-02-09 株式会社カ−メイト car ski carrier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189084A (en) * 1981-02-09 1982-11-20 Gooring Kaa Ltd Detector for metal
JPS5820944U (en) * 1981-08-01 1983-02-09 株式会社カ−メイト car ski carrier

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269183A (en) * 1985-09-17 1987-03-30 アイデンティテック・コ−ポレ−ション Synchronous detector
JPS6427676U (en) * 1987-08-07 1989-02-17
JPH0518716Y2 (en) * 1987-08-07 1993-05-18
JPS6454281A (en) * 1987-08-25 1989-03-01 Anritsu Corp Metal detecting apparatus
JPH01262494A (en) * 1988-04-13 1989-10-19 Yamato Scale Co Ltd Inclusion detector for foreign matter such as metal or the like
JPH0236390A (en) * 1988-07-26 1990-02-06 Yamato Scale Co Ltd Foreign matter mixture detector for metal or the like
JPH02129885U (en) * 1989-03-31 1990-10-25
JPH02133689U (en) * 1989-04-12 1990-11-06

Also Published As

Publication number Publication date
JPH0229997B2 (en) 1990-07-03

Similar Documents

Publication Publication Date Title
EP0034887B1 (en) Improvements in and relating to testing coins
KR900005621B1 (en) Inspecting instrument for iron mixed in materials
US4215310A (en) Magnetic testing method and apparatus having provision for eliminating inaccuracies caused by gaps between probe and test piece
JPS6078378A (en) Metal detector
JPS5940287A (en) Apparatus for detecting metal
JPS6341502B2 (en)
JPS637634B2 (en)
JPH0587941A (en) Metal detecting apparatus
JPH10111363A (en) Metal detector
JPH0411187Y2 (en)
JPH09304352A (en) Metal detector
JPS625652Y2 (en)
US6479993B1 (en) Method of detecting foreign matter and apparatus therefor
JP3096788B2 (en) Metal detector
US4904925A (en) Apparatus for recovering an alternating variable of a controlled semiconductor
SU974240A1 (en) Device for checking ferromagnetic articles
KR100438211B1 (en) Apparatus for searching pieces of metal and method thereof
JPH055510Y2 (en)
JPS6168582A (en) Metal detector
SU1264117A1 (en) Device for measuring magnetic flux density of pulsed field
JPS6331003Y2 (en)
JPS57198880A (en) Metal detector
SU1525562A2 (en) Eddy current flaw detector
JPH0792274A (en) Automatic balance-adjusting circuit of metal detector
SU1404923A1 (en) Electromagnetic inspection apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees