JPS6341318B2 - - Google Patents

Info

Publication number
JPS6341318B2
JPS6341318B2 JP55058874A JP5887480A JPS6341318B2 JP S6341318 B2 JPS6341318 B2 JP S6341318B2 JP 55058874 A JP55058874 A JP 55058874A JP 5887480 A JP5887480 A JP 5887480A JP S6341318 B2 JPS6341318 B2 JP S6341318B2
Authority
JP
Japan
Prior art keywords
armature
current
motor
voltage
chopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55058874A
Other languages
Japanese (ja)
Other versions
JPS56157293A (en
Inventor
Tomoaki Sugimoto
Kesao Hashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5887480A priority Critical patent/JPS56157293A/en
Publication of JPS56157293A publication Critical patent/JPS56157293A/en
Publication of JPS6341318B2 publication Critical patent/JPS6341318B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/298Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature and field supply

Description

【発明の詳細な説明】 この発明はバツテリ、電源により給電され、チ
ヨツパを介して直流電動機により駆動される電気
自動車等の改良に関し、特に電気自動車のアクセ
ルペダルの踏込量に対する電動機駆動トルクの制
御方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in electric vehicles, etc., which are powered by a battery or a power source and are driven by a DC motor via a chopper, and particularly relates to a method for controlling electric motor drive torque with respect to the amount of depression of the accelerator pedal of an electric vehicle. It is related to.

エンジン自動車に於ては、変速ギヤーが一定の
状態では駆動トルクと最高速度はアクセルペダル
の踏込量(アクセル踏込量という。)に応じて変
わり、この変化は運転者が感じるその自動車の走
行特性、即ちいわゆるフイーリングと密接に関係
している。
In an engine vehicle, when the transmission gear is constant, the driving torque and maximum speed change depending on the amount of depression of the accelerator pedal (referred to as the amount of accelerator depression), and this change changes the driving characteristics of the vehicle as perceived by the driver. That is, it is closely related to so-called feeling.

一方、電気自動車に於ても、アクセル踏込時の
フイーリングは従来のエンジン自動車に近い事が
望ましい。
On the other hand, even in an electric vehicle, it is desirable that the feeling when stepping on the accelerator is similar to that of a conventional engine vehicle.

これに対して従来、この種の電気自動車の制御
は一例として第1図に示すような方式が用いられ
ている。第1図に於て、1は電気自動車駆動用直
流電動機で、その電機子1aの一端は電機子チヨ
ツパ2を介してバツテリ3の正極に接続される。
また電機子1aの他端には電機子電流検出抵抗4
が直列に挿入され、バツテリ3の負極に接続され
る。5は電機子1a用のフリーホイーリングダイ
オードである。
On the other hand, conventionally, for controlling this type of electric vehicle, a method as shown in FIG. 1 has been used as an example. In FIG. 1, reference numeral 1 denotes a DC motor for driving an electric vehicle, and one end of its armature 1a is connected to the positive electrode of a battery 3 via an armature chopper 2.
Moreover, the armature current detection resistor 4 is connected to the other end of the armature 1a.
are inserted in series and connected to the negative electrode of the battery 3. 5 is a freewheeling diode for the armature 1a.

電動機1の分巻界磁巻線1bの一端は界磁チヨ
ツパ6を介しバツテリ3の負極に接続され、他端
には界磁電流検出抵抗7が挿入され、この抵抗7
の両端子に生じた電圧は界磁チヨツパ6の制御用
増幅器8に入力される。9は界磁チヨツパ用通流
率調整器、10は分巻界磁巻線1b用フリーホイ
ーリングダイオードである。
One end of the shunt field winding 1b of the motor 1 is connected to the negative pole of the battery 3 via a field chopper 6, and a field current detection resistor 7 is inserted into the other end.
The voltage generated at both terminals is input to the control amplifier 8 of the field chopper 6. 9 is a conductivity regulator for the field chopper, and 10 is a freewheeling diode for the shunt field winding 1b.

11は電機子チヨツパ2の制御用増幅器、12
は電機子チヨツパ2の通流率調整器である。制御
用増幅器11の一方の入力端子にはアクセルペダ
ルAと連動する電流設定器13から車両のアクセ
ル指令を表わす電機子電流指令電圧VIが入力さ
れるとともに、他方の入力端子には電機子電流検
出抵抗4による電動機1の電機子電流IMの検出電
圧VCが、上記アクセル指令入力電圧VIに対して
差動的に印加されるようになつている。
11 is a control amplifier for armature chopper 2, 12
is the conduction rate regulator of the armature chopper 2. One input terminal of the control amplifier 11 receives an armature current command voltage V I representing a vehicle accelerator command from a current setting device 13 that is linked with the accelerator pedal A, and the other input terminal receives an armature current command voltage V I representing a vehicle accelerator command. A detection voltage V C of the armature current I M of the electric motor 1 by the detection resistor 4 is applied differentially with respect to the accelerator command input voltage V I.

14は界磁電流指令用の増幅器で、その入力端
子にはアクセル指令入力電圧VIと検出電機子電
流信号VCとが差動的に印加されるとともに、更
に検出電圧VCと同極性のバイアス電圧△VC0が印
加される。この界磁電流指令用の増幅器14の出
力はリミツタ15を通つて界磁チヨツパ制御用増
幅器8の入力となる。
14 is an amplifier for field current command, and the accelerator command input voltage V I and the detection armature current signal V C are differentially applied to its input terminal, and an amplifier with the same polarity as the detection voltage V C is applied differentially to its input terminal. A bias voltage ΔV C0 is applied. The output of the field current command amplifier 14 passes through a limiter 15 and becomes an input to the field chopper control amplifier 8.

第2図に第1図の回路方式によるアクセル指令
入力電圧VIの各電圧値、VI1、VI2、VI3、VI4
(VI1<VI2<VI3<VI4)と、その各々に相当する
電動機1のトルク値T1、T2、T3、T4及び電動機
速度Nとの関係を特性図で示す。同図でN0は電
動機の基底速度、N4は最高速度を表わすものと
する。また以後の動作説明をするために用いる代
表的な負荷トルクTLも記載する。
Figure 2 shows the respective voltage values of the accelerator command input voltage VI , VI1 , VI2 , VI3 , VI4 , according to the circuit system shown in Figure 1.
A characteristic diagram shows the relationship between (V I1 < V I2 < V I3 < V I4 ), the corresponding torque values T 1 , T 2 , T 3 , T 4 of the electric motor 1, and the motor speed N. In the figure, N 0 represents the base speed of the motor, and N 4 represents the maximum speed. In addition, a typical load torque T L used to explain the subsequent operation is also described.

次に第1図の制御方式の動作を第3図を参照し
ながら説明する。
Next, the operation of the control system shown in FIG. 1 will be explained with reference to FIG.

最初、アクセル指令入力電圧VIが0の状態で
は電機子チヨツパ制御用増幅器11、通流率調整
器12はともに非動作状態であり、チヨツパ2は
OFF状態にあり、電機子電流IM、検出電機子電流
信号VCとも0である。
Initially, when the accelerator command input voltage V I is 0, the armature chopper control amplifier 11 and the duty ratio regulator 12 are both inactive, and the chopper 2 is in a non-operating state.
It is in the OFF state, and both the armature current I M and the detected armature current signal V C are 0.

一方、界磁電流指令用増幅器14の入力のうち
アクセル指令入力電圧VI、電機子電流信号VC
0であるが、バイアス入力△VC0がVCと同じ極性
で入つており、界磁電流指令用増幅器14はPI
調整器等の静的ゲインの高い増幅器が用いられて
いるから、界磁電流指令用増幅器14の出力VF
は最大値(飽和値)にあり、リミツタ15に入力
され、その出力VF1は最大制限値VFI1となる。
On the other hand, among the inputs of the field current command amplifier 14, the accelerator command input voltage V I and the armature current signal V C are 0, but the bias input ΔV C0 is input with the same polarity as V C , and the field current The current command amplifier 14 is PI
Since an amplifier with a high static gain such as a regulator is used, the output V F of the field current command amplifier 14
is at the maximum value (saturation value) and is input to the limiter 15, whose output V F1 becomes the maximum limit value V FI1 .

VF1は界磁チヨツパ制御用増幅器8の入力とな
り、通流率調整器9を通して界磁用チヨツパ6を
駆動し、界磁電流IFを制御する。界磁電流IFは界
磁電流検出抵抗7により検出され、検出界磁電流
信号VRとなつて界磁チヨツパ制御用増幅器8に
帰還され、入力VF1=VFI1に相当する強め界磁電
流IFI1となるように制御される。
V F1 becomes an input to the field chopper control amplifier 8, drives the field chopper 6 through the conductivity regulator 9, and controls the field current I F. The field current I F is detected by the field current detection resistor 7, and is fed back to the field chopper control amplifier 8 as a detected field current signal V R to generate a strong field current corresponding to the input V F1 = V FI1 . I FI1 .

この時は勿論、電機子電圧はVM、電動機回転
数Nともに0であり、第3図で時点t0−t1間がこ
の状態を示す。
At this time, of course, both the armature voltage V M and the motor rotational speed N are 0, and FIG. 3 shows this state between time points t 0 and t 1 .

次に時点t1になつて走行を行なうためにアクセ
ル指令入力電圧VIがVI1にとられると、電機子チ
ヨツパ制御用増幅器11に入力VI1が入力され、
通流率調整器12を通つて電機子チヨツパ2が動
作して電機子回路に電流IMが流れる。
Next, at time t 1 , when the accelerator command input voltage V I is set to V I1 for running, the input V I1 is input to the armature chopper control amplifier 11.
The armature chopper 2 operates through the conductivity regulator 12, and a current I M flows through the armature circuit.

電機子電流IMの検出値VCは電機子チヨツパ制
御用増幅器11に帰還され、入力VI=VI1に相当
する電流IM=IM1となるように制御される。IM
IM1に対応するVCの値をVC1とすると、電機子チ
ヨツパ制御用増幅器11にはPI調整器等の静的
ゲインの高い増幅器が用いられるので、ほぼVI1
=VC1となるように制御される。
The detected value V C of the armature current I M is fed back to the armature chopper control amplifier 11, and is controlled so that the current I M =I M1 corresponds to the input V I =V I1 . I M =
If the value of V C corresponding to I M1 is V C1 , then since an amplifier with high static gain such as a PI regulator is used as the armature chopper control amplifier 11, approximately V I1
=V C1 .

界磁電流指令用増幅器14への入力のうち、
VI1とVC1とは異極性で値はほぼ等しいので相殺
され、△VC0のみが界磁電流指令用増幅器14に
入力され、VFは最大値(飽和値)となり、リミ
ツタ15の出力VF1は上限値VFI1に制限され、界
磁電流IFは強め界磁電流IF1に制御される。
Among the inputs to the field current command amplifier 14,
Since V I1 and V C1 have different polarities and are almost equal in value, they cancel each other out, and only △V C0 is input to the field current command amplifier 14, V F becomes the maximum value (saturation value), and the output V of the limiter 15 F1 is limited to an upper limit value V FI1 , and the field current I F is controlled to a stronger field current I F1 .

ここで電機子電流IM1が流れると電動機回転数
Nが増大し、電機子電圧VMも増大する。電機子
電圧VMが増大するに従つて、IM=IM1に制御され
ることにより、電機子用チヨツパ2の通流率は大
きくなつて、遂に通流率が1となり電機子用チヨ
ツパ2が短絡される時点t2まで達する。この間界
磁電流IFは強め界磁電流IF1に制御される。勿論、
電動機が加速されるための条件として第3図に示
す如く電動機の駆動トルクTが負荷のトルクTL
より大きいことが必要である。
Here, when the armature current I M1 flows, the motor rotation speed N increases and the armature voltage V M also increases. As the armature voltage V M increases, the current flow rate of the armature chopper 2 increases by controlling I M =I M1 until the current flow rate reaches 1 and the armature chopper 2 reaches the point t 2 when is shorted. During this time, the field current I F is controlled to a stronger field current I F1 . Of course,
As shown in Figure 3, the conditions for the electric motor to accelerate are that the driving torque T of the electric motor is equal to the load torque T L
It needs to be bigger.

時点t2になつてチヨツパ2が完全に短絡されて
電機子電圧VMが電源電圧VBに等しくなつた時、
なおT>TLであるならば、電動機は更に加速さ
れNは増大し、(1)式 EM=K1NΦ≒K2NIF ……(1) Φ:磁束 K1、K2:定数 の関係より電動機の逆起電力EMは増大する。
At time t2 , when the chopper 2 is completely short-circuited and the armature voltage V M becomes equal to the power supply voltage V B ,
Note that if T > T L , the electric motor is further accelerated and N increases, and Equation (1) E M = K 1 NΦ≒K 2 NI F ... (1) Φ: Magnetic flux K 1 , K 2 : Constant Due to the relationship, the back electromotive force E M of the motor increases.

したがつて(2)式 VB≒VM=IM・RA+EM ……(2) RA:電機子回路抵抗 の関係よりIMは減少する。 Therefore, equation (2) V B ≒ V M = I M · R A + E M ... (2) R A : I M decreases due to the armature circuit resistance.

電機子電流IMが減少すると検出電機子電流信号
VCも減少し、VI−VC−△VC0>0なる条件が成
り立つ時点になると、界磁電流指令用増幅器14
は飽和が解けて、該増幅器14の出力電圧VF
減少し始め、リミツタ15も制限値が解けてその
出力電圧VFIは上限値VFI1より減少する。リミツ
タ15の出力電圧VFIが減少すると界磁電流IF
IF1より減少し、電動機の逆起電力EMも減少して、
(2)式の関係より電機子電流IMは増加し、VI−VC
−△VC0<0となる。
Detect armature current signal when armature current I M decreases
When V C also decreases and the condition of V I −V C −△V C0 >0 is satisfied, the field current command amplifier 14
is no longer saturated and the output voltage V F of the amplifier 14 begins to decrease, and the limit value of the limiter 15 is also released and its output voltage V FI decreases below the upper limit value V FI1 . When the output voltage V FI of limiter 15 decreases, the field current I F becomes
I decreases from F1 , and the back electromotive force E M of the motor also decreases,
From the relationship in equation (2), the armature current I M increases, and V I −V C
−△V C0 <0.

このようにして、界磁電流指令用増幅器14の
働きにより、(3)式 VI−VC−△VC0≒0 ……(3) の関係を保ちながら界磁電流IFは減少して行く。
ここでバイアス電圧△VC0に相当する電動機電流
値を△IMとすると、VI=VI1にセツトした場合、
(3)式の関係より、チヨツパ2の短絡後の弱界磁制
御範囲では第3図に示すようにIM=IM1−△IM
なるように制御される。いま△VC0≪VCにとれ
ば、△IM≪IM1となり、電機子電流IMは全領域で
ほぼIM1に制御される。
In this way, by the action of the field current command amplifier 14, the field current I F decreases while maintaining the relationship of formula (3): V I −V C −△V C0 ≒0 ...(3) go.
Here, if the motor current value corresponding to the bias voltage △V C0 is △I M , then when V I = V I1 is set,
According to the relationship in equation (3), in the weak field control range after the chopper 2 is short-circuited, control is performed so that I M =I M1 -ΔI M as shown in FIG. Now, if △V C0 <<V C , then △I M <<I M1 , and the armature current I M is controlled to approximately I M1 in the entire range.

このようにしてT>TLの条件の範囲では界磁
電流IFが減少し、電動機回転数Nは増大して行く
が、(4)式 T=K3・Φ・IM≒K4・IF・IM ……(4) K3、K4:定数 の関係より界磁電流IFが減少すれば電動機1の発
生トルクTも減少し、T=TLとなる時点t3で自動
車の加速は止まり、回転数NO4で整定する。負荷
トルクが更に小さい場合は更に高速まで加速さ
れ、負加トルクの値によつては最大回転数N4
でになることもあり得る。
In this way, in the range of conditions T>T L , the field current I F decreases and the motor rotation speed N increases, but as shown in equation (4), T=K 3・Φ・I M ≒K 4・I F・I M ...(4) K 3 , K 4 : According to the relationship between constants, if the field current I F decreases, the generated torque T of the electric motor 1 also decreases, and at the time t 3 when T=T L , the motor vehicle The acceleration stops and the rotational speed settles at N O4 . If the load torque is even smaller, it will be accelerated to a higher speed, and depending on the value of the additional torque, the rotational speed may reach the maximum rotation speed N4 .

また負荷トルクTLが更に大きい場合は更に低
速となり、負荷トルクの特性によつては強め界磁
の範囲で制御される場合もある。
Further, when the load torque T L is even larger, the speed becomes even lower, and depending on the characteristics of the load torque, the control may be performed within the field strength range.

このような制御方式に於ては、アクセル指令入
力電圧に対するトルク−速度特性と自動車の走行
抵抗を表わす負荷トルク特性を比較すると次に示
すような問題があり、この点について第2図にも
とづき説明する。
In such a control system, when comparing the torque-speed characteristic with respect to the accelerator command input voltage and the load torque characteristic representing the running resistance of the vehicle, there are the following problems.This point will be explained based on Fig. 2. do.

(1) 負荷特性TLで速度NO4まで加速し、NO4で運
転する場合、アクセル指令入力電圧VIを最初
からVI1に設定し、トルクT1で加速することが
できるが、加速トルク分(T1−TL)が小さく
加速性能が悪い、このため走行速度が低速の範
囲ではアクセルペダルを大きく踏み込んでアク
セル指令入力電圧VIをVI2或いはVI3に上げ、ト
ルクT2或いはT3で加速し、速度がNO4に近づ
くに応じてアクセルペダルを緩めてVIをVI1
戻す操作をする必要がある。
(1) When accelerating to speed N O4 with load characteristic T L and operating at N O4 , accelerator command input voltage V I can be set to V I1 from the beginning and acceleration can be performed with torque T 1 , but the acceleration torque (T 1 - T L ) is small and acceleration performance is poor. Therefore, when the traveling speed is low, the accelerator pedal is depressed greatly to increase the accelerator command input voltage V I to V I2 or V I3 , and the torque T 2 or T It is necessary to accelerate at 3 , and as the speed approaches N O4 , release the accelerator pedal to return VI to VI1 .

(2) 低速範囲ではトルク−速度特性と負荷トルク
特性がほぼ平行になり、アクセルペダル操作に
よる低速の設定が難しい。この問題は負荷トル
クが小さい場合は特に著しい。
(2) In the low speed range, the torque-speed characteristic and the load torque characteristic are almost parallel, making it difficult to set the low speed by operating the accelerator pedal. This problem is particularly severe when the load torque is small.

この発明は上記の欠点を除去して、加速特性が
エンジン自動車の加速特性と近似し、かつ低速範
囲での速度の制御性を改善した電気自動車に好適
な直流電動機のトルク制御方式を提供することを
目的とするものである。
The present invention eliminates the above-mentioned drawbacks, and provides a torque control method for a DC motor suitable for an electric vehicle, which has acceleration characteristics similar to those of an engine vehicle and improves speed controllability in a low speed range. The purpose is to

この目的を達成するために、この発明では電機
子用チヨツパの通流率の上限値をアクセル指令入
力電圧VIに対応して変化させて、電動機の発生
トルクがアクセル指令入力電圧に対応した上限値
に制限され、発生トルクが第5図に示すように一
定速度以上で急激に変化するように制御される。
In order to achieve this object, in this invention, the upper limit value of the current flow rate of the armature chopper is changed in accordance with the accelerator command input voltage VI , so that the generated torque of the electric motor is at the upper limit value corresponding to the accelerator command input voltage. The torque is controlled so that the generated torque changes rapidly above a certain speed as shown in FIG.

以下にこの発明の一実施例を図面とともに説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

第4図は本発明の実施例を示すブロツク図であ
つて、第1図のものと同じ構成部分には同じ符号
を付してその部分の説明は省略する。
FIG. 4 is a block diagram showing an embodiment of the present invention, in which the same components as those in FIG. 1 are given the same reference numerals and explanations of those parts will be omitted.

この実施例においては、第1図に示す制御方式
と比較して、電機子チヨツパ制御用増幅器11と
通流率調整器12との間にリミツタ16を設ける
とともに、このリミツタ16の出力制限値VL
電流設定器13の出力信号によつて変化できるよ
うに電流設定器13の出力を増幅する増幅器17
の出力がリミツタ16に印加されるように構成さ
れている。そしてリミツタ16の出力制限値VL
により通流率調整器12への入力の最大値を制限
し、電機子用チヨツパ2の最大通流値を制限し、
電機子1aの最大電機子電圧を制限するものであ
る。
In this embodiment, as compared to the control system shown in FIG. An amplifier 17 that amplifies the output of the current setting device 13 so that L can be changed by the output signal of the current setting device 13
is configured such that the output thereof is applied to the limiter 16. And output limit value V L of limiter 16
limits the maximum value of the input to the conduction rate regulator 12, limits the maximum conduction value of the armature chopper 2,
This limits the maximum armature voltage of the armature 1a.

上記した増幅器17のゲインをアクセル指令入
力電圧VIが最大値VI4の時、リミツタ制御電圧VL
が丁度電機子用チヨツパ2がチヨツパ短絡となる
値に選定すると、アクセル指令入力電圧VIと電
動機トルク、電動機速度の関係を表わす特性は第
5図のようになる。リミツタ16を設けることに
より第5図の特性となる理由は、以下に述べると
おりである。
When the accelerator command input voltage V I is the maximum value V I4 , the gain of the amplifier 17 described above is set to the limiter control voltage V L
If the value is selected so that the chopper 2 for the armature is just short-circuited, the characteristics representing the relationship between the accelerator command input voltage V I , the motor torque, and the motor speed will be as shown in FIG. The reason why the characteristics shown in FIG. 5 are achieved by providing the limiter 16 is as described below.

通流率αの最大値が1以下に制限された時の関
係式(2)は以下のようになる。
The relational expression (2) when the maximum value of the conduction rate α is limited to 1 or less is as follows.

αVB=VM=IM・RA+EM ……(5) 従つてチヨツパが完全に短絡されなくても(即
ちα<1であつても)、電動機速度が通流率の制
限値に対応した回転数になると弱め界磁制御に移
行していく。
αV B =V M =IM・RA+EM ……(5) Therefore, even if the chopper is not completely short-circuited (that is, even if α<1), the motor speed will be the rotational speed corresponding to the limit value of the conduction rate. When this happens, the field will shift to field-weakening control.

また(5)式より電動機の逆起電力EMは通流率α
に対応した値に制限され、また界磁電流の最低値
を一定VFI2に制限しているので、(1)式より電動機
の回転数はそれ以上増加することはできない。
Also, from equation (5), the back electromotive force EM of the motor is the conduction rate α
Since the minimum value of the field current is limited to a constant V FI2 , the motor rotation speed cannot be increased any further from equation (1).

従つて最高回転数N1、N2、N3、N4が通流率
αに対応してきまる。この制御方式の場合、動作
は第3図と同様に第6図のように表わせる。第3
図と対比して、両方式の動作の違いを明確にする
ため、負荷トルクTLは第3図と同等の特性であ
ると仮定し、電動機の最終到達速度N3も第3図
のNO4と等しいものとする。更に両方式の特性を
示す第2図と第5図で、VI、T、Nの符号によ
る代表的な指示値は同一の値を表わすものとす
る。
Therefore, the maximum rotational speeds N1, N2, N3, and N4 correspond to the conduction rate α. In the case of this control method, the operation can be expressed as shown in FIG. 6, similar to FIG. Third
In order to clarify the difference in the operation of both methods in comparison with the figure, it is assumed that the load torque T L has the same characteristics as in Fig. 3, and the final attained speed N 3 of the electric motor is also N O4 in Fig. 3. shall be equal to Further, in FIGS. 2 and 5 showing the characteristics of both types, typical indicated values indicated by the signs of V I , T, and N represent the same value.

第6図でt1の時点で、アクセル指令入力電圧VI
をVI3にとると、電機子電流IMはこの入力値に合
つた値IM3となるよう電機子チヨツパ制御用増幅
器11が動作し、電動機1は加速し、回転数Nが
増大する。回転数Nが増大するに従つて電機子誘
起電圧VMは増大するが、電機子電流IMが常にIM3
となるよう電機子チヨツパ制御用増幅器11が動
作し、その出力はリミツタ16、通流率調整器1
2を介して電機子用チヨツパ2の通流率を増大さ
せる。
At time t 1 in Fig. 6, the accelerator command input voltage V I
When V I3 is taken, the armature chopper control amplifier 11 operates so that the armature current I M becomes a value I M3 that matches this input value, the motor 1 accelerates, and the rotational speed N increases. As the rotational speed N increases, the armature induced voltage V M increases, but the armature current I M always remains I M3
The armature chopper control amplifier 11 operates so that
2 to increase the conduction rate of the armature chopper 2.

電機子チヨツパ制御用増幅器11の出力が増大
して、t2の時点でVI3に相当する制限値VL=VL3
なると、通流率調整器12の入力はVL3に制限さ
れ、チヨツパ2の通流率もその値に固定され、電
機子電圧VMはその通流率に相当する電圧VM3
固定される。この時なおT>TLとすると、電動
機回転数Nは更に増大し、第3図の動作と同じ理
由により電機子電流IMは減少するが、界磁電流指
令用増幅器14が動作しIFを減少するよう電動機
を弱め界磁制御してI=IM3−△IMなる値になる
よう調整する。T>TLでは回転速度Nは増大し、
界磁電流IFは減少し続け、t3の時点で界磁電流IF
が最弱界磁値IF2になると電機子電流IMはIM3−△
IMより減少し、負荷トルクに相当する値となる時
点t4で落ち着き、回転数はN3となる。
When the output of the armature chopper control amplifier 11 increases and reaches the limit value V L = V L3 corresponding to V I3 at time t 2 , the input of the duty regulator 12 is limited to V L3 and the chopper The conduction rate of No. 2 is also fixed at that value, and the armature voltage V M is fixed at the voltage V M3 corresponding to the conduction rate. At this time, if T > T L , the motor rotation speed N will further increase and the armature current I M will decrease for the same reason as the operation shown in Fig. 3, but the field current command amplifier 14 will operate and I F The electric motor is controlled to weaken the field so as to decrease the value of I=I M3 -ΔI M. When T>T L , the rotational speed N increases,
The field current I F continues to decrease and at time t 3 the field current I F
When becomes the weakest field value I F2 , the armature current I M becomes I M3 −△
It decreases from I M and settles down at time t 4 when it reaches a value equivalent to the load torque, and the rotational speed becomes N 3 .

一方、低速走行をするためにアクセル指令入力
電圧VIをVI3よりも小さいVI1にとれば、リミツタ
16の上限値VLも上記した指令入力電圧VI1に従
つて低くなる。従つて通流率調整器12の最大通
流率も上記VL1に対応して小さくなり、電機子用
チヨツパ2から供給される電機子電流IMも低下
し、その結果電動機1の速度−トルク特性は第5
図のT1−N1で表わされる曲線イとなり電動機速
度、従つて自動車の走行速度はTLと上記曲線イ
との交点となる。この第5図から解るように負荷
TLが小さく、かつ低速の範囲ではたとえば電動
機回転数は低い値N1に制限され、低速走行の調
節が容易になる。
On the other hand, if the accelerator command input voltage V I is set to V I1 which is smaller than V I3 in order to drive at a low speed, the upper limit value V L of the limiter 16 will also be lowered in accordance with the above-mentioned command input voltage V I1 . Therefore, the maximum conductivity of the conductivity regulator 12 also decreases corresponding to the above V L1 , and the armature current I M supplied from the armature chopper 2 also decreases, resulting in a change in the speed - torque of the motor 1. Characteristic is the fifth
Curve A, represented by T 1 −N 1 in the figure, is obtained, and the motor speed, and hence the vehicle's traveling speed, is the intersection of T L and the above curve A. As you can see from this figure 5, the load
In a range where T L is small and the speed is low, for example, the motor rotation speed is limited to a low value N 1 , making it easy to adjust the low speed running.

以下同様の動作によつて、アクセル指令入力電
圧VI2、VI3に対応してリミツタ16の上限値VL
が変化し、電機子用チヨツパ2の通流率もその上
限値に対応する値に制限されて、電動機1の速度
−トルク特性は第5図に示すようにそれぞれの指
定入力電圧に対して一定速度以上でトルクが急激
に低下するものとなる。従つて、低トルク、低速
度領域での速度制御も安定して行なうことができ
る。
Thereafter, by the same operation, the upper limit value V L of the limiter 16 is set in accordance with the accelerator command input voltages V I2 and V I3 .
changes, the current flow rate of the armature chopper 2 is also limited to a value corresponding to the upper limit value, and the speed-torque characteristic of the motor 1 remains constant for each specified input voltage as shown in Figure 5. At higher speeds, the torque decreases rapidly. Therefore, speed control can be performed stably even in the low torque and low speed region.

また、アクセル指令入力電圧VIをVI4と最大に
とれば第2図のVI=VI4特性と同じになり、最大
トルク、回転数特性も充分にカバーされる。更に
大きい負荷トルクTLA、TLBに対しても、第5図
に示すようにアクセル指令入力電圧VIを調整す
ることによりトルク−速度特性と負荷トルク特性
の交叉する点により決まる速度に設定できる。
Furthermore, if the accelerator command input voltage V I is set to the maximum V I4 , the V I =V I4 characteristic shown in FIG. 2 will be the same, and the maximum torque and rotational speed characteristics will be sufficiently covered. Even for larger load torques T LA and T LB , by adjusting the accelerator command input voltage V I as shown in Fig. 5, the speed can be set to a value determined by the intersection of the torque-speed characteristic and the load torque characteristic. .

以上詳述したように本発明によれば、電気自動
車等の駆動用直流電動機の電機子電流制御用チヨ
ツパの最大通流率制限値をアクセル指令入力電圧
により制御できるように、チヨツパの通流率調整
器の前段に出力制限値を自在に調整できるリミツ
タを設けたために、低負荷トルク時の低速度の調
整が容易となり、しかも加速性能が非常に良くな
る効果が得られる。
As described in detail above, according to the present invention, the current flow rate of the chopper can be controlled by the accelerator command input voltage so that the maximum current flow rate limit value of the chopper for controlling the armature current of a driving DC motor of an electric vehicle, etc. Since a limiter that can freely adjust the output limit value is provided before the regulator, it is easy to adjust the low speed at low load torque, and the acceleration performance is greatly improved.

したがつて本発明を電気自動車の駆動系に適用
すると、自動車の加減速時において、アクセルペ
ダルの踏込量にほぼ対応して増速或いは減速が行
なわれ、従来のように加速時にアクセルペダルを
一度大きく踏み込んでまた元に戻すという操作が
不要となり、その加速特性はエンジン自動車の特
性と近似させることができ、運転者のフイーリン
グにマツチした加減速特性が得られる。
Therefore, when the present invention is applied to the drive system of an electric vehicle, when the vehicle accelerates or decelerates, the speed increases or decelerates approximately corresponding to the amount of depression of the accelerator pedal. It eliminates the need for the driver to press down heavily and then return to the original position, and the acceleration characteristics can be approximated to those of an engine vehicle, providing acceleration and deceleration characteristics that match the driver's feeling.

なお本発明の制御方式は電気自動車に限らず、
電気鉄道の電車制御用チヨツパ等にも適用でき
る。
Note that the control method of the present invention is not limited to electric vehicles.
It can also be applied to electric railway train control chips, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電気自動車における直流電動機の従来
のトルク制御方式の一例を示す回路図、第2図は
第1図のトルク制御方式における動作特性曲線、
第3図は第1図の回路の要部の動作説明図、第4
図はこの発明のトルク制御方式の一実施例を示す
回路図、第5図は第4図の制御方式による直流電
動機の動作特性曲線、第6図は第4図の実施例の
要部の動作説明図である。 1……電動機、2……電機子用チヨツパ、3…
…バツテリ、4……電機子電流検出抵抗、6……
界磁用チヨツパ、7……界磁電流検出抵抗、8…
…界磁チヨツパ制御用増幅器、11……電機子チ
ヨツパ制御用増幅器、9,12……通流率調整
器、13……電流設定器、14……界磁電流指令
用増幅器、16……リミツタ、17……増幅器。
Figure 1 is a circuit diagram showing an example of a conventional torque control method for a DC motor in an electric vehicle, and Figure 2 is an operating characteristic curve for the torque control method shown in Figure 1.
Figure 3 is an explanatory diagram of the operation of the main parts of the circuit in Figure 1;
The figure is a circuit diagram showing one embodiment of the torque control method of the present invention, FIG. 5 is an operating characteristic curve of a DC motor according to the control method of FIG. 4, and FIG. 6 is the operation of the main part of the embodiment of FIG. 4. It is an explanatory diagram. 1...Electric motor, 2...Armature chopper, 3...
...Battery, 4...Armature current detection resistor, 6...
Field chopper, 7...Field current detection resistor, 8...
... field chopper control amplifier, 11 ... armature chopper control amplifier, 9, 12 ... duty ratio regulator, 13 ... current setting device, 14 ... field current command amplifier, 16 ... limiter , 17...Amplifier.

Claims (1)

【特許請求の範囲】 1 直流電動機の電機子電流を指定する指令電圧
を出力する電流設定器と、この電流設定器の指令
電圧が入力されかつ前記電機子電流の検出電圧が
差動的に入力される電機子チヨツパ用増幅器と前
記電機子チヨツパ用増幅器出力が入力されて直流
電源と電機子巻線と検出抵抗との閉回路に挿入さ
れる電機子用チヨツパを通流率制御する電機子用
通流率調整器と、前記電流設定器の指令電圧が入
力されかつ前記電機子電流の検出電圧及びこの検
出電圧と同極のバイアス電圧が前記指令電圧に差
動的に入力される界磁電流指令用増幅器と、前記
界磁電流指令用増幅器出力が入力されかつ界磁電
流の検出電圧が差動的に入力される界磁チヨツパ
制御用増幅器と、この界磁チヨツパ制御用増幅器
出力が入力されて直流電源と界磁巻線と検出抵抗
との閉回路に挿入される界磁用チヨツパを通流率
制御する界磁用通流率調整器とを備えてなる直流
電動機のトルク制御方式において前記電機子チヨ
ツパ用増幅器と前記電機子用通流率調整器との間
に通流率の上限を前記電流設定器の指令電圧の大
きさに応じて変化するリミツタを設け、直流電動
機の発生トルクの上限が前記電流設定器の指令電
圧に対応する大きさに限定されるようにしたこと
を特徴とする直流電動機のトルク制御方式。 2 特許請求の範囲第1項に記載の直流電動機の
トルク制御方式において、直流電動機は電気自動
車に搭載されたものであり、電流設定器は電気自
動車のアクセルペタルと連動してアクセル指令入
力電圧を生じるものである直流電動機のトルク制
御方式。 3 特許請求の範囲第1項に記載の直流電動機の
トルク制御方式において、直流電動機は電気鉄道
用の車両に搭載されたものである直流電動機のト
ルク制御方式。
[Claims] 1. A current setting device that outputs a command voltage specifying an armature current of a DC motor, and a current setting device into which the command voltage of the current setting device is input and a detection voltage of the armature current is input differentially. an armature chopper amplifier to which the output of the armature chopper amplifier is input and which is inserted into a closed circuit between the DC power supply, the armature winding, and a detection resistor; and an armature chopper that controls the current flow rate. A field current in which a command voltage of the duty ratio regulator and the current setting device is inputted, and a detected voltage of the armature current and a bias voltage having the same polarity as the detected voltage are differentially inputted to the command voltage. a command amplifier, a field chopper control amplifier to which the field current command amplifier output is input and a field current detection voltage is differentially input; and a field chopper control amplifier to which the field chopper control amplifier output is input. In the torque control system for a DC motor, the DC motor is equipped with a DC power source, a field current flow rate regulator that controls the current flow rate of a field chopper inserted into a closed circuit between a field winding, and a detection resistor. A limiter is provided between the armature chopper amplifier and the armature conductivity regulator, and the limiter changes the upper limit of the conductivity according to the magnitude of the command voltage of the current setting device, thereby reducing the torque generated by the DC motor. A torque control method for a DC motor, characterized in that an upper limit is limited to a magnitude corresponding to a command voltage of the current setting device. 2. In the torque control method for a DC motor as set forth in claim 1, the DC motor is mounted on an electric vehicle, and the current setting device adjusts the accelerator command input voltage in conjunction with the accelerator pedal of the electric vehicle. Torque control method for DC motors. 3. A torque control method for a DC motor according to claim 1, wherein the DC motor is mounted on an electric railway vehicle.
JP5887480A 1980-05-01 1980-05-01 Torque controlling system for dc motor Granted JPS56157293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5887480A JPS56157293A (en) 1980-05-01 1980-05-01 Torque controlling system for dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5887480A JPS56157293A (en) 1980-05-01 1980-05-01 Torque controlling system for dc motor

Publications (2)

Publication Number Publication Date
JPS56157293A JPS56157293A (en) 1981-12-04
JPS6341318B2 true JPS6341318B2 (en) 1988-08-16

Family

ID=13096894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5887480A Granted JPS56157293A (en) 1980-05-01 1980-05-01 Torque controlling system for dc motor

Country Status (1)

Country Link
JP (1) JPS56157293A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566554B2 (en) * 1986-02-24 1996-12-25 松下電工株式会社 Motor speed control circuit for electric tool

Also Published As

Publication number Publication date
JPS56157293A (en) 1981-12-04

Similar Documents

Publication Publication Date Title
GB1465369A (en) Electric vehicle having programmed field control fo separately excited dc drive motor
JP2662803B2 (en) Electric power steering control method
JP3230406B2 (en) Electric vehicle regenerative control device
KR830002153B1 (en) Motor controller
US4427928A (en) Braking control apparatus for an electric motor operated vehicle
EP0066057B1 (en) Shunt-wound control for on-road vehicle
SU1454243A3 (en) Vehicle traction drive
JPS6341318B2 (en)
US4305026A (en) Device for driving a DC motor with feedback control
Mutoh et al. Electric vehicle system independently driving front and rear wheels
US4347467A (en) Control circuit for a D.C. motor
US4388569A (en) System for automatic control of dynamic braking of independent transport facility
US4345190A (en) Chopper control system
JP3063787B2 (en) Electric vehicle control device
JPS631523Y2 (en)
JPS5893403A (en) Regenerative brake controller
JPH07163009A (en) Braking device
SU152804A1 (en)
JPH03253208A (en) Speed controller of electric vehicle
RU2208528C1 (en) Braking control device
US2761098A (en) Power transmission system
JPS6260887B2 (en)
JPS635366Y2 (en)
JP3240069B2 (en) Vehicle speed control device of electric drive vehicle
JPH01285459A (en) Electric power steering control method