JPS5893403A - Regenerative brake controller - Google Patents

Regenerative brake controller

Info

Publication number
JPS5893403A
JPS5893403A JP56189184A JP18918481A JPS5893403A JP S5893403 A JPS5893403 A JP S5893403A JP 56189184 A JP56189184 A JP 56189184A JP 18918481 A JP18918481 A JP 18918481A JP S5893403 A JPS5893403 A JP S5893403A
Authority
JP
Japan
Prior art keywords
circuit
regenerative
current value
terminal
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56189184A
Other languages
Japanese (ja)
Other versions
JPH0368602B2 (en
Inventor
Shigeru Kuriyama
茂 栗山
Minoru Kaminaga
神長 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56189184A priority Critical patent/JPS5893403A/en
Publication of JPS5893403A publication Critical patent/JPS5893403A/en
Publication of JPH0368602B2 publication Critical patent/JPH0368602B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/006Dynamic electric braking by reversing current, i.e. plugging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

PURPOSE:To improve the decelerating performance by shifting a drive motor from a regenerative braking to plugging when the current of the motor at the regeneratively braking time becomes lower than the specified current value corresponding to the opening of an accelerator. CONSTITUTION:When a regenerative brake is operated, a forward drive switch F12 is opened, a reverse drive switch R13 is closed, and an FR contactor 7 is switched to reverse side. At this time, the voltage of a terminal B of a brake discriminator 15 becomes a low level, thereby allowing a transistor TR2 to be interrupted and opening a regenerative contactor 4. Then, a chopper transistor 8 is controlled to perform regenerative brake. When the running speed becomes sufficiently decelerated by the regenerative braking so that the current of the motor becomes lower than the specified current value corresponding to the opening of the accelerator, the voltage of the terminal B becomes high level, and the contactor 4 is thus closed, thereby shifting the motor to plugging.

Description

【発明の詳細な説明】 本発明はバッテリ走行車の電気制動の制御装置に係り、
特に回生節r動からプラギングに移行するときの判定に
好適な回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for electric braking of a battery-powered vehicle,
In particular, the present invention relates to a circuit suitable for determining the transition from regenerative motion to plugging.

バッテリフォークリフトなどのバッテリ走行車の電気制
動には、プラギングや回生制動が組み合一わされて用い
られる。そして回生制動からプラギングへの切換えを自
動的に行わせることにより、運転者の操作を容易にさせ
ている。この切換時期の判定は、モータの速度を基準に
して行われており、速度検出として回転計が一般に用い
られている。、・ しかし、回転計を設置するスペースがない場合や、回生
制動が適用されてないバッテリフォークリフトを改造し
て、回生制動を行わせる場合には回転計を取付けられな
いことがある。
Electric braking for battery-powered vehicles such as battery forklifts uses a combination of plugging and regenerative braking. By automatically switching from regenerative braking to plugging, the driver's operation is facilitated. This switching timing is determined based on the speed of the motor, and a tachometer is generally used to detect the speed. ,・ However, if there is no space to install a tachometer, or if a battery forklift that does not have regenerative braking is modified to perform regenerative braking, it may not be possible to install a tachometer.

そこで回転計を用いないで制動方式の切換時期を判定す
る方法として、走行モータ回路の電流を検出し、回生制
動時の電流がある規定電流以下になったときにプラギン
グへ移行させる方法が考えられてい°る。
Therefore, one possible method for determining when to switch the braking method without using a tachometer is to detect the current in the travel motor circuit and switch to plugging when the current during regenerative braking falls below a certain specified current. I'm looking forward to it.

しかしながら、プラギング移行時のアクセル開度が大き
いときは制動力が大きく開度が小さいときは制動力は小
さくなり、移行時のアクセル開度(操作量)によって制
動力に違いが生じるので、前記の電流値だけで制動方式
の切換え時期を判定する方法によれば、減速が滑らか比
行われず走行′性が悪くなるという欠点を有している。
However, when the accelerator opening at the time of transition to plugging is large, the braking force is large, and when the opening is small, the braking force is small. The method of determining when to switch the braking method based only on the current value has the disadvantage that deceleration is not performed at a smooth ratio, resulting in poor running performance.

本発明の目的は、バッテリ走行車の制動を回生制動から
プラギングへ移行させる際の減速走行性を改善させる回
生制動制御装置を提供することにある。
An object of the present invention is to provide a regenerative braking control device that improves deceleration performance when the braking of a battery-powered vehicle is shifted from regenerative braking to plugging.

° 本発明は、回生制動時の走行モータ回路の電流を検
出し、この検出電流がアクセル開度に対応させて定めら
れる規定電流値以下になったときに回生制動からプラギ
ングへ移行させることにより、。
° The present invention detects the current in the travel motor circuit during regenerative braking, and when this detected current becomes less than a specified current value determined in accordance with the accelerator opening, the system shifts from regenerative braking to plugging. .

この移行時の減速を滑らかに行わせて速行性を高めよう
とするものである。
The aim is to smoothly decelerate during this transition to improve running speed.

以下、本発明の図示実施例を用いて説明する。Hereinafter, the present invention will be explained using illustrated embodiments.

第1図は本発明が適用された一実施例のバッテリフォー
クリフトの全体回路図を示している。
FIG. 1 shows an overall circuit diagram of a battery forklift truck according to an embodiment of the present invention.

第1図に示されたように、バッテリ1の正極に#2が、
負極には線3が夫々接続されている。この線2に回生コ
ンタクタ4と電流検出器5を介して走行モータ6の電機
子6Aの十端子が接続されている。この電機子6Aの一
端子はFRコンタクタ7A、界磁コイル6B、FRコン
タクタ7B、およびチョッパトランジスタ8からなる直
列回路を介して線3に接続されている。前記電機子6A
の一端子は逆極性に接続されるプラギングダイオードD
2を介して線2に接続され、前記FRコンタクタ7A。
As shown in FIG. 1, #2 is connected to the positive electrode of battery 1.
A line 3 is connected to each negative electrode. A ten terminal of an armature 6A of a traveling motor 6 is connected to this line 2 via a regenerative contactor 4 and a current detector 5. One terminal of the armature 6A is connected to the line 3 via a series circuit consisting of an FR contactor 7A, a field coil 6B, an FR contactor 7B, and a chopper transistor 8. Said armature 6A
One terminal of the plugging diode D is connected to the opposite polarity.
2 to the line 2, said FR contactor 7A.

7Bの負極側は逆極性に接続されるフリーホイーリッグ
ダイオードD、を介して線2に接続されている。
The negative side of 7B is connected to line 2 via a freewheeling diode D, which is connected with opposite polarity.

回生コンタクタ4の負極側は逆極性に接続される回生ダ
イオードD、を介して線3に接続されている。前記FR
コンタクタ7A、7Bの負極側にダイオードD4のアノ
ードが接続され、このダイオードD、のカソードは一抵
抗R,とトラ/ジスタTR,の直列回路によりチョッパ
トランジスタ8のベースに接続されている。前記トラン
ジスタTR,のベースには通流率制御回路9が接続され
ている。前記ダイオ]ドD4のカッ゛−ドは、また、コ
ンデンサC1とダイオードD′60カンードに接、続さ
れ、コンデンサC1はダイオードDsのカソード及びダ
イオードp、のアノードに接続されている。ダイオード
D7のカソードは前記ダイオードD6のアノードとコン
デンサC2とに接続されている。前記ダイ′オードD、
のアノードとコンデンサC2は線3に接続されている。
The negative pole side of the regenerative contactor 4 is connected to the line 3 via a regenerative diode D connected to the opposite polarity. Said FR
The anode of a diode D4 is connected to the negative electrode side of the contactors 7A and 7B, and the cathode of the diode D is connected to the base of a chopper transistor 8 through a series circuit of a resistor R and a transistor/transistor TR. A conduction rate control circuit 9 is connected to the base of the transistor TR. The quad of the diode D4 is also connected to a capacitor C1 and a diode D'60, the capacitor C1 being connected to the cathode of the diode Ds and the anode of the diode p. The cathode of diode D7 is connected to the anode of diode D6 and capacitor C2. the diode D;
The anode of and capacitor C2 are connected to line 3.

トランジスタTR3は線2と電機子6Aの一端子との間
に接続されており、このトランジスタTR3のベースは
抵抗R4を介して、制動判定回路15の端子(A)に接
続されている。回生コンタクタ4の駆動コイルRBIO
は線2と、またトランジスタTft2を介して線3とに
夫々接続されている。FRコンタクタ7の駆動コイルF
RIZはスイッチF12を介して線2と、また線3とに
夫々接続されている。
Transistor TR3 is connected between line 2 and one terminal of armature 6A, and the base of transistor TR3 is connected to terminal (A) of braking determination circuit 15 via resistor R4. Drive coil RBIO of regenerative contactor 4
are respectively connected to line 2 and to line 3 via transistor Tft2. Drive coil F of FR contactor 7
RIZ is connected to line 2 and line 3 via switch F12, respectively.

線2に接続されているスイッチR13はダイオードD9
と抵抗R2とツェナダイオードZD、と抵抗R3の直列
回路によシ線3と接続されている。
Switch R13 connected to line 2 is connected to diode D9
, a resistor R2, a Zener diode ZD, and a resistor R3.

前記ダイオードD9 と抵抗R2の接続点はダイオード
D6を介してスイッチF12の負極側に接続されぞいる
。前記ツェナダイオードZDi と抵抗R3の接続点は
前記トランジスタT R20ベースと接続され、またダ
イオードDllを介して保護回路14と接続され、かつ
ダイオードI)toを介して制動判定回路15の端子(
B)に接続されている。
The connection point between the diode D9 and the resistor R2 is connected to the negative electrode side of the switch F12 via the diode D6. The connection point between the Zener diode ZDi and the resistor R3 is connected to the base of the transistor TR20, and is also connected to the protection circuit 14 via the diode Dll, and is connected to the terminal () of the braking determination circuit 15 via the diode I)to.
B).

制動判定回路15の端子(C’)には電流検出器5の検
出電流°信号が入力されており、かつ、この制動判定回
路15には線2及び3により電源が供給されている。
A detected current signal from the current detector 5 is inputted to a terminal (C') of the brake determination circuit 15, and power is supplied to the brake determination circuit 15 through lines 2 and 3.

このように構成されるバッテリフォークリフトの前進走
行中の回生制動を含む制動動作をかける場合について説
明する。
A case will be described in which a braking operation including regenerative braking is applied while the battery forklift truck configured as described above is traveling forward.

前進走行はスイッチF12を投入すると、駆動コイルF
RIIが励磁されPRコンタクタ7は前進側に切換えら
れると同時に、トランジスタTR4が導通されて駆動コ
イルRBIOが励磁されるので回生コンタクタ4が閉路
される。これにより走行モータ6にチョッパトランジス
タ8を介してバッテリ1から駆動電流が供給される。チ
ョッパトランジスタ8は図示していないアクセルの操作
量に応じて通流率制御回路14から出力される制御信号
に゛よシトランジスタ中R1を介してチョッパ制御され
ている。このチョッパ制御により走行モ−タの駆動電流
が制御され、アクセルの操作量に応じてバッテリフォー
クリフトの走行速度が制御されている。
For forward running, when switch F12 is turned on, drive coil F
RII is excited and the PR contactor 7 is switched to the forward side, and at the same time, the transistor TR4 is turned on and the drive coil RBIO is excited, so the regenerative contactor 4 is closed. As a result, drive current is supplied from battery 1 to travel motor 6 via chopper transistor 8 . The chopper transistor 8 is subjected to chopper control via the transistor R1 based on a control signal outputted from the conduction rate control circuit 14 in accordance with the operation amount of an accelerator (not shown). This chopper control controls the drive current of the travel motor, and the travel speed of the battery forklift is controlled in accordance with the amount of operation of the accelerator.

回生制動を作動させる場合は、前進走行スイッチF12
を切り後進走行スイッチR1jを投入する。これにより
、FRコンタクタ7が後進側に切換えられる。また、こ
のとき制動判定回路15が作動されて(T3)端子の電
位が低レベルになり)コンタクタTR2が遮断されて回
生コンタクタ4が開路される。さらに、制動判定回路1
5端子(A)の電位は端子(B)の電位が低レベルにな
ると同時に所定時間(T、)低レベルとなるように形成
されている。端子(A)が低レベル電位の期間(〒1)
)コンタクタTR,が導通され1.界磁コイル6Bは前
進時とは逆極性に予′備励磁される。
To activate regenerative braking, forward drive switch F12
and turn on the reverse travel switch R1j. As a result, the FR contactor 7 is switched to the reverse side. Further, at this time, the braking determination circuit 15 is activated (T3) the potential at the terminal becomes low level), and the contactor TR2 is cut off, and the regenerative contactor 4 is opened. Furthermore, the braking determination circuit 1
The potential of the terminal (A) is set to be low for a predetermined time (T,) at the same time as the potential of the terminal (B) is low. Period when terminal (A) is at low level potential (〒1)
) contactor TR is conductive and 1. The field coil 6B is pre-excited with a polarity opposite to that during forward movement.

なお、制動判定回路15の動作は後で詳しく説明するこ
とにする。      ・ 上述の動作により電機子6Aには第1図中()を付して
示゛した極性の誘起電圧が発生し、チョッパトランジス
タ8の導通時には界磁ボイル6B−チヨツパトランジズ
タ8−回生ダイオードD、−電流検出器5から形成され
る回路に循環電流が流され、チョッパトランジスタ8の
遮断時には、界磁コイル6B−7リーホイーリングダイ
オードD1−バッテリ 1−回生ダイオードD3−電流
検出器5から形成される回路に回生電流が流れてバッテ
リを充電させることにより回生制動がなされる。
Note that the operation of the braking determination circuit 15 will be explained in detail later. - Due to the above operation, an induced voltage of the polarity shown in parentheses in FIG. A circulating current is passed through the circuit formed by the diode D, - the current detector 5, and when the chopper transistor 8 is cut off, the field coil 6B-7, the wheeling diode D1, the battery 1, the regenerative diode D3, the current detector 5 Regenerative braking is performed by causing a regenerative current to flow through the circuit formed by the battery and charging the battery.

回生制動により走行速度が十分低下されると制動判定回
路15から回生終了信号が出力される。
When the traveling speed is sufficiently reduced by regenerative braking, the braking determination circuit 15 outputs a regeneration end signal.

即ち、端子(B)の電位が再び高レベルとなり、回生コ
ンタクタ4が再閉路されプラギングに移行され、つづい
てバッテリフォークリフト、は前進走行から後進走行に
移る。
That is, the potential at the terminal (B) becomes high level again, the regenerative contactor 4 is reclosed and the state shifts to plugging, and then the battery forklift shifts from forward travel to reverse travel.

次に、本発明に係わる上述の制動判定回路15について
図を用いて詳細に説明する。
Next, the above-mentioned braking determination circuit 15 according to the present invention will be explained in detail using the drawings.

第2図に制動判定回路15の詳細回路図が示されている
A detailed circuit diagram of the braking determination circuit 15 is shown in FIG.

図において定電圧回路17には第1図図示の巌2が接続
され゛ている。アクセル19は可変抵抗からなり、該可
変抵抗の固定抵抗は前記°定電圧回路と第1図図示の線
3に接続きれている。前記アクセル19の出力端子は抵
抗R8とRoの直列回路を介して線3に接続されている
。該抵抗R8と丸の接続点は演算増巾器OP、の一入力
端子に接続されている。また前記アクセル19の出力緬
子は、抵抗R1,と抵抗、2の直列回路を介して演算増
巾器OP 2の十入力端子に接続されている。前記電流
検出器5の接続された端子(C)は電流検出回路20に
接続されており、該電流検出回路20の出力端子は抵抗
R6を介して前記演算増巾器OP1の十入力端子に接続
されている。また該十入力端子は抵抗R7に接続され、
該抵抗R1はダイオードD1.゛を介して演算増巾器O
P3の出力端子と、ダイオードD、7を介して単安定マ
ルチバイプレー゛り22の出力端子とに夫々接続されて
いる。
In the figure, the constant voltage circuit 17 is connected to the rock 2 shown in FIG. The accelerator 19 consists of a variable resistor, and a fixed resistor of the variable resistor is connected to the constant voltage circuit and the line 3 shown in FIG. The output terminal of the accelerator 19 is connected to the line 3 through a series circuit of resistors R8 and Ro. The connection point between the resistor R8 and the circle is connected to one input terminal of the operational amplifier OP. Further, the output terminal of the accelerator 19 is connected to the input terminal of the operational amplifier OP2 via a series circuit of resistors R1 and R2. The connected terminal (C) of the current detector 5 is connected to a current detection circuit 20, and the output terminal of the current detection circuit 20 is connected to the input terminal of the operational amplifier OP1 via a resistor R6. has been done. Moreover, the ten input terminals are connected to a resistor R7,
The resistor R1 is connected to a diode D1. Operational amplifier O via ゛
The output terminal of P3 is connected to the output terminal of monostable multi-vibration circuit 22 via diodes D and 7, respectively.

前記演算増巾器OP、の出力端子は抵抗R1oを介して
一入力端子に帰還接続され、またダイオードD、2のカ
ソードに接続されている。該ダイオードDI2のアノー
ドは前記抵抗R8,とR1□とが直列接続された接続点
(D)に接続されてい−る。また、該接続点(D)には
回生指令回路21が逆方向に接続されるダイオードI)
+sを介して接続されている。抵抗R13とR14の直
列回路は°前記定電圧回路17と線3とに接続されてお
り、該抵抗R73とR14との接続点は前記演算増巾器
OP2の一入力端子に、且つ演算増巾器OP3の十入力
端子に夫夫接続されている。演算増巾器OP2の出力端
子は、演算増巾器OP3の一入力端子と、また抵抗R1
7とダイオードD、8を介してトランジスタTR。
The output terminal of the operational amplifier OP is feedback-connected to one input terminal via a resistor R1o, and is also connected to the cathode of a diode D,2. The anode of the diode DI2 is connected to a connection point (D) where the resistors R8 and R1□ are connected in series. In addition, the regeneration command circuit 21 is connected to the connection point (D) in the opposite direction through a diode I).
+s. A series circuit of resistors R13 and R14 is connected to the constant voltage circuit 17 and line 3, and a connection point between the resistors R73 and R14 is connected to one input terminal of the operational amplifier OP2, and to the operational amplifier OP2. It is connected to the input terminal of device OP3. The output terminal of the operational amplifier OP2 is connected to one input terminal of the operational amplifier OP3 and also to the resistor R1.
7 and a transistor TR via a diode D and 8.

のベースと、さらにまた抵抗R1,を介して該演算増巾
器OP、の十入力端子とに夫々接続されている。前記ト
ランジスタTR4のコレクタは端子(B)に、エミッタ
は線3に夫々接続されている。
is connected to the base of the operational amplifier OP, and also to the ten input terminals of the operational amplifier OP via a resistor R1. The collector of the transistor TR4 is connected to the terminal (B), and the emitter is connected to the line 3.

演算増巾器OP sの出力端子はコンデンサC3と抵抗
RI6の直列回路を介して単安定マルチバイブレータ2
2の入力端子に接続されており、該入力端子はダイオー
ドD、4を介して定電圧回路17に接続されている。該
単安定マルチバイブレータ22の出力端子は抵抗R8,
とダイオードDI6の直列回路を介してトランジスタT
R,のベースに接続されており、該トランジスタTR5
のコレクタは前記端子(A)に、またエミッタは線3に
夫々接続されている。
The output terminal of the operational amplifier OPs is connected to the monostable multivibrator 2 through a series circuit of capacitor C3 and resistor RI6.
2, and the input terminal is connected to a constant voltage circuit 17 via diodes D and 4. The output terminal of the monostable multivibrator 22 is connected to a resistor R8,
and the transistor T through a series circuit of the diode DI6.
R, is connected to the base of the transistor TR5.
Its collector is connected to the terminal (A), and its emitter is connected to line 3.

以上のように構成される制動判定回路の動作について説
明する。
The operation of the braking determination circuit configured as described above will be explained.

定電圧回路17は接続される各回路に所要の定電圧制御
電源を供給しているものである。
The constant voltage circuit 17 supplies the required constant voltage control power to each connected circuit.

電流検出回路20は電流検出器5から出力される電流信
号を所望のレベルに増巾して出力している。
The current detection circuit 20 amplifies the current signal output from the current detector 5 to a desired level and outputs the amplified current signal.

回生指令回路21はバッテリフォークリフトの走行状態
等から回生制動すべきか否かを判定して、回生指令信号
を出力するもので周知のものである。
The regeneration command circuit 21 is a well-known circuit that determines whether regenerative braking is to be performed based on the running state of the battery forklift, etc., and outputs a regeneration command signal.

まず、前述したように前進走行スイッチE12を切り、
抜液スイッチR,13を投入させて回生制動状態にする
。このとき前記回生指令回路21から回生指”令信号が
出力されると、該回生指令信号がダイオードDI3を介
して演算増巾器OP2の+入力端子に入力され、該OP
2の出力電位は高レベルとなり、トランジスタTR,が
導通、され端子(B)から低レベルの信号が出力される
。また、前記OP、の出力電位が高レベルになると演算
増巾器OP、の出力は低レベルとなりコンデンサC3と
抵抗、6からなる微分回路を通して単安定マルチバイブ
レータ22に入力される。該単安定マルチバイブレータ
22の入力電位が低レベルになると、該出力から準安定
時間に相当する時間(T1 )だけ高レベルとなる信号
が出力され、トランジスタTR,が導通され端子(A)
から低レベルの信号がT1時間出力される。これによっ
て、前述したように回生コンタクタ4が開路されかつ界
磁コイル6Bが予備励磁されて、バッテリフォークリフ
トの回生制動動作が開始される。
First, as mentioned above, turn off the forward travel switch E12,
Turn on the drain switch R, 13 to enter the regenerative braking state. At this time, when a regeneration command signal is output from the regeneration command circuit 21, the regeneration command signal is input to the + input terminal of the operational amplifier OP2 via the diode DI3, and the regeneration command signal is input to the + input terminal of the operational amplifier OP2.
The output potential of transistor 2 becomes high level, transistor TR becomes conductive, and a low level signal is output from terminal (B). Further, when the output potential of the above-mentioned OP becomes a high level, the output of the operational amplifier OP becomes a low level and is inputted to the monostable multivibrator 22 through a differentiating circuit consisting of a capacitor C3 and a resistor 6. When the input potential of the monostable multivibrator 22 becomes a low level, a signal is output from the output that becomes a high level for a time corresponding to the metastable time (T1), and the transistor TR becomes conductive and the terminal (A)
A low-level signal is output for time T1. As a result, the regenerative contactor 4 is opened and the field coil 6B is pre-excited as described above, and the regenerative braking operation of the battery forklift is started.

一方、演算増巾器OP1の一人力端子にはアクセル19
及び抵抗R8,R,によりアクセル開度に対応して定め
られる第3図中IIIにて示しまた回生終了の規定電流
値が入力されており、+入力端子には検出電流値が入力
されている。この演算増巾器OP、は前記規定電流値と
検出電流値とを比較演算し、検出電流値が規定電流値以
下になったときに回生終了信号を出力するものであ、す
、回生制動からプラギングへ移行させる時期の判定を行
っている。回生制動開始時の演算増巾器OP、の+入力
端子の電位は回生指令信号が入力されたときダイオード
D15を通して演算増巾器OP3の出力低レベル電位に
瞬間引き上げられるが、すぐにダイオ一ドD17を介し
て単安定マルチバイプレ、−タ22の出力高レベル電位
まで引き上げられる。
On the other hand, the accelerator 19 is connected to the single power terminal of the operational amplifier OP1.
The specified current value for the end of regeneration is inputted, and the detected current value is inputted to the + input terminal. . This operational amplifier OP compares and calculates the specified current value and the detected current value, and outputs a regeneration end signal when the detected current value becomes less than the specified current value. We are determining when to transition to plugging. At the start of regenerative braking, the potential of the + input terminal of the operational amplifier OP is momentarily raised to the output low level potential of the operational amplifier OP3 through the diode D15 when the regeneration command signal is input. It is pulled up to the output high level potential of the monostable multi-vibrator 22 via D17.

このように予備励磁時間(T1 )中は十入力電位を一
人力の規定電流値よりも十分に高レベルに保持させるこ
とにより、該時間(T、)中は前述の判定動作を停止さ
せている。従って、該時間(T1)中は第4図に示すよ
うに演算増巾器OP1の出力は高レベルに保持されるの
で、第2図り点の電位は抵抗R01を介してアクセル開
度に応じた電位に保持され、演算増巾器OP2の一出力
電位も高レベルとなるので、回生制動が継続される。
In this way, during the pre-excitation time (T1), the above-mentioned judgment operation is stopped during the pre-excitation time (T1) by maintaining the input potential at a level sufficiently higher than the specified current value for one person. . Therefore, during this time (T1), the output of the operational amplifier OP1 is maintained at a high level as shown in FIG. Since the potential is held at a high level and one output potential of the operational amplifier OP2 is also at a high level, regenerative braking is continued.

前記予備励磁時間(T1 )終了後、演算増巾器OP、
は前述の判定動作を開始する。検出電流値が前記の規定
電流値以下に低下すると、該演算増巾器OP、の出力電
位が低レベルとなる;これによりD点電位が引き下げら
れ、演算増巾器OP2の出力電位が低レベルとなり、ト
ランジスタTR4は遮断され、この制動判定回路15の
端子(B)電位が高レベルとなる。該端子(B)の電位
が高レベルとなることによシ、トランジスタTR2が導
通され回生コンタクタ4が再閉路され、前述したように
バッテリフォークリフトは回生制動からプラギングへ切
換えられる。
After the pre-excitation time (T1) ends, the operational amplifier OP,
starts the determination operation described above. When the detected current value falls below the specified current value, the output potential of the operational amplifier OP becomes a low level; as a result, the potential at point D is lowered, and the output potential of the operational amplifier OP2 becomes a low level. Therefore, the transistor TR4 is cut off, and the potential at the terminal (B) of the braking determination circuit 15 becomes high level. When the potential of the terminal (B) becomes high level, the transistor TR2 becomes conductive, the regenerative contactor 4 is reclosed, and the battery forklift is switched from regenerative braking to plugging as described above.

プラギングに移行されると、モータには第3図Iムに示
すアクセル開度に対応した電流が流されることになるが
、前述したようにアクセル開度に応じた電流Iトからの
移行となるのでこの程度のらかに行われることにある。
When shifting to plugging, a current corresponding to the accelerator opening shown in Fig. 3 will be passed through the motor, but as described above, the current will shift from the current corresponding to the accelerator opening. Therefore, it should be done in such a relaxed manner.

従って、本実施例によれば、走行モータの電流がアクセ
ル開度に対応させ、て定め−る規定電流値以下に低下し
たときに制動方式を回生制動からプラギングへ切換え移
行させていることから、前記移行時の減速が滑らかに行
われるので速行性の極めて優れたものとすることができ
る。
Therefore, according to this embodiment, the braking method is switched from regenerative braking to plugging when the current of the travel motor decreases below the specified current value determined by the accelerator opening. Since the deceleration during the transition is performed smoothly, it is possible to achieve extremely high speed performance.

また、従来前進及び後進コンタクタがそれぞれに必要で
あったが、本実施例によれば前・後進コンタクタ1箇と
することができ、しかも回生コンタクタに電流遮断能力
を持たせることにより、前・後進コンタクタは通電容量
に応じたものであればよいことから、小型化できるとい
う効果がある。
In addition, conventionally forward and reverse contactors were required, but according to this embodiment, there is only one forward and reverse contactor.Moreover, by providing the regenerative contactor with current interrupting ability, forward and reverse Since the contactor only needs to be one that matches the current carrying capacity, it has the effect of being able to be made smaller.

以上説明したように本発明によれば、バッテリ走行車の
電気制動を回生制動からプラギングへ移行させる際の減
速制動を滑らかに行わせることができ、走行性を改善す
ることができるという効果がある。
As explained above, according to the present invention, it is possible to smoothly perform deceleration braking when the electric braking of a battery-powered vehicle is transferred from regenerative braking to plugging, and there is an effect that driving performance can be improved. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の適用された一実施例の回路構成図、第
2図は第1図図示実施例の部分詳細回路図、第3図及び
第4図は動作説明図を示す。
FIG. 1 is a circuit configuration diagram of an embodiment to which the present invention is applied, FIG. 2 is a partial detailed circuit diagram of the embodiment illustrated in FIG. 1, and FIGS. 3 and 4 are operation explanatory diagrams.

Claims (1)

【特許請求の範囲】 1、 アクセルの操作量に応じて速度制御される直流モ
ータに切換え可能に接続される回生制動回路とプラギン
グ回路との切換え制御を行わせる回生制動制御装置にお
いて、上記直流モータの電流を検出して検出電流値を出
力する検出回路と上記ア。 クセルの操作量に対応させて定める規定電流値を出力す
る回路と該規定電流値と前記検出電流値との比較演算を
行い検出電流値が規定電流値以下のときに回生終了信号
を出力する回路と該回生終了信号によシ上記の回生制動
回路をプラギング回路に切換える手段とを備えたことを
特徴とする回生制動制御装置。
[Scope of Claims] 1. In a regenerative braking control device that performs switching control between a regenerative braking circuit and a plugging circuit that are switchably connected to a DC motor whose speed is controlled according to the amount of operation of an accelerator, the DC motor A detection circuit that detects the current of and outputs the detected current value, and A above. A circuit that outputs a specified current value determined in accordance with the operation amount of the accelerator, and a circuit that performs a comparison calculation between the specified current value and the detected current value, and outputs a regeneration end signal when the detected current value is less than the specified current value. A regenerative braking control device comprising: and means for switching the regenerative braking circuit to a plugging circuit in response to the regeneration end signal.
JP56189184A 1981-11-27 1981-11-27 Regenerative brake controller Granted JPS5893403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56189184A JPS5893403A (en) 1981-11-27 1981-11-27 Regenerative brake controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56189184A JPS5893403A (en) 1981-11-27 1981-11-27 Regenerative brake controller

Publications (2)

Publication Number Publication Date
JPS5893403A true JPS5893403A (en) 1983-06-03
JPH0368602B2 JPH0368602B2 (en) 1991-10-29

Family

ID=16236905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56189184A Granted JPS5893403A (en) 1981-11-27 1981-11-27 Regenerative brake controller

Country Status (1)

Country Link
JP (1) JPS5893403A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046701A (en) * 1983-09-26 1985-03-13 Sanyo Electric Co Ltd Motor-driven vehicle
FR2685146A1 (en) * 1991-11-30 1993-06-18 Linde Ag ELECTRICAL BRAKE FOR VEHICLE, WITH TWO PARALLEL ELECTRIC MOTORS BY COMBINING DIFFERENT BINARY SIGNALS FOR BRAKING USING CURRENT OR CURRENT BRAKING.
EP4091858A1 (en) * 2021-05-17 2022-11-23 Kubota Corporation Electric vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046701A (en) * 1983-09-26 1985-03-13 Sanyo Electric Co Ltd Motor-driven vehicle
FR2685146A1 (en) * 1991-11-30 1993-06-18 Linde Ag ELECTRICAL BRAKE FOR VEHICLE, WITH TWO PARALLEL ELECTRIC MOTORS BY COMBINING DIFFERENT BINARY SIGNALS FOR BRAKING USING CURRENT OR CURRENT BRAKING.
EP4091858A1 (en) * 2021-05-17 2022-11-23 Kubota Corporation Electric vehicle

Also Published As

Publication number Publication date
JPH0368602B2 (en) 1991-10-29

Similar Documents

Publication Publication Date Title
JP2771308B2 (en) Electric car control device
US4479080A (en) Electrical braking control for DC motors
US7362065B2 (en) Regenerative breaking system for electric vehicle
US4503937A (en) Elevator control circuit
US4427928A (en) Braking control apparatus for an electric motor operated vehicle
GB1567037A (en) Safety system for a vehicle
JPS5893403A (en) Regenerative brake controller
JPH05284610A (en) Control method for electric automobile
JPH04145808A (en) Energy conserving device for electric motor vehicle
JPH0223045Y2 (en)
JPS635366Y2 (en)
JPS58175901A (en) Regenerative braking device for electric motor vehicle
JPS6192104A (en) Travel controller of operatorless traveling vehicle
JPH05115105A (en) Brake system for motor loading/unloading vehicle
JPS6033753B2 (en) AC elevator control device
JPH0787622A (en) Running controller for battery vehicle
JPH11266505A (en) Driving control method of electric vehicle
JP2523679Y2 (en) Braking control device in electric vehicle running speed control device
JPS631523Y2 (en)
JPH0431761Y2 (en)
JPS5829301A (en) Controlling circuit for regenerative brake equipment for electric rolling stock
JPH04185203A (en) Controller of motor-driven vehicle
JPS6311843B2 (en)
JPH0199410A (en) Motor controller for electric motor vehicle
JPS6243404B2 (en)