JPS6341211B2 - - Google Patents

Info

Publication number
JPS6341211B2
JPS6341211B2 JP1894780A JP1894780A JPS6341211B2 JP S6341211 B2 JPS6341211 B2 JP S6341211B2 JP 1894780 A JP1894780 A JP 1894780A JP 1894780 A JP1894780 A JP 1894780A JP S6341211 B2 JPS6341211 B2 JP S6341211B2
Authority
JP
Japan
Prior art keywords
bottom plate
cooling
annular groove
holes
cooling systems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1894780A
Other languages
Japanese (ja)
Other versions
JPS55117230A (en
Inventor
Ruhia Ururitsuhi
Deiitsue Uorufugangu
Barosukii Geruharuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPS55117230A publication Critical patent/JPS55117230A/en
Publication of JPS6341211B2 publication Critical patent/JPS6341211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process

Description

【発明の詳細な説明】 この発明は板状又はさら形の底板とこの底板上
に気密に載せられた石英、ガラス、合成樹脂又は
鋼製のベルジアーから構成された反応析出容器内
の加熱された析出基体上に半導体材料例えばシリ
コンを析出させる装置に関する。析出容器には反
応ガスの導入ならびに排出用の孔があり析出基体
の支持部品が収められている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heated reaction precipitation vessel consisting of a plate-like or countersunk-shaped bottom plate and a bell jar made of quartz, glass, synthetic resin, or steel airtightly mounted on the bottom plate. The present invention relates to an apparatus for depositing a semiconductor material, such as silicon, onto a deposition substrate. The deposition vessel has holes for introducing and discharging the reaction gas, and contains supporting parts for the deposition substrate.

この種の装置は例えば西独国特許第1198787号
明細書にシリコン棒の製作用として記載されてい
る。析出基体は垂直に立てられた二つの平行シリ
コン棒であり、それらの下端は底板に固定された
電極にとりつけられ、上端はシリコン製のブリツ
ジ片によつて導電的に結合されているから、電極
を通して導かれた加熱電流は両シリコン棒を通流
してそれを析出温度に加熱する。板状又はさら形
の底板は耐熱金属例えば銀で作られ反応室内にあ
る表面は石英板によつて遮蔽されている。両電極
は底板を互に絶縁され気密に貫通する。また電極
の導入個所の近くに反応ガスの導出個所と排出個
所が設けられている。析出基体は棒形とする代り
に管状特にグラフアイト管としてもよい。この管
は前記の西独国特許第1198787号明細書に記載さ
れている装置の場合と同様に保持され加熱電流を
流す。この装置はシリコンの管の製作に適してい
る。
A device of this type is described, for example, in German Patent No. 1198787 for the production of silicon rods. The deposition substrate is two parallel silicon rods erected vertically, their lower ends are attached to an electrode fixed to the bottom plate, and their upper ends are electrically connected by a silicon bridge piece, so that the electrode A heating current conducted through both silicon rods heats them to the deposition temperature. The plate-like or countersunk-shaped bottom plate is made of a heat-resistant metal such as silver, and the surface inside the reaction chamber is shielded by a quartz plate. Both electrodes are insulated from each other and pass through the bottom plate in an airtight manner. Further, a reaction gas outlet and discharge point are provided near the electrode introduction point. Instead of being rod-shaped, the deposition substrate may also be tubular, in particular a graphite tube. The tube is held and heated with a heating current as in the device described in the above-mentioned German Patent No. 1198787. This device is suitable for manufacturing silicone tubes.

最近製作品の純度に対する要求が高まり、また
直径3″以上特に5″以上の太い棒が要求されるよう
になつたため反応容器の能力を最大限発揮させ又
その完全化を絶えず推進する必要を生じた。
Recently, the demand for purity of manufactured products has increased, and thick rods with a diameter of 3" or more, especially 5" or more, have become required, so it has become necessary to maximize the capacity of the reaction vessel and constantly promote its perfection. Ta.

この発明は反応容器の弱点が石英ベルジアーと
底板との間の気密結合部分にあり又この部分が電
極の導入部であるためこの弱点を克服する必要が
あるとの認識に基づくものである。反応容器の各
部分特に石英部品が底板とは異つた加熱を受ける
ために発生する僅かな不気密性が製作された半導
体の純度を阻害する原因となる。反応室の気密閉
鎖は反応ガスが逃げ出さず異物質が侵入しないだ
けではなく気密部品の熱負荷が低くこれらの部品
自体が異物質を放出しないようにする必要があ
る。
This invention is based on the recognition that the weak point of the reaction vessel is the hermetic joint between the quartz bell gier and the bottom plate, and that this weak point must be overcome since this is the introduction section for the electrode. Due to the fact that parts of the reaction vessel, especially the quartz parts, are heated differently than the bottom plate, the slight airtightness that occurs can impair the purity of the semiconductor produced. The airtight closure of the reaction chamber must not only ensure that the reaction gas does not escape and foreign substances cannot enter, but also that the heat load on the airtight parts is low so that these parts themselves do not release foreign substances.

ベルジアーと電極導入部に対する底板の気密性
はテフロンおよびブイトン等のパツキング材料の
熱負荷が低く又底板内の温度差を小さく保持する
ことができる程長時間に亘つて良好に保持され
る。この発明の基礎となつた発見に基き底板の熱
ひずみをできるだけ低く保つことができる。更に
このような底板を持つ大型の反応容器を合理的な
費用で製作することが可能となる。
The airtightness of the bottom plate with respect to the bell gear and the electrode introduction part is maintained well for a long period of time to the extent that the thermal load of the packing material such as Teflon or Buiton is low and the temperature difference within the bottom plate can be kept small. The discoveries on which this invention is based make it possible to keep the thermal strains of the base plate as low as possible. Furthermore, it becomes possible to manufacture a large-sized reaction vessel with such a bottom plate at a reasonable cost.

この発明は底板を金属製としこれに冷却液が流
れ冷却装置として作用する通孔を設け、この通孔
を底板内に二つの互に無関係に動作する冷却系が
形成される形態とすることを提案する。これらの
冷却系の一方は底板の外側部分を冷却し、他方は
その内側部分を冷却するようにすると効果的であ
る。冷却系の通孔はそれらの流通抵抗がほぼ等し
くなるように構成するのが有利である。これを最
も簡単に達成するためには両冷却系の流通路の長
さを等しくする。
In this invention, the bottom plate is made of metal and is provided with a through hole through which a cooling liquid flows and acts as a cooling device, and the through hole is formed in the bottom plate to form two cooling systems that operate independently of each other. suggest. Advantageously, one of these cooling systems cools the outer part of the bottom plate and the other cools its inner part. Advantageously, the openings of the cooling system are constructed in such a way that their flow resistances are approximately equal. The easiest way to accomplish this is to make the lengths of the flow passages in both cooling systems equal.

両冷却系には対向流式に冷却液を流すのが有利
である。
It is advantageous for the cooling liquid to flow countercurrently through both cooling systems.

底板は鋼で作り反応室内にある表面を孔のない
銀被覆で覆い、ベルジアー壁との間の気密保持用
の弾性Oリングを入れる環状溝を設けると有利で
ある。孔は冷却液が環状溝と底板に固定された電
極のすぐ近くを導かれるように作るのが有利であ
る。
Advantageously, the bottom plate is made of steel and has a surface inside the reaction chamber covered with a non-porous silver coating and is provided with an annular groove for receiving an elastic O-ring for sealing with the Verzier wall. Advantageously, the holes are made in such a way that the cooling liquid is conducted in close proximity to the annular groove and the electrodes fixed to the base plate.

環状溝と冷却孔の間の間隔は底板の機械的安定
性が許す限り小さく選ぶ。この間隔は50mm以下特
に10mmと15mmの間に選ばれる。これらの手段によ
りパツキング材例えばテフロンの温度を100℃以
下に保つことができる。Oリングの材料としては
フツ素ゴム混合物が使用される。
The spacing between the annular groove and the cooling hole is chosen to be as small as the mechanical stability of the bottom plate allows. This distance is chosen below 50mm, especially between 10mm and 15mm. By these means, the temperature of the packing material, such as Teflon, can be maintained at 100°C or less. A fluoro rubber mixture is used as the material for the O-ring.

両冷却系に無関係な第三の冷却系を電極に対し
て設けることも可能である。
It is also possible to provide a third cooling system for the electrodes, which is independent of both cooling systems.

この発明において採用されている個々の手段は
それ自体としては公知のものであるか公知のもの
から容易に考えられるものであるが、それらを総
合することによりこの発明による装置は欠点のな
い単結晶を得るために既に多結晶状態の原料にお
いて存在しなければならない良好な品質を持つ半
導体材料の製造を可能にする。
Although the individual means adopted in this invention are either known per se or can be easily devised from known ones, by taking them together, the device according to the present invention is a single crystal without any drawbacks. In order to obtain semiconductor materials of good quality, which must already be present in the raw material in a polycrystalline state, it is possible to produce semiconductor materials.

即ち慎重な水冷却特に電極導入部の冷却により
温度負荷が底板の断面全体に一様に分布される。
このことは例えば銀と鋼のような複合材料が使用
され底板とベルジアーの間の気密結合部分の耐用
年数が長くなつている点から必要である。この発
明によれば底板の過熱が避けられるだけではなく
シランの沈積の原因となる特殊な過冷却個所の発
生も避けられる点が重要な意味を持つ。
This means that the temperature load is evenly distributed over the entire cross-section of the base plate by careful water cooling, in particular the cooling of the electrode inlets.
This is necessary because composite materials, such as silver and steel, are being used to increase the service life of the hermetic joint between the bottom plate and the bell gear. According to this invention, it is important that not only overheating of the bottom plate is avoided, but also the occurrence of special supercooled spots that cause silane deposition.

次に図面についてこの発明を更に詳細に説明す
る。
The invention will now be explained in more detail with reference to the drawings.

第1図はこの発明の対象となる半導体材料析出
装置の断面を示す。底板8は孔が明けられている
鋼板から成り、その表面には銀層1が気密に接着
している。中央の通孔2に続く導管4を通して使
用済ガスが排出される。この導管4と通孔2の内
部には新鮮な反応ガスを導入する導管3が挿入さ
れ、この導管3には弁が設けられている。中央孔
2の両側には二つの電極5,6が互に絶縁され気
密に底板8を貫通して導入されている。この電極
対は複数対設けることができる。これらの電極は
同時に析出基体の支持体となるもので棒状又は管
状の基体7の下端がこれらの電極に差し込まれ安
定に保持される。二本の基体7は互に等しい長さ
で上端が導電性の耐熱ブリツジ片17例えばシリ
コン棒によつて連結される。ベルジアー9は底板
の銀層1の上に載せられその下端のフランジ10
の下面で気密閉鎖される。気密を良好にするため
パツキング環11が底板の環状溝内に挿入され
る。場合によつてはフランジ10を除きベルジア
ーの壁の厚さをその下端に至るまで一様にするか
逆に下端で薄くしてもよい。
FIG. 1 shows a cross section of a semiconductor material deposition apparatus to which the present invention is applied. The bottom plate 8 is made of a perforated steel plate, and the silver layer 1 is airtightly adhered to the surface thereof. Spent gas is discharged through a conduit 4 leading to the central through hole 2. A conduit 3 for introducing fresh reaction gas is inserted into the conduit 4 and the through hole 2, and this conduit 3 is provided with a valve. On both sides of the central hole 2, two electrodes 5 and 6 are insulated from each other and introduced through the bottom plate 8 in an airtight manner. A plurality of pairs of electrodes can be provided. These electrodes also serve as supports for the deposition substrate, and the lower end of the rod-shaped or tubular substrate 7 is inserted into these electrodes and stably held. The two base bodies 7 have equal lengths and are connected at their upper ends by a conductive heat-resistant bridge piece 17, for example, a silicon rod. The bell gear 9 is placed on the silver layer 1 of the bottom plate and has a flange 10 at its lower end.
Hermetically closed on the underside. A packing ring 11 is inserted into the annular groove of the bottom plate to provide good airtightness. Optionally, the wall thickness of the bell gier, with the exception of the flange 10, may be uniform down to its lower end or, conversely, may be thinner at the lower end.

底板に要求される機械的安定性が許す限りパツ
キング溝に近づけて冷却液を導く孔13を設け
る。
Holes 13 are provided for guiding the coolant as close to the packing groove as the required mechanical stability of the bottom plate allows.

図示の実施例ではこの外に孔12が設けられ電
極5および6を冷却するための独立した冷却系を
構成する。これも許される限り電極5,6の導入
部の近くに設ける。
In the illustrated embodiment, additional holes 12 are provided to form an independent cooling system for cooling the electrodes 5 and 6. This is also provided as close as possible to the introduction portions of the electrodes 5 and 6.

析出装置の運転に際しては基体7をその支持部
分である電極5,6に挿入し、導電ブリツジ片1
4で上端を連結した後ベルジアー9を底板8の上
にパツキング環11をはさんで載せ気密閉鎖す
る。次いで水素を反応室に入れ、基体7を加熱す
る電流を流す。基体7が析出温度に加熱されると
反応ガス例えばH2とSiHCl3の混合ガスを反応室
に入れ灼熱された基体表面にSiを析出される。輸
送ガス流と基体の温度の監視は通例の方法によつ
て行われるから図面にはその監視装置を示さな
い。
When operating the deposition apparatus, the base body 7 is inserted into the electrodes 5 and 6 that are its supporting parts, and the conductive bridge piece 1
After connecting the upper ends at 4, the bell gear 9 is placed on the bottom plate 8 with the packing ring 11 in between, and the bell gear is closed airtight. Hydrogen is then introduced into the reaction chamber and a current is applied to heat the substrate 7. When the substrate 7 is heated to the deposition temperature, a reaction gas such as a mixed gas of H 2 and SiHCl 3 is introduced into the reaction chamber and Si is deposited on the scorched surface of the substrate. Monitoring of the transport gas flow and substrate temperature is done in a conventional manner and the monitoring equipment is not shown in the drawings.

底板の構成の実施例を第2図と第3図に示す。
第2図は第3図のA−Bに沿う断面図である。例
えば鋼製の底板8の表面には銀層1があり、底板
に切り込まれた外側の溝15の冷却液の流入口1
6と流出口17を備えて第一の冷却系を構成し、
内側の溝18は冷却液の流入口19と流出口20
を備えて第二の冷却系を構成する。これらの冷却
系は互に無関係であるがそれらの通流抵抗がほぼ
等しくなるように作られている。流路中に設けら
れた堰板21,22および23は特に冷却を必要
とする個所に冷却液を導き同時に通流抵抗を最適
値に調整するためのものである。
Examples of the structure of the bottom plate are shown in FIGS. 2 and 3.
FIG. 2 is a sectional view taken along line AB in FIG. 3. For example, the bottom plate 8 made of steel has a silver layer 1 on its surface, and a coolant inlet 1 in an outer groove 15 cut into the bottom plate.
6 and an outlet 17 to constitute a first cooling system,
The inner groove 18 serves as an inlet 19 and an outlet 20 for the coolant.
constitutes a second cooling system. Although these cooling systems are unrelated to each other, they are designed so that their flow resistances are approximately equal. The weir plates 21, 22, and 23 provided in the flow path are used to guide the cooling liquid to areas that particularly require cooling, and at the same time adjust the flow resistance to an optimum value.

孔24,25,26および27は二組の電極対
の挿入孔であり、28は観察窓として使用される
孔である。冷却系15と18を対向流方式で動作
させるためには、一方の系の冷却液の流入口と流
出口を反対にするだけでよい。
Holes 24, 25, 26 and 27 are insertion holes for two pairs of electrodes, and 28 is a hole used as an observation window. In order to operate cooling systems 15 and 18 in counter-flow mode, it is only necessary to reverse the inlet and outlet of the coolant of one system.

この発明による装置は底板の反応室側に石英の
遮蔽板を付設することによつて更に改良される。
この遮蔽板は単純な板であつても間隔片を置いて
底板と組合せ二重層底板としてもよい。
The device according to the invention is further improved by adding a quartz shield to the reaction chamber side of the bottom plate.
This shielding plate may be a simple plate, or it may be combined with a bottom plate by placing a spacer piece to form a double-layered bottom plate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の断面図、第2図と
第3図はこの発明の装置の底板の構成の一例を示
す断面図と平面図である。 8……底板、9……ベルジアー、5,6……電
極、7……析出基体、12,13……冷却液通流
孔。
FIG. 1 is a cross-sectional view of an embodiment of the present invention, and FIGS. 2 and 3 are a cross-sectional view and a plan view showing an example of the structure of the bottom plate of the apparatus of the present invention. 8...Bottom plate, 9...Belgear, 5, 6...Electrode, 7...Deposition substrate, 12, 13...Cooling liquid passage hole.

Claims (1)

【特許請求の範囲】 1 板状又はさら形の底板と底板上に気密に載せ
られた石英、ガラス、合成樹脂又は鋼のベルジア
ーから成る容器内に置かれた加熱された基体上に
半導体材料を析出させる装置において、析出容器
の底板が金属製であり、冷却液が貫流して冷却装
置として作用する複数の孔を持ち、これらの孔は
二つの互に無関係に作用する冷却系が底板に形成
される形態であることを特徴とする半導体材料析
出装置。 2 両冷却系の一方が底板の外側部分の冷却に、
他方が底板の内側部分の冷却に使用されることを
特徴とする特許請求の範囲第1項記載の装置。 3 冷却系の孔が両冷却系の冷却液通流抵抗がほ
ぼ等しくなるように構成されていることを特徴と
する特許請求の範囲第1項又は第2項記載の装
置。 4 両冷却系の通流路の長さが等しいことを特徴
とする特許請求の範囲第1項乃至第3項のいずれ
かに記載の装置。 5 両冷却系が対向流形式に接続されていること
を特徴とする特許請求の範囲第1項乃至第4項の
いずれかに記載の装置。 6 底板が鋼製であり、その反応室側の表面が孔
のない銀被覆層で覆われ、環状溝とそれに適合す
る弾性Oリングとが反応室壁との間の気密手段と
して設けられていることを特徴とする特許請求の
範囲第1項乃至第5項のいずれかに記載の装置。 7 冷却系の孔が冷却液を環状溝のすぐ近くに導
くように構成されていることを特徴とする特許請
求の範囲第1項乃至第6項のいずれかに記載の装
置。 8 底板に固定された電極のすぐ近くに達する孔
が底板に設けられていることを特徴とする特許請
求の範囲第1項乃至第7項のいずれかに記載の装
置。 9 環状溝と冷却孔との間の間隔が底板の機械的
安定性の点で許される限り小さく選ばれているこ
とを特徴とする特許請求の範囲第1項乃至第8項
のいずれかに記載の装置。 10 環状溝と冷却孔との間の間隔が50mm又はそ
れ以下であることを特徴とする特許請求の範囲第
1項乃至第9項のいずれかに記載の装置。 11 環状溝と冷却孔との間の間隔が10乃至15mm
であることを特徴とする特許請求の範囲第1項乃
至第10項のいずれかに記載の装置。 12 Oリングがフツ素ゴム混合物で作られてい
ることを特徴とする特許請求の範囲第1項乃至第
11項のいずれかに記載の装置。 13 パツキング部の熱負荷が100℃以下に選ば
れていることを特徴とする特許請求の範囲第1項
乃至第12項のいずれかに記載の装置。 14 両冷却系に無関係な第三の冷却系が電極用
として設けられていることを特徴とする特許請求
の範囲第1項乃至第13項のいずれかに記載の装
置。
[Scope of Claims] 1. Semiconductor material is placed on a heated substrate placed in a container consisting of a plate-shaped or countersunk-shaped bottom plate and a bell jar of quartz, glass, synthetic resin, or steel placed airtight on the bottom plate. In a precipitation apparatus, the bottom plate of the precipitation vessel is made of metal and has a plurality of holes through which the cooling liquid flows and acts as a cooling device, and these holes are formed in the bottom plate by two cooling systems that act independently of each other. 1. A semiconductor material deposition apparatus characterized in that the semiconductor material deposition apparatus is in the form of: 2 One of the two cooling systems cools the outer part of the bottom plate,
2. Device according to claim 1, characterized in that the other one is used for cooling the inner part of the bottom plate. 3. The device according to claim 1 or 2, wherein the holes in the cooling system are constructed so that the flow resistance of the coolant in both cooling systems is approximately equal. 4. The device according to any one of claims 1 to 3, wherein the lengths of the flow passages of both cooling systems are equal. 5. The apparatus according to any one of claims 1 to 4, characterized in that both cooling systems are connected in a counter-flow manner. 6. The bottom plate is made of steel, its surface on the side of the reaction chamber is covered with a non-porous silver coating layer, and an annular groove and an elastic O-ring that fits therein are provided as an airtight means between the bottom plate and the reaction chamber wall. An apparatus according to any one of claims 1 to 5, characterized in that: 7. A device according to any one of claims 1 to 6, characterized in that the holes in the cooling system are configured to direct the cooling liquid in close proximity to the annular groove. 8. The device according to any one of claims 1 to 7, characterized in that the bottom plate is provided with a hole that reaches close to the electrode fixed to the bottom plate. 9. According to any one of claims 1 to 8, wherein the distance between the annular groove and the cooling hole is selected to be as small as possible in terms of mechanical stability of the bottom plate. equipment. 10. The device according to any one of claims 1 to 9, characterized in that the distance between the annular groove and the cooling hole is 50 mm or less. 11 The distance between the annular groove and the cooling hole is 10 to 15 mm
The device according to any one of claims 1 to 10, characterized in that: 12. Device according to any one of claims 1 to 11, characterized in that the O-ring is made of a fluoro-rubber mixture. 13. The device according to any one of claims 1 to 12, wherein the packing portion has a heat load of 100° C. or less. 14. The device according to any one of claims 1 to 13, characterized in that a third cooling system unrelated to both cooling systems is provided for the electrodes.
JP1894780A 1979-02-19 1980-02-18 Semiconductor material precipitating device Granted JPS55117230A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19792906290 DE2906290A1 (en) 1979-02-19 1979-02-19 Semiconductor deposition appts., esp. for mfg. silicon rods - has bell jar located on metal baseplate contg. two separate water cooling systems to aid sealing of appts.

Publications (2)

Publication Number Publication Date
JPS55117230A JPS55117230A (en) 1980-09-09
JPS6341211B2 true JPS6341211B2 (en) 1988-08-16

Family

ID=6063290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1894780A Granted JPS55117230A (en) 1979-02-19 1980-02-18 Semiconductor material precipitating device

Country Status (2)

Country Link
JP (1) JPS55117230A (en)
DE (1) DE2906290A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3107260A1 (en) * 1981-02-26 1982-09-09 Siemens AG, 1000 Berlin und 8000 München Process and appliance for depositing semiconductor material, especially silicon
DE3142586A1 (en) * 1981-10-27 1983-05-11 Siemens AG, 1000 Berlin und 8000 München Apparatus for the high-temperature treatment of layers consisting of silicon, metal and metal/silicon on substrates in an extremely dry gas atmosphere
CN103764560A (en) * 2011-07-20 2014-04-30 赫姆洛克半导体公司 Manufacturing apparatus for depositing material on carrier body
CN104692390A (en) * 2015-03-27 2015-06-10 中国恩菲工程技术有限公司 Base plate assembly for polycrystalline silicon reduction furnace
CN104724709A (en) * 2015-03-27 2015-06-24 中国恩菲工程技术有限公司 Chassis assembly for polycrystalline silicon reduction furnace

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2826860A1 (en) * 1978-06-19 1980-01-03 Siemens Ag Silicon deposition appts. - with coolant bore in base plate near quartz bell sealing ring groove for perfect tightness

Also Published As

Publication number Publication date
DE2906290A1 (en) 1980-08-28
DE2906290C2 (en) 1987-02-19
JPS55117230A (en) 1980-09-09

Similar Documents

Publication Publication Date Title
US4173944A (en) Silverplated vapor deposition chamber
US6284312B1 (en) Method and apparatus for chemical vapor deposition of polysilicon
EP0393809B1 (en) Pressure resistant thermal reactor system for semiconductor processing
US20070251447A1 (en) Reactor and Method for Manufacturing Silicon
KR100803445B1 (en) Process for controlling thin film uniformity and products produced thereby
CN110878430B (en) Apparatus for producing bulk silicon carbide
JPH0129870B2 (en)
CN110670124B (en) Method for producing bulk silicon carbide
KR20020063188A (en) Chemical vapor deposition reactor and process chamber for said reactor
US7381926B2 (en) Removable heater
KR101279414B1 (en) Apparatus for manufacturing polycrystalline silicon and method for manufacturing polycrystalline
JPS6341211B2 (en)
CN105518190B (en) Method and apparatus for producing bulk silicon carbide from silicon carbide precursors
JPS612321A (en) Vertical hot wall type cvd reactor
JPH0355405B2 (en)
US5169478A (en) Apparatus for manufacturing semiconductor devices
US3820935A (en) Method and device for the production of tubular members of silicon
JP4645616B2 (en) Deposition equipment
JP2004214283A (en) Semiconductor device manufacturing apparatus
US20120037613A1 (en) Element wire contact prevention member and method for maintenance of heater device
JPS6168393A (en) Hot wall type epitaxial growth device
SU810086A3 (en) Device for making semiconducting material
US3342161A (en) Apparatus for pyrolytic production of semiconductor material
JP2000143385A (en) Crystal production unit
KR20130016740A (en) Manufacturing method of polycrystalline silicon rod