JPS6341082A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS6341082A
JPS6341082A JP61185457A JP18545786A JPS6341082A JP S6341082 A JPS6341082 A JP S6341082A JP 61185457 A JP61185457 A JP 61185457A JP 18545786 A JP18545786 A JP 18545786A JP S6341082 A JPS6341082 A JP S6341082A
Authority
JP
Japan
Prior art keywords
film
type
amorphous silicon
heterojunction
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61185457A
Other languages
Japanese (ja)
Inventor
Takeshige Ichimura
市村 剛重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61185457A priority Critical patent/JPS6341082A/en
Publication of JPS6341082A publication Critical patent/JPS6341082A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Abstract

PURPOSE:To obtain a good characteristic of photovoltaic force by a method wherein lattice mismatching at a junction is eliminated in such a way that an amorphous silicon film of a heterojunction which is composed of a film of one conductive type and an amorphous silicon film of another conductive type is assigned as a light-incident side. CONSTITUTION:An amorphous silicon film of a heterojunction is assigned as a light-incident side in such a way that the heterojunction is composed of a film of one conductive type of a semiconductor which has the molecular formula in the form of CuInX2 in which X is an element of Group VI in the periodic table and an amorphous silicon film of another type. An N-type polycrystalline CuInSe2 film 2 of a semiconductor such as chalcopyrite type is formed on a metallic substrate 1 made of, for example, stainless steel, a P-type amorphous silicon film 3 into which boron, etc. is doped is then formed, and then a transparent conductive film 4, such as ITO film, SnO2, etc. is formed as an electrode opposite to the film substrate 1 so that a photovoltaic device can be constituted. Because one side of the heterojunction is an amorphous semiconductor, lattice mismatching at the junction is eliminated.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、Cu E nX□(Xは周期表■族元素)な
る分子式を有するカルコパライト系半導体を用いた光起
電力装置に関する。
The present invention relates to a photovoltaic device using a chalcopalite semiconductor having a molecular formula of Cu E nX□ (X is an element from group Ⅰ of the periodic table).

【従来技術とその問題点】[Prior art and its problems]

カルコパライト (黄wi tXcuFes霊)と同様
の結晶構造をもつCu1nSezやCu1nSzは、禁
制帯幅約1eVで直接遷移形の帯構造をもつ半導体で、
p、n両形の電卓を示し、高い吸収係数をもつので高効
率の太陽電池が得られる可能性がある材料としても注目
され、研究開発が進められている。 この材料を用いた光起電力装置は、一般にn形CdSと
のへテロ接合の構造をとる。 CdSは、Cu1nXt
の格子との不整合の比較的小さい理由から光入射側の窓
層として選択されているが、しかしこの場合にも格子の
不整合による光起電力特性の低下はさけられないという
問題点がある。
Cu1nSez and Cu1nSz, which have a crystal structure similar to that of chalcopalite (yellow with XcuFes spirit), are semiconductors with a direct transition type band structure with a forbidden band width of about 1 eV.
Since it exhibits both p- and n-type calculators and has a high absorption coefficient, it is attracting attention as a material with the potential to produce highly efficient solar cells, and research and development is progressing. A photovoltaic device using this material generally has a heterojunction structure with n-type CdS. CdS is Cu1nXt
It is selected as the window layer on the light incident side because of the relatively small mismatch with the lattice of .

【発明の目的】[Purpose of the invention]

本発明は、上述のCuInX、の分子式をもつ半導体の
他の半導体とのへテロ接合を形成した際の格子の不整合
の問題を解決し、高い性能をもつ光起電力装置を提供す
ることを目的とする。
The present invention aims to solve the problem of lattice mismatch when forming a heterojunction between a semiconductor having the molecular formula of CuInX and another semiconductor, and to provide a photovoltaic device with high performance. purpose.

【発明の要点】[Key points of the invention]

本発明は、−導電形のCuJnL半導体膜と他導電形の
アモルファスシリコン側とからなるヘテロ接合のアモル
ファスシリコン腹側を光入射側として光起電力装置を構
成するもので、ヘテロ接合の一例がアモルファス半導体
であるため、接合における格子の不整合の問題がなくな
り、上述あ目的が達成される。
The present invention configures a photovoltaic device with the amorphous silicon belly side of a heterojunction consisting of a - conductivity type CuJnL semiconductor film and a different conductivity type amorphous silicon side as the light incident side, and an example of the heterojunction is an amorphous silicon film. Since it is a semiconductor, there is no problem of lattice mismatch at the junction, and the above objective is achieved.

【発明の実施例】[Embodiments of the invention]

7fj1図は本発明の一実施例を示すもので、例えばス
テンレス鋼からなる金属基板1の上にn形多結晶Cu1
nSez膜2を1〜3μの厚さに形成し、次にほう素な
どをドープしたn形アモルフアスシリコン膜3を100
〜500人の厚さに形成し、つづいてIT○、 5nO
z’1lf4などの透明導電膜4を基板1との対向電極
として形成して、光起電力装置を構成する。このばあい
、Cu1nSe膜は、CuC1,InC1,。 (:HsNHC3eNHCHs (ジメチルセレノウレ
ア)の水溶液をスプレー法などにより霧状にして250
〜300℃に加熱した基板1に吹きつけて化学分解させ
て形成した。なお、このCu1nSez膜は、Cu +
 I n + S eのそれぞれの同時真空蒸着法によ
っても、あるいはCu1nSez化合物を粉体にしたも
のを有機物とのペースト状にしたものに印刷し、600
℃で焼結して得る方法によっても形成できる。p形アモ
ルファスシリコン膜は、5iHa、 B!)16および
hの混合ガスのグロー放電分解により形成した。この膜
にはp形アモルファスシリコンカーバイト膜を用いても
よい。 このような禁制帯幅約IeVで高吸収係数のn形Cu1
nSe、膜の光入射側に禁制帯幅1.8〜2eVのp形
アモルファスシリコン膜を積層してヘテロ接合させた構
成において、p形アモルファスノリコン膜がアモルファ
ス構造であるために、格子の不整合に対する制約が緩和
されて良好なヘテロ接合が形成できる結果、高い光起電
力特性が得られる利点がある。この構成の場合、AMl
loom / cd下で、開放電圧v、、0.5v、短
絡電流J sc 23mA / cnl 、フィル・フ
ァクタFF0.55.変換効率6.3%が得られた。従
来のn CdS / p CuIn5etのへテロ接合
構造の場合の特性が、V 6C0,3V 、  J 3
C23111A/ oA 、 FFO,29,変換効率
2%であったから、本発明の効果は明らかである。逆に
p形のCurnSegを用い、n形アモルファスシリコ
ン膜とのへテロ接合としても同様の効果がある。Cu1
nSe、の導電形は、Cu/In比を0.9以下にする
とn形、1.0以上にするとp形が得られる。 第2図は、基板としてガラス板5を用いた実施例で、第
1図の場合と形成順序が逆であり、ガラス基板2の上に
透明導電膜4を被着し、次いでn形アモルフアスシリコ
ン膜3を100〜500人厚に形成する。つづいて20
0〜300℃という低温で膜形成が可能のスプレー法で
n形CuInSag l!! 2を形成し、最後にMな
どの金属電極膜6を蒸着法で形成した。この場合には光
はガラス側から入射させることになる。この場合も、第
1図の実施例と同ts n形アモルファスシリコン膜と
p形CuIn5et Illとの組合わせでもよい。 第3図および第4図はp−1−nアモルファスシリコン
セルとCuTnSezセルとのタンデム構造の光起電力
装置の実施例を示す、第3図の場合は、金属基板1の上
に第1図の場合と同様n形Cu1nSe4、膜2とn形
アモルフアスシリコン膜3を積層したのち、ひきつづい
てn形、i形、n形アモルフアスシリコン膜7.8.3
を順次形成し、その上に透明感tll14を被着する。 第4図は、ガラス基板を用いた場合のタンデム構造の実
施例で、第2図で示した実施例の構造の透明導電膜4と
n形アモルフアスシリコン膜3の間にp形、i形、n形
アモルフアスシリコン膜3゜8.7が挿入されるような
順序で膜形成を行い、タンデム構造としたものである。 このようなタンデム構造により、先ずp−1−nアモル
ファスシリコンセルで太陽光輻射のうちの400〜60
0nmの光波長領域の光電変換を行い、次いで600〜
11000nの波長領域の光はCuIn5etへテロ接
合セルで光電変換を行う結果、高い性能の光起電力袋:
が得られる。 以上のCulnXg半導体としてCu1nSezを用い
た実施例について述べたが、Cu1nSzを用いる場合
も同様な成膜法によって実施でき、すぐれた性能の光起
電力装置を製作することができる。
Figure 7fj1 shows an embodiment of the present invention, in which n-type polycrystalline Cu1 is placed on a metal substrate 1 made of stainless steel, for example.
An nSez film 2 is formed to a thickness of 1 to 3 μm, and then an n-type amorphous silicon film 3 doped with boron or the like is formed to a thickness of 100 μm.
Formed to a thickness of ~500 mm, followed by IT○, 5nO
A photovoltaic device is constructed by forming a transparent conductive film 4 such as z'1lf4 as a counter electrode to the substrate 1. In this case, the Cu1nSe film is CuC1, InC1, etc. (:HsNHC3eNHCHs (dimethylselenourea) aqueous solution is made into a mist using a spray method etc.
It was formed by chemically decomposing it by spraying it onto the substrate 1 heated to ~300°C. Note that this Cu1nSez film is Cu +
By simultaneous vacuum evaporation of I n + S e, or by printing on a powdered Cu1nSez compound and a paste with an organic material, 600
It can also be formed by sintering at ℃. The p-type amorphous silicon film is 5iHa, B! ) It was formed by glow discharge decomposition of a mixed gas of 16 and h. A p-type amorphous silicon carbide film may be used for this film. Such an n-type Cu1 with a forbidden band width of about IeV and a high absorption coefficient
nSe, in a structure in which a p-type amorphous silicon film with a forbidden band width of 1.8 to 2 eV is stacked on the light incident side of the film to form a heterojunction, since the p-type amorphous silicon film has an amorphous structure, the lattice defect As a result of relaxing constraints on matching and forming a good heterojunction, there is an advantage that high photovoltaic properties can be obtained. For this configuration, AMl
Under room/cd, open circuit voltage v,,0.5v, short circuit current Jsc 23mA/cnl, fill factor FF0.55. A conversion efficiency of 6.3% was obtained. The characteristics of the conventional n CdS/p CuIn5et heterojunction structure are V 6C0,3V, J 3
Since the C23111A/oA, FFO, and conversion efficiency were 2%, the effect of the present invention is clear. Conversely, a similar effect can be obtained by using a p-type CurnSeg and forming a heterojunction with an n-type amorphous silicon film. Cu1
The conductivity type of nSe is n-type when the Cu/In ratio is 0.9 or less, and p-type when it is 1.0 or more. FIG. 2 shows an example in which a glass plate 5 is used as a substrate, and the formation order is reversed from that in FIG. A silicon film 3 is formed to a thickness of 100 to 500 layers. Continued 20
n-type CuInSag l! using a spray method that allows film formation at low temperatures of 0 to 300°C. ! 2 was formed, and finally a metal electrode film 6 of M or the like was formed by vapor deposition. In this case, the light will be incident from the glass side. In this case as well, a combination of the same ts n-type amorphous silicon film and p-type CuIn5et Ill as in the embodiment of FIG. 1 may be used. 3 and 4 show an embodiment of a photovoltaic device having a tandem structure of a p-1-n amorphous silicon cell and a CuTnSez cell. In the case of FIG. 3, the photovoltaic device shown in FIG. After laminating the n-type Cu1nSe4 film 2 and the n-type amorphous silicon film 3 in the same way as in the case of , the n-type, i-type, and n-type amorphous silicon films 7.8.3
are sequentially formed, and a transparent TLL14 is applied thereon. FIG. 4 shows an example of a tandem structure using a glass substrate, in which p-type, i-type, and , n-type amorphous silicon film 3° 8.7° are inserted, forming a tandem structure. With such a tandem structure, the p-1-n amorphous silicon cell first captures 400 to 60% of the solar radiation.
Photoelectric conversion is performed in the optical wavelength region of 0 nm, and then 600 ~
As a result of photoelectric conversion of light in the wavelength range of 11000n using a CuIn5et heterojunction cell, a high-performance photovoltaic bag is produced:
is obtained. Although the embodiment using Cu1nSez as the Cu1nXg semiconductor has been described above, the same film formation method can be used when Cu1nSz is used, and a photovoltaic device with excellent performance can be manufactured.

【発明の効果】【Effect of the invention】

本発明によれば、光の吸収係数の高いCuInSezあ
るいはCu1nS1のようなカルコパライト系のCu1
nχ。 半4体とアモルファス構造で成膜技術の発達しているア
モルファスシリコン膜によりヘテロ接合構造を形成した
ため、接合における格子不整合の問題がなくなり、良好
な光起電力特性をもつ光起電力U Tlを容易に得るこ
とができ、その効果は極めて大きい。
According to the present invention, chalcopalite-based Cu1 such as CuInSez or Cu1nS1, which has a high light absorption coefficient,
nχ. Since the heterojunction structure is formed using an amorphous silicon film with well-developed film formation technology, it eliminates the problem of lattice mismatch at the junction and allows photovoltaic power U Tl with good photovoltaic properties to be generated. It can be easily obtained and its effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は別の実施
例の断面図、第3図、第4図はタンデム構造の本発明の
異なる二つの実施例を示す断面図である。 l:金属基板、2:n形Cu1nSe、膜、3:p形ア
モルファスシリコン膜、4:i3明導W膜、5:1,4
幻鵬電膿 第1図 第2図
Fig. 1 is a sectional view of one embodiment of the present invention, Fig. 2 is a sectional view of another embodiment, and Figs. 3 and 4 are sectional views showing two different embodiments of the present invention having a tandem structure. be. l: metal substrate, 2: n-type Cu1nSe, film, 3: p-type amorphous silicon film, 4: i3 bright conductive W film, 5: 1,4
Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)Xを周期表VI族元素としてCuInX_2なる分子
式を有する半導体の一導電形の膜と他導電形のアモルフ
ァスシリコン膜からなるヘテロ接合を有し、該接合のア
モルファスシリコン側を光入射側としたことを特徴とす
る光起電力装置。
1) It has a heterojunction consisting of a semiconductor film of one conductivity type and an amorphous silicon film of another conductivity type, which has a molecular formula of CuInX_2, where X is a group VI element of the periodic table, and the amorphous silicon side of the junction is the light incident side. A photovoltaic device characterized by:
JP61185457A 1986-08-07 1986-08-07 Photovoltaic device Pending JPS6341082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61185457A JPS6341082A (en) 1986-08-07 1986-08-07 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61185457A JPS6341082A (en) 1986-08-07 1986-08-07 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPS6341082A true JPS6341082A (en) 1988-02-22

Family

ID=16171125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61185457A Pending JPS6341082A (en) 1986-08-07 1986-08-07 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS6341082A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121541A (en) * 1997-07-28 2000-09-19 Bp Solarex Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
WO2009011333A1 (en) * 2007-07-13 2009-01-22 Omron Corporation Cis solar cell and method for manufacturing the cis solar cell
WO2009101925A1 (en) * 2008-02-12 2009-08-20 Tokyo Electron Limited Solar cell wherein solar photovoltaic thin film is directly formed on base

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121541A (en) * 1997-07-28 2000-09-19 Bp Solarex Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US6368892B1 (en) * 1997-07-28 2002-04-09 Bp Corporation North America Inc. Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
WO2009011333A1 (en) * 2007-07-13 2009-01-22 Omron Corporation Cis solar cell and method for manufacturing the cis solar cell
US8575476B2 (en) 2007-07-13 2013-11-05 Omron Corporation CIS solar cell and method for manufacturing the same
WO2009101925A1 (en) * 2008-02-12 2009-08-20 Tokyo Electron Limited Solar cell wherein solar photovoltaic thin film is directly formed on base
US8841545B2 (en) 2008-02-12 2014-09-23 Tohoku University Solar cell wherein solar photovolatic thin film is directly formed on base

Similar Documents

Publication Publication Date Title
Yang et al. Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies
Nakada et al. Cu (In1-x, Gax) Se2-based thin film solar cells using transparent conducting back contacts
CN108511606B (en) The perovskite preparation method of solar battery and product of a kind of high short circuit current, high transformation efficiency
Tiwari et al. Fabrication and analysis of all-sprayed CuInS2/ZnO solar cells
JPH05299677A (en) Solar battery and its manufacture
CN114335348B (en) PN heterojunction antimony selenide/perovskite solar cell and preparation method thereof
Fan et al. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact
JPS6341082A (en) Photovoltaic device
Tracey et al. Sol-gel derived TiO2/lead phthalocyanine photovoltaic cells
Guimard et al. Copper indium diselenide solar cells prepared by electrodeposition
JPH0122991B2 (en)
Omura et al. Recent technical advances in thin-film CdS/CdTe solar cells
CN207925499U (en) A kind of Cu2ZnSn(S,Se)4Thin-film solar cells
JPH09199741A (en) Thin film solar cell
Salve State of art of thin film photovoltic cell: A review
Nishio et al. Thin-film CdS/CdTe solar cell with 15.05% efficiency
CN108039388A (en) A kind of Cu2ZnSn(S,Se)4Thin-film solar cells and preparation method thereof
Sharma et al. Si and GaAs SIS heterostructure solar cells using spray-deposited ITO
JP4886116B2 (en) Field effect solar cell
JP3473255B2 (en) Manufacturing method of thin film solar cell
US10651408B2 (en) Selenium-fullerene heterojunction solar cell
JP3061338B2 (en) Solar cell and method of manufacturing the same
Qian Advances and Promises of Photovoltaic Solar Cells
Chen Characteristic analysis and comparison of perovskite solar cell
Mohamed et al. Infrared response and quantum efficiency of In-doped silicon (n) structure