JPS6341071A - Solid state image sensing element - Google Patents

Solid state image sensing element

Info

Publication number
JPS6341071A
JPS6341071A JP61184611A JP18461186A JPS6341071A JP S6341071 A JPS6341071 A JP S6341071A JP 61184611 A JP61184611 A JP 61184611A JP 18461186 A JP18461186 A JP 18461186A JP S6341071 A JPS6341071 A JP S6341071A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
vertical transfer
section
potential
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61184611A
Other languages
Japanese (ja)
Inventor
Hiroshi Doi
博 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61184611A priority Critical patent/JPS6341071A/en
Publication of JPS6341071A publication Critical patent/JPS6341071A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Abstract

PURPOSE:To obtain a video image having less after-image by inclining the potential distribution of a photodetector to a vertical transfer unit. CONSTITUTION:An impurity concentration of the reading side of a photodetector 9 is increased to reduce a potential of the gate region 10 side of the photodetector 9 from its opposite side, thereby inclining the potential of the photodetector 9 to a vertical transfer unit 11. That is, a voltage sufficient to read out a signal charge from the photodetector 9 to the unit 11 is applied to the region 10, the potential of the region 10 is reduced to the vicinity of the potential of the photodetector 9, and the signal charge stored in the photodetector 9 is read out to the unit 11, but since the potential of the photodetector 9 is inclined to the direction of the unit 11, a signal charge flows along the inclination of the potential of the photodetector 9 to the unit 11, and most of the charge stored in the photodetector 9 can be read out.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ビデオカメラなどに使用して有効な固体撮像
素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid-state imaging device useful for use in video cameras and the like.

従来の技術 固体撮像素子の性能を評価する上で、最も重要なパラメ
ーターの一つにあげられるのが残像特性であり、残像特
性の良い素子の開発が盛んである。
2. Description of the Related Art In evaluating the performance of solid-state image sensors, one of the most important parameters is the afterimage characteristic, and devices with good afterimage characteristics are being actively developed.

以下、図面を参照しながら固体撮像素子について説明す
る。
The solid-state image sensor will be described below with reference to the drawings.

まず、インターライン転送式固体撮像素子の構成、動作
を第3図および第4図を用いて説明する。
First, the structure and operation of the interline transfer type solid-state image sensor will be explained with reference to FIGS. 3 and 4.

第3図において、12は光電変換素子としてのフォトダ
イオード、13は垂直転送部であり、この垂直転送部1
3は垂直転送ゲート14,15゜16.17により構成
されている。18は信号読み出しゲートであり等測的に
垂直転送ゲート14および16と共通となっている。1
つは垂直転送パルス供給端子である。2oは水平転送部
であり、この水平転送部2oは水平転送ゲー)21.2
2により構成されている。23は水平転送パルスの供給
端子である。25は電荷検出部であり、転送されてきた
信号電荷を信号電圧に変換する。電荷検出部25は通常
フローティング ディフェージg7  アンプ(Flo
ating Diffu、5ion Amplifio
r)で構成されている。26は信号出力端子である。
In FIG. 3, 12 is a photodiode as a photoelectric conversion element, 13 is a vertical transfer section, and this vertical transfer section 1
3 is constituted by vertical transfer gates 14, 15°16.17. Reference numeral 18 denotes a signal readout gate, which is isometrically common to the vertical transfer gates 14 and 16. 1
One is a vertical transfer pulse supply terminal. 2o is a horizontal transfer unit, and this horizontal transfer unit 2o is a horizontal transfer game) 21.2
2. 23 is a horizontal transfer pulse supply terminal. Reference numeral 25 denotes a charge detection section, which converts the transferred signal charge into a signal voltage. The charge detection section 25 is normally a floating defage g7 amplifier (Flo
Ating Diffu, 5ion Amplifio
r). 26 is a signal output terminal.

以上の如き構成のインターライン転送形固体撮像素子の
動作を次に説明する。
The operation of the interline transfer type solid-state image sensing device having the above configuration will be explained next.

フォトダイオード12は被写体よりの入射光を光電変換
し、信号電荷を得る。光電変換により得られた信号電荷
は信号読み出しゲート18を介して垂直転送部13を構
成する垂直転送ゲートへ読み込まれた後、垂直転送パル
ス供給端子19より供給された垂直転送パルスにより、
垂直方向すなわち水平転送部20の方向へ順次転送され
、1水平ライン毎に水平転送部20に読み込まれる。水
平転送部20へ読み込まれた信号電荷は水平転送パルス
供給端子23から供給される水平転送パルスにより、電
荷検出部24へ順次転送され、電荷検出部24により電
圧に変換され、信号出力端子26から点順次信号として
得られる。前述のようにして得られた点順次信号を信号
処理部に入力して処理することによってテレビジョン信
号を得る。
The photodiode 12 photoelectrically converts incident light from an object to obtain a signal charge. After the signal charges obtained by photoelectric conversion are read into the vertical transfer gates forming the vertical transfer section 13 via the signal readout gate 18, the signal charges are read by the vertical transfer pulses supplied from the vertical transfer pulse supply terminal 19.
The data are sequentially transferred in the vertical direction, that is, in the direction of the horizontal transfer unit 20, and read into the horizontal transfer unit 20 one horizontal line at a time. The signal charge read into the horizontal transfer section 20 is sequentially transferred to the charge detection section 24 by the horizontal transfer pulse supplied from the horizontal transfer pulse supply terminal 23, converted into a voltage by the charge detection section 24, and then output from the signal output terminal 26. Obtained as a point sequential signal. A television signal is obtained by inputting the point sequential signal obtained as described above to a signal processing section and processing it.

第4図に前記のインターライン転送形固体撮像素子の垂
直転送パルス供給端子に供給される垂直転送パルスのタ
イミングチャートを示し、以下にその説明を述べる。
FIG. 4 shows a timing chart of vertical transfer pulses supplied to the vertical transfer pulse supply terminal of the interline transfer type solid-state image sensing device, and the explanation will be given below.

、、27.28は光電変換素子から垂直転送部13に一
侮号電荷を読み出す電荷読み出しパルス、29は前記の
垂直転送部13に読み出された信号電荷を水平転送部2
o方向へ順次転送する垂直転送パルスである。第1フイ
ールドの電荷読み出しパルス27から第2フイールドの
電荷読み出しパルス28の間に光電変換素子に蓄積され
た信号電荷が前記のインターライン転送固体撮像素子の
動作に基ついて、第2フイールドのテレビジョン信号と
なり、第2フイールドの電荷読み出しパルス28から第
1フイールドの電荷読み出しパルス27の間に光電変換
素子に蓄積された信号電荷が前記のインターライン転送
固体撮像素子の動作に基づいて第1フイールドのテレビ
ジョン信号となる。
, , 27 and 28 are charge read pulses for reading one signal charge from the photoelectric conversion element to the vertical transfer section 13, and 29 is a charge read pulse for reading the signal charge read out to the vertical transfer section 13 to the horizontal transfer section 2.
This is a vertical transfer pulse that is sequentially transferred in the o direction. Based on the operation of the interline transfer solid-state image sensor, the signal charge accumulated in the photoelectric conversion element between the charge readout pulse 27 of the first field and the charge readout pulse 28 of the second field is transmitted to the television of the second field. The signal charge accumulated in the photoelectric conversion element between the charge read pulse 28 of the second field and the charge read pulse 27 of the first field is converted to the signal charge of the first field based on the operation of the interline transfer solid-state image sensor. It becomes a television signal.

第5図は、従来のインターライン転送固体撮像素子の光
電変換部と垂直転送部の断面図である。
FIG. 5 is a sectional view of a photoelectric conversion section and a vertical transfer section of a conventional interline transfer solid-state imaging device.

P型半導体基板30には光電変換部としての第1のN型
不純物層31が拡散されている。またP型半導体基板3
0には光電変換された信号電荷を読み出すだめの第2の
N型不純物層32がゲート領ンターライ/CODならば
垂直転送部になる。またP型半導体基板3Qには、第1
及び第2のN型不純物層31.32を1単位として、こ
れら単位間を分離するためのP+型不純物層からなるス
トッパ一層34が設けられている。このゲート領域33
、第2のN型不純物層32、及びストッパ一層34が位
置するP型半導体基板3o上には、ゲート絶縁膜36を
介して多結晶シリコンゲート36が設けられている。
A first N-type impurity layer 31 serving as a photoelectric conversion section is diffused into the P-type semiconductor substrate 30 . Also, the P-type semiconductor substrate 3
If the second N-type impurity layer 32 for reading out the photoelectrically converted signal charge is a gate area interconnection/COD, it becomes a vertical transfer section. Further, the P-type semiconductor substrate 3Q has a first
and the second N-type impurity layers 31 and 32 as one unit, and a stopper layer 34 made of a P+-type impurity layer is provided to isolate these units. This gate area 33
A polycrystalline silicon gate 36 is provided on the P-type semiconductor substrate 3o on which the second N-type impurity layer 32 and the stopper layer 34 are located, with a gate insulating film 36 interposed therebetween.

第6図は、インターライ/転送固体撮像素子の光電変換
部と垂直転送部の電位分布を表した図である。
FIG. 6 is a diagram showing the potential distribution of the photoelectric conversion section and the vertical transfer section of the interline/transfer solid-state imaging device.

第6図aは光電変換部37に蓄積した信号電荷を垂直転
送部38に読み出す直前の電位分布である。この時、ゲ
ート領域39には光電変換部37から垂直転送部38に
信号電荷を遷移させるのに十分な電圧は与えていないの
で、ゲート領域39のポテンシャルは、光電変換部37
のポテンシャルよりも高い所に位置する。第6図すは光
電変換部37から垂直転送部38へ光電変換部37に蓄
積された信号電荷を読み出す期間の電位分布である。こ
の期間では、ゲート領域39に光電変換部3了から垂直
転送部38に信号電荷を読み出すのに十分な電圧が加わ
り、ゲート領域39のポテンシャルは、光電変換部37
のポテンシャル近くまで下げられる。ゲート領域39の
ポテンシャルが下がると、光電変換部37に蓄積されて
いた信号電荷は垂直転送部38に遷移し、第3図で示し
だように垂直転送部、水平転送部、フローティフグデイ
フュージョン アンプを経て、外部に取り出される。
FIG. 6a shows the potential distribution immediately before the signal charges accumulated in the photoelectric conversion section 37 are read out to the vertical transfer section 38. At this time, since sufficient voltage is not applied to the gate region 39 to transfer the signal charge from the photoelectric conversion section 37 to the vertical transfer section 38, the potential of the gate region 39 is lower than the potential of the photoelectric conversion section 37.
It is located in a place higher than the potential of FIG. 6 shows the potential distribution during the period when signal charges accumulated in the photoelectric conversion section 37 are read out from the photoelectric conversion section 37 to the vertical transfer section 38. During this period, a voltage sufficient to read signal charges from the photoelectric conversion section 3 to the vertical transfer section 38 is applied to the gate region 39, and the potential of the gate region 39 is lower than that of the photoelectric conversion section 37.
can be lowered to near its potential. When the potential of the gate region 39 decreases, the signal charge accumulated in the photoelectric conversion section 37 is transferred to the vertical transfer section 38, and as shown in FIG. After that, it is taken out to the outside.

発明が解決しようとする問題点 このような過程により信号電荷は取り出されるのである
が、光電変換部37に蓄積された電荷は信号電荷読み出
し期間ですべてを読み出しきれず、一部の電荷は残留電
荷として光電変換部37に残る。第6図Cは、光電変換
部37から垂直転送部38に電荷を読み出した後の電位
分布である。読み出しきれなかった一部の電荷が光電変
換部37に残っている。この残留電荷40は、次の読み
出し期間:C1次の期間の信号電荷と共に読み出される
ため、残像として画面に現われる。
Problems to be Solved by the Invention Although signal charges are extracted through such a process, not all of the charges accumulated in the photoelectric conversion section 37 can be read out during the signal charge readout period, and some of the charges remain as residual charges. It remains in the photoelectric conversion section 37 as. FIG. 6C shows the potential distribution after charges are read out from the photoelectric conversion section 37 to the vertical transfer section 38. Some charges that could not be read out remain in the photoelectric conversion unit 37. This residual charge 40 is read out together with the signal charge in the next read period: C1, and thus appears on the screen as an afterimage.

問題点を解決するだめの手段 不発明は、固体撮像素子の光電変換部の電位分布:・こ
着目し、固体撮像素子製造時の不純物拡散を行う際に、
光電変換部の電位分布が垂直転送部側へ傾斜するように
拡散を行うものである。
The only way to solve the problem is to focus on the potential distribution of the photoelectric conversion part of a solid-state image sensor, and when performing impurity diffusion during the manufacture of a solid-state image sensor,
Diffusion is performed so that the potential distribution of the photoelectric conversion section is inclined toward the vertical transfer section.

作用 この構成により、従来残像電荷として取り残されていた
電荷も読み出すことができ、クリアなビデオ映像を実現
する事ができる。
Effect: With this configuration, charges that were conventionally left behind as afterimage charges can also be read out, making it possible to realize clear video images.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明による固体撮像素子の断面図を示したも
のである。P型半導体基板1には光電変換部となる第1
のN型不純物層2.第2のN型不純物層3が拡散されて
おり、第2の不純物層3の方が第1の不純物層2よりも
不純物濃度が濃い。以下、各々光電変換部2,3と呼ぶ
。またP型半導体基板1には光電変換された信号電荷を
読み出し、かつ垂直転送する垂直転送部となる第3のN
型不純物層4がゲート領域5を介して光電変換部2゜3
と隣接して設けである。以下、第3のN型不純物層を垂
直転送部4とする。またP型半導体基板1には、光電変
換部2,3垂直転送部4を一単位として、これら単位間
を分離するためのP+型不純物層からなるス[・ツバ一
層6が設けられている。
FIG. 1 shows a cross-sectional view of a solid-state image sensor according to the present invention. The P-type semiconductor substrate 1 has a first layer which becomes a photoelectric conversion section.
N-type impurity layer 2. The second N-type impurity layer 3 is diffused, and the second impurity layer 3 has a higher impurity concentration than the first impurity layer 2. Hereinafter, they will be referred to as photoelectric conversion units 2 and 3, respectively. In addition, the P-type semiconductor substrate 1 has a third N, which serves as a vertical transfer section that reads and vertically transfers photoelectrically converted signal charges.
The type impurity layer 4 is connected to the photoelectric conversion section 2°3 via the gate region 5.
It is located adjacent to. Hereinafter, the third N-type impurity layer will be referred to as the vertical transfer section 4. Further, the P type semiconductor substrate 1 is provided with a strip layer 6 made of a P+ type impurity layer for separating the photoelectric conversion sections 2, 3 and the vertical transfer section 4 as one unit.

この垂直転送部4.ゲート領域5及びストッパ一層6が
位置するP型半導体基板1上には、ゲート絶縁膜7を介
して多結晶ンリコンゲート8が設けである。
This vertical transfer section 4. A polycrystalline silicon gate 8 is provided on the P-type semiconductor substrate 1 where the gate region 5 and the stopper layer 6 are located, with a gate insulating film 7 interposed therebetween.

従来、光電変換部の構造は単一濃度のN型不純物を拡散
させて、形成していたのであるが、本実施例においては
不純物濃度を単一にせず、光電変換部2の読み出し側、
即ち、光電変換部2のゲート領域5に近い側の濃度をそ
の反対側に比べ濃くしている。第1図では、光電変換部
2に比べ濃い濃度の不純物を拡散させた光電変換部が存
在している。以上のような構成にする事により、従来、
残像電荷として残っていた電荷も、垂直転送部に読み出
され易くなり、その結果、クリアなビデオ映像を実現す
る事ができる。その原理を第2図で説明する。
Conventionally, the structure of the photoelectric conversion section was formed by diffusing N-type impurities at a single concentration, but in this embodiment, the impurity concentration is not made uniform, and the readout side of the photoelectric conversion section 2,
That is, the concentration on the side near the gate region 5 of the photoelectric conversion section 2 is made higher than that on the opposite side. In FIG. 1, there is a photoelectric conversion section in which impurities with a higher concentration than the photoelectric conversion section 2 are diffused. By configuring as above, conventionally,
Charges remaining as afterimage charges are also easily read out to the vertical transfer section, and as a result, clear video images can be realized. The principle will be explained with reference to FIG.

第2図は、本発明による固体撮像素子の光電変換部と垂
直転送部の電位分布を表した図である。
FIG. 2 is a diagram showing the potential distribution of the photoelectric conversion section and the vertical transfer section of the solid-state imaging device according to the present invention.

第2図aは光電変換部に蓄積した信号電荷を垂直転送部
に読み出す直前の電位分布である。光電変換部9の読み
出し側、即ちゲート領域1o側の不純物濃度を濃くした
ので光電変換部9のゲート領域10側の方がその反対側
よりもポテンシャルが低くなる。つまり、光電変換部9
のポテンシャルを、垂直転送部11側へ傾斜させる事が
できる。
FIG. 2a shows the potential distribution immediately before the signal charges accumulated in the photoelectric conversion section are read out to the vertical transfer section. Since the impurity concentration on the readout side of the photoelectric conversion section 9, that is, on the gate region 1o side, is increased, the potential on the gate region 10 side of the photoelectric conversion section 9 is lower than that on the opposite side. In other words, the photoelectric conversion section 9
It is possible to tilt the potential toward the vertical transfer section 11 side.

第2図すは光電変換部9から垂直転送部11に光電変換
部9に蓄積された信号電荷を読み出す期間の電位分布で
ある。ゲート領域10に光電変換部9から垂直転送部1
1に信号電荷を読み出すのに十分な電圧が加わり、ゲー
ト領域10のポテンシャルが光電変換部9のポテンシャ
ル近くまで下げられ、光電変換部9に蓄積されていた信
号電荷を垂直転送部11に読み出すことができるのであ
るが、光電変換部9のポテンシャルが垂直転送部11方
向に傾斜しているため、光電変換部9のポテンシャルの
傾斜に沿って信号電荷が垂直転送部11に流れ込むので
、光電変換部9に蓄積された電荷の大部分を読み出す事
ができる。即ち、従来、光電変換部に残留していた残像
電荷も読み出されることになり、残像の少ないビデオ映
像を実現する事ができる。
FIG. 2 shows the potential distribution during the period when signal charges accumulated in the photoelectric conversion section 9 are read from the photoelectric conversion section 9 to the vertical transfer section 11. From the photoelectric conversion section 9 to the vertical transfer section 1 in the gate region 10
1 is applied with a voltage sufficient to read out signal charges, the potential of the gate region 10 is lowered to near the potential of the photoelectric conversion section 9, and the signal charges accumulated in the photoelectric conversion section 9 are read out to the vertical transfer section 11. However, since the potential of the photoelectric conversion section 9 is inclined in the direction of the vertical transfer section 11, the signal charge flows into the vertical transfer section 11 along the inclination of the potential of the photoelectric conversion section 9. Most of the charges accumulated in 9 can be read out. That is, the afterimage charges that conventionally remained in the photoelectric conversion section are also read out, making it possible to realize a video image with less afterimages.

発明の効果 本発明の固体撮像素子により、残像の少ないビデオ映像
を実現する事ができ、その効果は非常に大なるものであ
る。
Effects of the Invention The solid-state imaging device of the present invention makes it possible to realize video images with little afterimage, and the effects are very significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による固体撮像素子の要部の断面図、第
2図は第1図の動作を説明するだめのポテンシャル図、
第3図は固体撮像素子からの信号読み出しを説明するだ
めの回路図、第4図は第3図の各部の波形図、第6図は
従来の固体撮像素子の要部の断面図、第6図は第6図の
動作を説明する定めの波形図である。 1・・・・・P型半導体基板、2,3・・・・・光電変
換部、4・・・・・垂直転送部、6・・・・・・ゲート
領域、6・・・・・・戸ストッパ一層、7・・・・・・
ゲート絶縁膜、8・・・・・・多結晶シリコンゲート、
9・・・・・・光電変換部、1Q・・・・・・ゲート領
域、11・・・・・・垂直転送部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名弔 
2 図 8                        
  ″″″″″″− 16図
FIG. 1 is a sectional view of the main parts of the solid-state image sensor according to the present invention, and FIG. 2 is a potential diagram for explaining the operation of FIG. 1.
Fig. 3 is a circuit diagram for explaining signal readout from a solid-state image sensor, Fig. 4 is a waveform diagram of each part in Fig. 3, Fig. 6 is a sectional view of main parts of a conventional solid-state image sensor, The figure is a regular waveform diagram illustrating the operation of FIG. 6. 1... P-type semiconductor substrate, 2, 3... Photoelectric conversion section, 4... Vertical transfer section, 6... Gate region, 6... Door stopper layer 7...
Gate insulating film, 8... Polycrystalline silicon gate,
9...Photoelectric conversion section, 1Q...Gate region, 11...Vertical transfer section. Name of agent: Patent attorney Toshio Nakao and one other person condolence
2 Figure 8
″″″″″″− Figure 16

Claims (1)

【特許請求の範囲】[Claims] 光電変換部と、信号電荷垂直転送部と、信号電荷水平転
送部とが独立し、前記光電変換部に蓄積された信号電荷
を前記信号電荷垂直転送部に読み出す電荷読み出しゲー
トを有するインターライン転送固体撮像素子において、
前記光電変換部の電位分布を前記信号電荷垂直転送部方
向に傾斜させることを特徴とする固体撮像素子。
An interline transfer solid state in which a photoelectric conversion section, a signal charge vertical transfer section, and a signal charge horizontal transfer section are independent, and a charge readout gate reads out signal charges accumulated in the photoelectric conversion section to the signal charge vertical transfer section. In the image sensor,
A solid-state imaging device, characterized in that the potential distribution of the photoelectric conversion section is tilted toward the signal charge vertical transfer section.
JP61184611A 1986-08-06 1986-08-06 Solid state image sensing element Pending JPS6341071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61184611A JPS6341071A (en) 1986-08-06 1986-08-06 Solid state image sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61184611A JPS6341071A (en) 1986-08-06 1986-08-06 Solid state image sensing element

Publications (1)

Publication Number Publication Date
JPS6341071A true JPS6341071A (en) 1988-02-22

Family

ID=16156247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61184611A Pending JPS6341071A (en) 1986-08-06 1986-08-06 Solid state image sensing element

Country Status (1)

Country Link
JP (1) JPS6341071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423359A (en) * 1990-05-14 1992-01-27 Nec Corp Solid image-pick up element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423359A (en) * 1990-05-14 1992-01-27 Nec Corp Solid image-pick up element

Similar Documents

Publication Publication Date Title
US7687302B2 (en) Frame shutter pixel with an isolated storage node
JPS5819080A (en) Solid-state image sensor
JP3892112B2 (en) Active pixel sensor with punch-through reset and crosstalk suppression
GB2046015A (en) Solid-state imaging device
JPH09266296A (en) Solid-state image sensing device
JP3070146B2 (en) Solid-state imaging device
JPH0319711B2 (en)
JP2917361B2 (en) Solid-state imaging device
JPH0416948B2 (en)
JPS6341071A (en) Solid state image sensing element
JPH08162626A (en) Solid-state image pickup device
JPH06140618A (en) Solid-state image sensing element
JPH0424873B2 (en)
JPH06334166A (en) Solid-state image pickup device
JP3398388B2 (en) Solid-state imaging device
JPH05243546A (en) Solid-state image sensing device
JPS5846905B2 (en) Kotai Satsuzou Sochi
JPH05243549A (en) Solid-state image sensing device and its manufacture
JP2892912B2 (en) Inspection method for solid-state imaging device
JPS62206878A (en) Solid-state image pickup element
JP3391697B2 (en) Solid-state imaging device
JP2848435B2 (en) Solid-state imaging device
JPH07114276B2 (en) Solid-state imaging device
JPS63266872A (en) Solid-state image sensing device
JPH0341768A (en) Solid-state image pick-up device