JPS6340847A - Gas detection - Google Patents

Gas detection

Info

Publication number
JPS6340847A
JPS6340847A JP18450686A JP18450686A JPS6340847A JP S6340847 A JPS6340847 A JP S6340847A JP 18450686 A JP18450686 A JP 18450686A JP 18450686 A JP18450686 A JP 18450686A JP S6340847 A JPS6340847 A JP S6340847A
Authority
JP
Japan
Prior art keywords
porous silicon
silicon layer
silicon substrate
gas
monocrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18450686A
Other languages
Japanese (ja)
Other versions
JPH0810202B2 (en
Inventor
Tomoyasu Nakano
中野 朝安
Akira Kinoshita
木下 彬
Akira Motohashi
本橋 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP61184506A priority Critical patent/JPH0810202B2/en
Publication of JPS6340847A publication Critical patent/JPS6340847A/en
Publication of JPH0810202B2 publication Critical patent/JPH0810202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To facilitate the detection of various gases, by arranging an element in which electrodes are formed on the surface of a porous silicon layer of a monocrystalline silicon substrate with the porous silicon layer on one surface thereof and on the surface of the monocrystalline silicon substrate as the back thereof respectively. CONSTITUTION:A lead in which an electrode 12 is formed on a part of the surface of a porous silicon layer 11 is connected to one surface of a monocrystalline silicon substrate 10. On the other hand, the surface of the monocrystalline silicon substrate 10 as the back thereof undergoes an anode chemical conversion treatment to form an element. The element thus formed is measured to show how it reacts in atmospheres of various gasses. The measurement was conducted in vacuum and in a saturated vapor of water or alcohol and the results are compared. The capacity of a sample porous silicon layer formed at a thickness of 22mum is 28pF in vacuum whereas it increases significantly to 180pF in the saturated alcohol vapor and 2,900pF in the insaturated water vapor. This confirmed that the element reacts with the gas to increase the capacity thereof noticeably.

Description

【発明の詳細な説明】 〔厘業上の利用分野〕 本発明は、各種の気体に反応するガスセンサを用い九ガ
ス検知方法に係るもので、特に多孔質シリコンを利用し
てガスを検知する方法に関するものである。
[Detailed description of the invention] [Field of industrial application] The present invention relates to a method for detecting nine gases using a gas sensor that reacts with various gases, and in particular a method for detecting gases using porous silicon. It is related to.

〔従来技術とその問題点〕[Prior art and its problems]

ガスセンサとしての材料は種々ろシ、またその構造につ
いても種々青光られている。その中でシリコンなどの半
導体基板を用いたものは、増幅器などを一体に形成でき
、小型化が可能などといった利点があり注目を集めてい
る。
There are various materials and structures for gas sensors. Among these, those using semiconductor substrates such as silicon are attracting attention because they have the advantage of being able to integrate amplifiers and other components and can be made smaller.

しかし、ガスセンサとして用いるためには、構造が複雑
になったり、生化学物質を用いなければならないといっ
た問題がsb、コストなどの面で満足できるものは少な
かった。
However, in order to use it as a gas sensor, there have been problems such as a complicated structure and the need to use biochemical substances, and there have been few that have been satisfactory in terms of cost, etc.

そこで、発明者は多孔質シリコンを利用してガスセンサ
を得ることを提案した(特願昭6l−42966)。こ
れは単結晶シリコンと多孔質シリコンを組み合わせた素
子に電極を形成し九簡単な構造のものである。しかし、
電極を形成する方法、反応及び復帰の時間などの面で必
ずしも満足できるものではなかった。
Therefore, the inventor proposed to obtain a gas sensor using porous silicon (Japanese Patent Application No. 61-42966). This has a simple structure in which electrodes are formed on an element that combines single crystal silicon and porous silicon. but,
The method of forming the electrode, reaction and recovery time, etc. were not always satisfactory.

〔目 的〕〔the purpose〕

本発明は、上記のような問題点を解決して、反応及び復
帰が短時間でなされる多孔質シリコンを利用したガス検
知方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a gas detection method using porous silicon that can undergo reaction and recovery in a short time.

また、用いる素子の電極の形成も容易で、安定した特性
を得られるガス検知方法を提供することを目的とする。
Another object of the present invention is to provide a gas detection method in which the electrodes of the element used can be easily formed and stable characteristics can be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、多孔質シリコンを形成した素子に直流バイア
スに代えて交流バイアスを印加しその容量の変化を検出
することによって上記の目的を達成するものである。
The present invention achieves the above object by applying an alternating current bias instead of a direct current bias to an element formed of porous silicon and detecting a change in the capacitance.

すなわち、−表ijに多孔質シリコン層を具えた単結晶
シリコン基板の該多孔質シリコン層表面及びその裏面の
単結晶シリコン基板表面にそれぞれf甑を形成した素子
をガス雰囲気中に配置し、該素子の容量の変化によって
ガスを検知することに特徴を有するものである。
That is, - a single crystal silicon substrate having a porous silicon layer on its front side, and an element in which a layer F is formed on the surface of the porous silicon layer and the surface of the single crystal silicon substrate on the back side thereof are placed in a gas atmosphere; The feature is that gas is detected by changes in the capacitance of the element.

また、この容量の変化を周波数の変化とじて検出するこ
とKよって検出を容易べするものである。
Furthermore, by detecting this change in capacitance together with a change in frequency, detection can be facilitated.

〔実施列〕[Implementation row]

本発明は、大きな表面積を有する多孔質クリコ/の性質
を研究する過程でなされたもので、付着するガスによっ
て多孔質シリコンの電気的特性がI化することを利用し
たものである。その原理についてはまだ完全に解明され
ていない点もある。
The present invention was developed in the process of researching the properties of porous silicone having a large surface area, and utilizes the fact that the electrical properties of porous silicon change to I due to attached gas. There are some aspects of this principle that have not yet been completely elucidated.

また、多孔質シリコンそのものの性質についても不明な
点があるが、十分な再現性を有して電気的特性の変化が
確認された。以下に実施列について説明する。
Additionally, although there are some unknowns regarding the properties of porous silicon itself, changes in electrical properties were confirmed with sufficient reproducibility. The implementation sequence will be explained below.

第1図は本発明に利用するセンサ部の一列を示す正面断
rIIJ図である。
FIG. 1 is a front sectional rIIJ view showing one row of sensor sections used in the present invention.

単結晶シリコン基板10の一表面に多孔質シリコンNj
11が形成してあり、多孔質シリコン層110表面の一
部分に電II!12が形成されリード線が接続されてい
る。一方、裏面の単結晶シリコン基板10に接して全面
に電慨13が形成されている。
Porous silicon Nj is formed on one surface of the single crystal silicon substrate 10.
11 is formed on a portion of the surface of the porous silicon layer 110. 12 is formed and a lead wire is connected thereto. On the other hand, an electric conductor 13 is formed on the entire surface in contact with the single crystal silicon substrate 10 on the back side.

多孔質シリコン層11は単結晶シリコン基板100表面
を陽極化成処理することによって形成する。
Porous silicon layer 11 is formed by subjecting the surface of single crystal silicon substrate 100 to anodization treatment.

ボロンをドープしたP型巣結晶シリコン基板(ρ=90
・創)の一表面をフッ化水素(HF)溶液中で陽極化成
処理を施した。陽極化成処理の条件によって多孔質シリ
コン層の厚みが決まるが、本発明を実施するKあたりて
は7〜45μmの厚みとした。
P-type nest crystal silicon substrate doped with boron (ρ=90
・One surface of the wound) was anodized in a hydrogen fluoride (HF) solution. Although the thickness of the porous silicon layer is determined by the conditions of the anodization treatment, the thickness was set to 7 to 45 μm for K in which the present invention is carried out.

′TjL極13は何を用いても良く、アルミニウムなど
Kよって形成できる。多孔質シリコン層110表面に形
成する電極12は全面にわたりてではなく10■X10
mの表面の中央部のみに形成した。
'TjL pole 13 may be made of any material, and can be formed of K such as aluminum. The electrode 12 formed on the surface of the porous silicon layer 110 is not formed over the entire surface but in a 10×10
It was formed only in the center of the surface of m.

この電極12の材料としてはアルミニウムを真空蒸着し
たものやPb−8n−Zn−Cd合金を超音波半田付け
したものあるいは金のスパッタ模を用いた。
As the material of this electrode 12, vacuum-deposited aluminum, ultrasonic soldered Pb-8n-Zn-Cd alloy, or sputtered gold pattern was used.

上記のように形成した素子を各種のガス雰囲気中でどの
ように反応するかを測定した。測定は真空状態に置いた
場合と水ま九はアルコールの飽和蒸気中に置いた場合と
を比較した。
We measured how the elements formed as described above react in various gas atmospheres. The measurements were performed when the water tank was placed in a vacuum state and when the water tank was placed in saturated alcohol vapor.

多孔質シリコン層の厚みが22μmに形成された試料に
おいて、24.5℃の真空中での容量が28pFであっ
たのに比較して飽和アルコール蒸気中では180pF、
飽和水蒸気中では2900pFと容量が大幅に増加した
。また、多孔質シリては22℃の真空中で30pFでめ
ったものが飽和水蒸気中で2700pFに増加した。
In a sample in which the porous silicon layer was formed with a thickness of 22 μm, the capacitance in vacuum at 24.5°C was 28 pF, but in saturated alcohol vapor the capacitance was 180 pF,
In saturated steam, the capacity increased significantly to 2900 pF. In addition, the porous silica rarely had a value of 30 pF in a vacuum at 22°C, but increased to 2700 pF in saturated steam.

このようKいずれもガスに反応して答情が大幅に増加し
ていることが確認された。なお、この容置の測定はLC
Rメータを用いて行ったゆなお、容量と並列に形成され
る抵抗について測【 定すると20MΩからα5MΩと約20分の−に減少し
ていた。この抵抗の減少は容度の増加と関係があるもの
と考えられるが詳しいメカニズムは解明されていない。
It was confirmed that the responses of both types of K increased significantly in response to the gas. Note that this container is measured using LC.
When the resistance formed in parallel with the capacitance was measured using an R meter, it was found that the resistance had decreased from 20MΩ to α5MΩ, which is approximately 20 minutes lower. This decrease in resistance is thought to be related to the increase in capacity, but the detailed mechanism has not been elucidated.

多孔質シリコン層11に形成する電極12の材料の違い
は前記の特性の変化にはほとんど影響が無かった。
The difference in the material of the electrode 12 formed on the porous silicon layer 11 had almost no effect on the change in the characteristics described above.

上記の容量の変化を周波数の変化として検出するために
素子とTLO71CP(TI社製)を用いた発振器を組
み合わせた列を第2図に示す。セン?素子20を発振回
路21に接続しその出力に周波数計22に接続したもの
である。この発振回路はこの列に限られるものではなく
池の構成りも第2図のセンサ素子な空温で乾燥空気中と
飽和水蒸気中にそれぞれ置いたときの発振周波数の変化
を示したのが第5図である。乾燥空気中から飽和水蒸気
中に置いたときの発振周波数の変化を示すのが曲線31
でsb、短時間に急激に周波数が下がっていることを示
している。約40秒ではソ安定した周波数となる。この
ことから、数秒で周波数の顕著な変化が現れることにな
る。この素子を再び乾燥空気中に置いて復帰の状況を示
したのが曲線52でらる。約60秒ではソ完全に復帰し
ており、このことから応答、復帰のいずれも短時間であ
ることが分る。
FIG. 2 shows a row in which an element and an oscillator using TLO71CP (manufactured by TI) are combined in order to detect the above-described change in capacitance as a change in frequency. Sen? The element 20 is connected to an oscillation circuit 21, and its output is connected to a frequency meter 22. This oscillation circuit is not limited to this row, and the configuration of the pond is also shown in Figure 2, which shows the change in oscillation frequency when the sensor element is placed in dry air and saturated steam at air temperature. This is Figure 5. Curve 31 shows the change in oscillation frequency when placed in dry air to saturated steam.
sb indicates that the frequency drops rapidly in a short period of time. After about 40 seconds, the frequency becomes stable. This results in a noticeable change in frequency within a few seconds. A curve 52 shows the state of recovery when this element is placed in dry air again. It was completely recovered in about 60 seconds, which shows that both the response and the recovery are short.

なお、第4図は第2図の発振回路を用いた場合の容置と
周波数の関係を示したもので、環極間の容量が増加する
に従って発振周波数が下がっていることを示している。
FIG. 4 shows the relationship between capacity and frequency when the oscillation circuit shown in FIG. 2 is used, and shows that the oscillation frequency decreases as the capacitance between the ring electrodes increases.

第2図に示した列では測定に周波数計を用いているが、
これをスピーカあるいはブザーに代えると音が変化して
検知することもできる。短時間で急激に周波数が変化す
るので容易に変化を知ることができる。
In the column shown in Figure 2, a frequency meter is used for measurement, but
If this is replaced with a speaker or buzzer, the sound can be changed and detected. Since the frequency changes rapidly in a short period of time, the change can be easily noticed.

反応するガスとしては、前記のアルコール、水だけでな
く酢酸、アセトンなどにおいても効果が確認された。極
性分子の雰囲気には実験したもののほとんどが反応を示
した。
The effect was confirmed not only for the above-mentioned alcohol and water but also for acetic acid, acetone, etc. as reacting gases. Most of the experiments conducted showed a reaction in an atmosphere of polar molecules.

測定において、真空中と雰囲気ガス中で比較するよりも
、空気中と雰囲気ガス中で比較した方が応答、復帰の時
間が短くなることも確認された。
In the measurement, it was also confirmed that the response and recovery times were shorter when comparing in air and in atmospheric gas than in vacuum and in atmospheric gas.

例えば空気中とアセトンガス中に交互に置いた場合、直
ちに変化が生じた。
For example, when placed alternately in air and acetone gas, an immediate change occurred.

〔効果〕〔effect〕

本発明によれば、センナ素子として簡単な構造の多孔質
シリコン層を具えたシリコン基板を用いることができ、
各種のガスを検知することができる。
According to the present invention, a silicon substrate provided with a porous silicon layer having a simple structure can be used as a senna element,
It can detect various gases.

また、極めて短い時間で応答、復帰が可能となり、実用
的なガス検知方法が得られる。
In addition, response and recovery are possible in an extremely short time, providing a practical gas detection method.

更に、多種のガスに反応するので用途の広範な検知方法
である利点も有する。
Furthermore, it has the advantage of being a versatile detection method as it reacts with a wide variety of gases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いるセンサ素子の一例の正面断面図
、第2図は測定方法の一関1を示す回路図、第3図は応
答の状況を示す説明図、第4図は容量と周波数の関係を
示す説明図でめる。 10・・・・・・単結晶シリコン基板。 11・・・・・・多孔質シリコy h +12.13・
・・・・・電極 理
Fig. 1 is a front sectional view of an example of a sensor element used in the present invention, Fig. 2 is a circuit diagram showing the first aspect of the measurement method, Fig. 3 is an explanatory diagram showing the response situation, and Fig. 4 is the capacitance and frequency. An explanatory diagram showing the relationship between. 10... Single crystal silicon substrate. 11... Porous silico y h +12.13.
・・・・・・Electrode theory

Claims (2)

【特許請求の範囲】[Claims] (1)一表面に多孔質シリコン層を具えた単結晶シリコ
ン基板の該多孔質シリコン層表面及びその裏面の単結晶
シリコン基板表面にそれぞれ電極を形成した素子をガス
雰囲気中に配置し、該素子の電極間の容量の変化によつ
てガスを検知することを特徴とするガス検知方法。
(1) An element having electrodes formed on the surface of the porous silicon layer and the surface of the single crystal silicon substrate on the back side of a single crystal silicon substrate having a porous silicon layer on one surface is placed in a gas atmosphere, and the element is placed in a gas atmosphere. A gas detection method characterized by detecting gas by a change in capacitance between electrodes.
(2)該容量の変化を周波数の変化としてガスを検知す
ることを特徴とする特許請求の範囲第1項記載のガス検
知方法。
(2) The gas detection method according to claim 1, wherein the gas is detected by using the change in capacitance as a change in frequency.
JP61184506A 1986-08-06 1986-08-06 Gas detection method Expired - Fee Related JPH0810202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61184506A JPH0810202B2 (en) 1986-08-06 1986-08-06 Gas detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61184506A JPH0810202B2 (en) 1986-08-06 1986-08-06 Gas detection method

Publications (2)

Publication Number Publication Date
JPS6340847A true JPS6340847A (en) 1988-02-22
JPH0810202B2 JPH0810202B2 (en) 1996-01-31

Family

ID=16154383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61184506A Expired - Fee Related JPH0810202B2 (en) 1986-08-06 1986-08-06 Gas detection method

Country Status (1)

Country Link
JP (1) JPH0810202B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513590A (en) * 2008-12-23 2012-06-14 スリーエム イノベイティブ プロパティズ カンパニー Organic chemical sensor with microporous organosilicate material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102489142B1 (en) * 2020-11-25 2023-01-13 한양대학교 에리카산학협력단 Capacitive gas sensor and its manufacturing method
WO2023153561A1 (en) * 2022-02-09 2023-08-17 한양대학교 에리카산학협력단 Complex gas sensor, method for manufacturing same, and method for controlling complex gas sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259943A (en) * 1977-01-31 1985-12-23 パナメトリクス・インコーポレイテツド Humidity sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60259943A (en) * 1977-01-31 1985-12-23 パナメトリクス・インコーポレイテツド Humidity sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012513590A (en) * 2008-12-23 2012-06-14 スリーエム イノベイティブ プロパティズ カンパニー Organic chemical sensor with microporous organosilicate material

Also Published As

Publication number Publication date
JPH0810202B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US5521123A (en) Infrared sensor and method for production thereof
Kim et al. Humidity sensors using porous silicon layer with mesa structure
JPS6323500B2 (en)
US4393434A (en) Capacitance humidity sensor
JPS6351501B2 (en)
JPS6340847A (en) Gas detection
US5549870A (en) Self-supporting thin-film filament detector, process for its manufacture and its application to gas detection and gas chromatography
JPH07167815A (en) Sensor device and preparation thereof
CN110361445B (en) Multi-parameter high-selectivity CMUTs gas sensor and use and preparation method thereof
JPS63238545A (en) Detection of gas
CN207816892U (en) A kind of sensor chip with air bridges reference electrode light-shielding structure
JPS63263426A (en) Sensor element
JPS6358249A (en) Humidity detecting element
JPS63238546A (en) Gas detecting method
JPH01307636A (en) Device and method for detecting hydrogen concentration
JPH06201500A (en) Pressure sensor
JP4216237B2 (en) Manufacturing method of thermoelectric chemical sensor
JPH07209163A (en) Sensor for detecting gas
JPH0351740Y2 (en)
JP2607631B2 (en) Electrochemical sensor
JPH021379B2 (en)
JPS6073448A (en) Atmosphere sensor
JPS6176948A (en) Thin film gas detecting element
JP2559682B2 (en) Method for manufacturing moisture sensitive element
JPH0735726A (en) Gas component detecting element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees