JPS6340765A - Isotropic carbon material - Google Patents

Isotropic carbon material

Info

Publication number
JPS6340765A
JPS6340765A JP61183486A JP18348686A JPS6340765A JP S6340765 A JPS6340765 A JP S6340765A JP 61183486 A JP61183486 A JP 61183486A JP 18348686 A JP18348686 A JP 18348686A JP S6340765 A JPS6340765 A JP S6340765A
Authority
JP
Japan
Prior art keywords
carbon
weight
fibers
pitch
isotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61183486A
Other languages
Japanese (ja)
Inventor
土岐 正治
植村 武夫
村上 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61183486A priority Critical patent/JPS6340765A/en
Publication of JPS6340765A publication Critical patent/JPS6340765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は緻密な等方性炭素材料(黒鉛材料も含む)に係
り、特に半導体製造用のルツボ、円筒やロケットノズル
等のように等方性で耐熱衝撃性を要求される部材として
好適な炭素材料に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to dense isotropic carbon materials (including graphite materials), and particularly to isotropic materials such as crucibles, cylinders, and rocket nozzles for semiconductor manufacturing. The present invention relates to a carbon material suitable for a member requiring thermal shock resistance.

炭素材料は他の材料に較べると高熱伝導、低熱膨脹で熱
衝撃にも強い材料であるが、近年は各種用途での使用条
件が苛酷になり、一層均質等方性で高強度、耐熱衝撃性
の炭素材料が求められている。
Compared to other materials, carbon materials have high thermal conductivity, low thermal expansion, and are resistant to thermal shock.However, in recent years, the usage conditions for various applications have become harsher, and carbon materials have become more homogeneous, isotropic, high strength, and resistant to thermal shock. carbon materials are in demand.

従来の技術 炭素材料の最も一般的な製法はコークス、黒鉛等の粉末
にピッチ、樹脂等の結合材を加え、成形、焼成さらに必
要により黒鉛化する方法である。成形が押出しでは成形
体に異方性が出るので特に等方性が必要な場合にはラバ
ープレス成形も行なわれている。しかし上の製法による
ものでは強度が十分でなく、また熱衝撃性にも問題があ
る。そこで近年は炭素m!Iを用いた複合材が脚光をあ
び、一部実用に供されている。
BACKGROUND TECHNOLOGY The most common method for producing carbon materials is to add a binder such as pitch or resin to powder such as coke or graphite, and then form the powder, sinter it, and graphitize it if necessary. When molding is done by extrusion, the molded product becomes anisotropic, so when isotropy is particularly required, rubber press molding is also used. However, the above manufacturing method does not have sufficient strength and also has problems with thermal shock resistance. So in recent years, carbon m! Composite materials using I have been in the spotlight, and some are in practical use.

発明が解決しようとする問題点 炭素繊維を用いた複合材料は強度は大きいが、通常は繊
維の方向性に基づく異方性がある。この複合材料は炭素
繊維の織布あるいは不織布に結合合し、また場合により
これに炭素粉末を加えて混練し、炭素繊維を混練物中に
分散させる方法もある。この場合の炭素iaBは比較的
短かい繊維例えばチョツプドヤーンが使われているが、
繊維は凝集し易く、これを混練物中に無方向にかつでき
るだけ均一に分散させることは困難である。そのために
均質な製品がつくりにくい。そしてこの場合の成形は一
般に押出しやモールドで行なわれているのでやはり異方
性が避けられない。
Problems to be Solved by the Invention Although composite materials using carbon fibers have high strength, they usually have anisotropy due to the orientation of the fibers. There is also a method in which this composite material is bonded to a carbon fiber woven or nonwoven fabric, and if necessary, carbon powder is added thereto and kneaded to disperse the carbon fibers in the kneaded material. In this case, the carbon iaB is made of relatively short fibers such as chopped yarn,
Fibers tend to aggregate, and it is difficult to disperse them nondirectionally and as uniformly as possible in a kneaded material. This makes it difficult to produce homogeneous products. Since molding in this case is generally performed by extrusion or molding, anisotropy is unavoidable.

本発明の目的は均質等方性でかつ高強度耐熱衝撃性に優
れた炭素材料を提供するにある。
An object of the present invention is to provide a carbon material that is homogeneous and isotropic and has high strength and excellent thermal shock resistance.

問題点を解決するための手段 本発明は上記目的を達成するため、基本的には炭素繊維
、炭素粉末、炭素結合材が炭化したもの(炭化物)から
成るが、炭素繊維を特に短かいものを使用し、かつ成形
はラバープレス等により行なって、炭素繊維を無方向に
かつ一様に分散させたものである。即ち、炭素繊維とし
て30ILm〜2mmでアスペクト比が5以上のものを
用い、また炭素粉末は粒度を100 g層以下とし、こ
れらが炭素結合材の炭化物マトリックス中に無方向に分
散したものである。なお、本発明において「炭素」とは
「黒鉛」を含み、また「炭化物」は「黒鉛化物」を含む
概念である。従って例えば炭素粉末というときは黒鉛粉
末をも意味する。
Means for Solving the Problems In order to achieve the above object, the present invention basically consists of carbon fibers, carbon powder, and carbonized carbon binders (carbide). The carbon fibers are uniformly and non-directionally dispersed by using a rubber press or the like. That is, carbon fibers having a size of 30 ILm to 2 mm and an aspect ratio of 5 or more are used, and the particle size of the carbon powder is 100 g or less, and these are dispersed non-directionally in the carbide matrix of the carbon binder. In the present invention, "carbon" includes "graphite", and "carbide" includes "graphitized material". Therefore, for example, when referring to carbon powder, it also means graphite powder.

炭素繊維はPAN系、ピッチ系等の外、気相法によるも
のも使用できる。その長さは繊維としての性質を生かす
ためには304m以上必要であり、反面長いと分散性が
悪く、特に混練中絡み合って固りになり易いので、2+
++m以下にする必要がある。
As carbon fibers, in addition to PAN-based, pitch-based, etc. carbon fibers, those produced by the vapor phase method can also be used. The length needs to be at least 304 m in order to take advantage of its properties as a fiber, but on the other hand, if it is long, it has poor dispersibility, and is particularly likely to get entangled and become lumpy during kneading, so it must be 2+
It is necessary to keep it below ++m.

炭素繊維はPAN系、ピッチ系は通常その太さは7〜1
2JLmであり、気相法のmaは極めて細く、例えば0
.05JI11位からかなり太い10JLffiまであ
るが、これらはいずれも使用可能である。そして繊維は
太くなれば、前記の範囲内で長い方がよい。
Carbon fiber is PAN type, and pitch type usually has a thickness of 7 to 1.
2JLm, and the ma of the gas phase method is extremely thin, for example 0
.. There are sizes ranging from 05JI 11th to the considerably thicker 10JLffi, all of which can be used. The thicker the fiber, the longer it is within the above range.

即ちアスペクト比(長さ/太さ)で表わせば5以上が適
し、10以上が望ましい。
That is, in terms of aspect ratio (length/thickness), an aspect ratio of 5 or more is suitable, and an aspect ratio of 10 or more is desirable.

本発明の炭素材料には炭素微粉が含まれている。炭素繊
維の外に炭素微粉を含めるのは炭素短繊維のみでは混和
の際のta維の分散が困難であるため均質な材料が得ら
れない事及びより一層等方性な材料を得るためである。
The carbon material of the present invention contains carbon fine powder. The reason why carbon fine powder is included in addition to carbon fibers is that if only short carbon fibers are used, it is difficult to disperse the TA fibers during mixing, so a homogeneous material cannot be obtained, and in order to obtain a more isotropic material. .

これらのためには炭素微粉は 1001L11以下とす
る必要がある。
For these purposes, the carbon fine powder must be 1001L11 or less.

炭素結合材はピッチ、あるいはフェノール樹脂、フラン
樹脂等の合成樹脂が使用されるが、これらは本発明の炭
素材料の中では炭化物となってマトリックスを構成して
いる。このマトリックスの中に上記した炭素繊維が無方
向、即ち三次元的にランダムに分散し、また炭素微粉も
均一にマトリックス中に分散している。そして炭素ta
雄、炭素微粉はマトリックスで一体に結合し炭素材料を
なしている。
As the carbon binding material, pitch or synthetic resins such as phenol resin and furan resin are used, and these become carbides and constitute a matrix in the carbon material of the present invention. The above-mentioned carbon fibers are non-directionally, ie, three-dimensionally, randomly dispersed in this matrix, and carbon fine powder is also uniformly dispersed in the matrix. and carbon ta
Male, carbon fine powder is bonded together in a matrix to form a carbon material.

炭素材料中に分散している炭素繊維は5〜60重量%(
以下%は重量基準)であることが好ましい。5%未満だ
と炭素短繊維の効果が少なくなり、耐熱衝撃性等の特性
が通常の等方性材料と同等となり、また80%を超える
と炭素短繊維がランダムに分散しにくく、特性の異方比
が大きくなる傾向がある為である。
The carbon fibers dispersed in the carbon material are 5 to 60% by weight (
It is preferable that the following percentages are based on weight). If it is less than 5%, the effect of carbon short fibers will be reduced, and properties such as thermal shock resistance will be equivalent to ordinary isotropic materials, and if it exceeds 80%, it will be difficult for carbon short fibers to be randomly dispersed, resulting in differences in properties. This is because the square ratio tends to increase.

炭素繊維の含有量は10〜60重量%が好ましい。The carbon fiber content is preferably 10 to 60% by weight.

10未満だと材料が均質でなくなり、又密度も低下する
傾向がある。60%を超えると通常の等方性材料に近く
なり、耐熱衝撃性が低下する傾向がある為である。
If it is less than 10, the material will not be homogeneous and the density will tend to decrease. This is because if it exceeds 60%, it becomes close to a normal isotropic material and the thermal shock resistance tends to decrease.

本発明の炭素材料は好ましくは曲げ強さは300Kg/
crn’以上である。そして異方性は小さい。例えば異
方性を曲げ強度で表わせば、炭素材料の方向でその差が
最も大きいところをとっても強度比が0.9〜lの範囲
に入る。
The carbon material of the present invention preferably has a bending strength of 300 kg/
crn' or more. And the anisotropy is small. For example, if anisotropy is expressed in terms of bending strength, the strength ratio falls within the range of 0.9 to 1 even if the difference is greatest in the direction of the carbon material.

本発明の炭素材料をつくるには上記した炭素粉末、炭素
ram、結合材を混合し、混和機で混練する。結合材が
ピッチのときは通常混練は130〜200℃温度で行な
われる。混和時間は45分〜1.5時間が適当である。
To produce the carbon material of the present invention, the above-described carbon powder, carbon ram, and binder are mixed and kneaded using a mixer. When the binder is pitch, kneading is usually carried out at a temperature of 130 DEG to 200 DEG C. A suitable mixing time is 45 minutes to 1.5 hours.

混和が終了したら次に成形するが、成形は異方性を少な
くするためラバープレスが適する。ラバープレス成形は
通常混和後固化した塊体を粉砕し、その粉粒体をゴム型
に充填して行なう。粉砕に際して粒度によっては炭素m
維も一部切断されるのであまり細かく粉砕することは避
けた方がよい。
After mixing is completed, the next step is molding, and a rubber press is suitable for molding to reduce anisotropy. Rubber press molding is usually carried out by crushing the solidified mass after mixing and filling the powder into a rubber mold. Depending on the particle size during pulverization, carbon m
It is best to avoid grinding too finely as some of the fibers will be cut off.

成形体の形状は所望に応じて各種のものとすることがで
きるが、あまり複雑なものは困難なので、成形体を焼成
して炭素材料とした後機械加工される。成形圧力は50
0〜1500Kg/ c rn2程度が適する。
The shape of the molded body can be various as desired, but it is difficult to make it too complicated, so the molded body is fired to form a carbon material and then machined. Molding pressure is 50
Approximately 0 to 1500Kg/crn2 is suitable.

成形体の焼成は通常の炭素材料の場合と同様である。焼
成後ピッチ等を含浸し、再焼成することもできる。さら
に必要に応じて2800℃以上のような高温で加熱し、
黒鉛化することもできる。
Firing of the molded body is the same as in the case of ordinary carbon materials. After firing, it can be impregnated with pitch or the like and fired again. Furthermore, if necessary, heat at a high temperature of 2800°C or higher,
It can also be graphitized.

次に本発明の実施例をあげて説明する。Next, examples of the present invention will be described.

実施例1 ピッチコークスを74戸厘以下に粉砕し、バインダー(
コールタールピッチ)、炭素質短繊維(ピッチ系 径7
〜lO用厘、長さ80〜1501Ll+)との配合比を
ピッチコークス 60重量%、短繊維10重量%、バイ
ンダー 30重量%として 160℃で1hri練した
後冷却し、粒径150p、m以下に粉砕し、ゴム型へ充
填し、ラバープレスで1000Kg/Cm′で成形し、
約250層層φX 500mm1サイズの成形体を得た
。この成形体を公知の方法で1000℃で焼成し、ピッ
チ含浸後回焼成し、さらに2800°Cで黒鉛化処理し
た。その組成を表1に示し、嵩密度、曲げ強さ、りp性
率、耐熱衝撃特性を表2に示した。
Example 1 Pitch coke was pulverized to 74 cm or less, and a binder (
coal tar pitch), carbonaceous staple fiber (pitch type diameter 7
The blending ratio of 60% by weight of pitch coke, 10% by weight of short fibers, and 30% by weight of binder was kneaded at 160°C for 1 hour, and then cooled to reduce the particle size to 150p, m or less. Crush it, fill it into a rubber mold, mold it with a rubber press at 1000Kg/Cm',
A molded article having a size of about 250 layers and a diameter of 500 mm was obtained. This molded body was fired at 1000°C by a known method, impregnated with pitch, fired a second time, and further graphitized at 2800°C. Its composition is shown in Table 1, and its bulk density, bending strength, rippability, and thermal shock resistance are shown in Table 2.

実施例2 実施例1と同様な原料を用い、配合をピッチコークス 
50重量%、短繊維 20重量%、バインダー 30重
量%とした。さらに同様に成形し、熱処理も同様とした
。その組成を表1に示し、諸特性を表2に示した。
Example 2 Using the same raw materials as Example 1, the blend was pitch coke.
50% by weight, short fibers 20% by weight, and binder 30% by weight. Further, it was molded in the same manner and heat treated in the same manner. Its composition is shown in Table 1, and its various properties are shown in Table 2.

実施例3 実施例1.2と同様な原料を用い、配合をピッチコーク
ス 40重量%、短m維 30重量%、バインダー 3
0重量%とした。熱処理も同様とした。その組成を表1
に示し、諸特性を表2に示した。
Example 3 Using the same raw materials as in Example 1.2, the composition was 40% by weight of pitch coke, 30% by weight of short m fiber, and 3 binders.
It was set to 0% by weight. The heat treatment was also the same. Its composition is shown in Table 1.
The properties are shown in Table 2.

比較例1 ピッチコークス(74pm下)、炭素質短繊維(ピッチ
系 径7〜10μm、長さ3000〜5000pi)、
バインダー(コールタールピッチ)ヲ各々、40重量%
、#F#/FIIi30重量%、二本;ず130重量%
とした。成形と熱処理は同様とした。
Comparative Example 1 Pitch coke (74 pm or less), carbonaceous short fiber (pitch type diameter 7 to 10 μm, length 3000 to 5000 pi),
Binder (coal tar pitch) 40% by weight each
, #F#/FIIi 30% by weight, two; 130% by weight
And so. Molding and heat treatment were the same.

その組成を表1に示し、諸特性を表2に示した。Its composition is shown in Table 1, and its various properties are shown in Table 2.

比較例2 ピッチコークス(744m下)70%にバインダー(コ
ールタールピッチ)30重量%とし、成形と熱処理を同
様に行なった。その組成を表1に示し、諸特性を表2に
示した。
Comparative Example 2 A binder (coal tar pitch) was added to 70% pitch coke (744 m below) and 30% by weight, and molding and heat treatment were performed in the same manner. Its composition is shown in Table 1, and its various properties are shown in Table 2.

表 2  諸 特 性 〔り川を除きn=20の平均値
〕Bowsφ×5■1の円板状試料を各黒鉛材について
10枚採取した。これらの試料の中心部(17■φ)に
2000アンペアの取流を流し、その抵抗発熱を利用し
て、熱応力破壊試験を実施した4破壊の有無は軟X線透
過装置を用いて判定した。
Table 2 Various Properties [Average value of n=20 excluding River] 10 disk-shaped samples of Bowsφ×5×1 were collected for each graphite material. A 2000 ampere intake current was passed through the center (17mmφ) of these samples, and a thermal stress fracture test was conducted using the resistance heat generation. 4. The presence or absence of fracture was determined using a soft X-ray transmission device. .

川 異方比は、電気比抵抗により、径方向10個、長手
方向lO個の各平均値について、長手方向/径方向の値
で示した。
The anisotropy ratio was expressed as a value in the longitudinal direction/radial direction for each average value of 10 pieces in the radial direction and 10 pieces in the longitudinal direction, based on electrical resistivity.

発明の効果 表1及び表2より明らかな様に、本発明により提供され
る黒鉛材料は、従来の均質黒鉛材料に比較して、より等
方的かつ耐熱衝撃性に優れるので高温での耐用が要求さ
れる部材としてきわめて有用である。
Effects of the Invention As is clear from Tables 1 and 2, the graphite material provided by the present invention is more isotropic and has superior thermal shock resistance compared to conventional homogeneous graphite materials, so it can withstand high temperatures. It is extremely useful as a required member.

Claims (2)

【特許請求の範囲】[Claims] (1)無方向に分散した長さ30μm〜2mm、アスペ
クト比5以上の炭素繊維と粒度100μm以下の炭素粉
末が分散し、炭素結合材の炭化物で一体に結合してなる
等方性炭素材料。
(1) An isotropic carbon material in which non-directionally dispersed carbon fibers with a length of 30 μm to 2 mm and an aspect ratio of 5 or more and carbon powder with a particle size of 100 μm or less are bonded together by a carbide of a carbon binder.
(2)炭素繊維の含有量が5〜60重量%、炭素粉末の
含有量が10〜60重量%である特許請求の範囲第1項
記載の等方性炭素材料。
(2) The isotropic carbon material according to claim 1, wherein the carbon fiber content is 5 to 60% by weight, and the carbon powder content is 10 to 60% by weight.
JP61183486A 1986-08-06 1986-08-06 Isotropic carbon material Pending JPS6340765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61183486A JPS6340765A (en) 1986-08-06 1986-08-06 Isotropic carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61183486A JPS6340765A (en) 1986-08-06 1986-08-06 Isotropic carbon material

Publications (1)

Publication Number Publication Date
JPS6340765A true JPS6340765A (en) 1988-02-22

Family

ID=16136654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61183486A Pending JPS6340765A (en) 1986-08-06 1986-08-06 Isotropic carbon material

Country Status (1)

Country Link
JP (1) JPS6340765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431363A (en) * 1990-05-28 1992-02-03 Shinagawa Refract Co Ltd Carbon-containing refractory
JPH0431362A (en) * 1990-05-28 1992-02-03 Shinagawa Refract Co Ltd Graphite/carbon fiber composite material and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431363A (en) * 1990-05-28 1992-02-03 Shinagawa Refract Co Ltd Carbon-containing refractory
JPH0431362A (en) * 1990-05-28 1992-02-03 Shinagawa Refract Co Ltd Graphite/carbon fiber composite material and production thereof

Similar Documents

Publication Publication Date Title
US2938807A (en) Method of making refractory bodies
US6699427B2 (en) Manufacture of carbon/carbon composites by hot pressing
JP4734674B2 (en) Low CTE isotropic graphite
JPH11505205A (en) Fast molding process for fiber preforms and structural composites
CN113666748A (en) Preparation method of graphite material and graphite material
JPS6143309B2 (en)
US4671907A (en) Method of manufacturing carbon materials
US3719452A (en) Carbonaceous material and method of preparation
JPS59121107A (en) Manufacture of carbon electrode rod
JPS6340765A (en) Isotropic carbon material
JPS60200861A (en) Manufacture of high strength silicon carbide sintered body
US3567808A (en) Production of low density-high strength carbon
EP0146399A2 (en) Nuclear graphite articles and their production
JP3135187B2 (en) Carbon material for ion implantation member and method for producing the same
JP2700798B2 (en) Manufacturing method of carbon and graphite materials
JPH04321559A (en) Composition for carbon material, composite carbon material and their production
JPH0456789B2 (en)
JPS5849656A (en) Composite seal material containing swellable graphite
JPS61295216A (en) Preparation of isotropic graphite material having high density and high strength
JPH0337108A (en) Isotropic carbon material
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
KR970008693B1 (en) Process for the preparation of carbon composite material
JPS6153104A (en) Production of high-strength carbon material
JPS61191509A (en) Production of isotropic graphitic material
JP2003302486A (en) Neutron absorbing material