JPS6340712A - Production of pressurized helium having superfluidity - Google Patents

Production of pressurized helium having superfluidity

Info

Publication number
JPS6340712A
JPS6340712A JP18362786A JP18362786A JPS6340712A JP S6340712 A JPS6340712 A JP S6340712A JP 18362786 A JP18362786 A JP 18362786A JP 18362786 A JP18362786 A JP 18362786A JP S6340712 A JPS6340712 A JP S6340712A
Authority
JP
Japan
Prior art keywords
bellows
pressure
heii
liquid
hei
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18362786A
Other languages
Japanese (ja)
Other versions
JPH0517166B2 (en
Inventor
Yasuharu Kamioka
上岡 泰晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Sanso Ltd
Original Assignee
Toyo Sanso Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Sanso Ltd filed Critical Toyo Sanso Ltd
Priority to JP18362786A priority Critical patent/JPS6340712A/en
Publication of JPS6340712A publication Critical patent/JPS6340712A/en
Publication of JPH0517166B2 publication Critical patent/JPH0517166B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To effectively obtain the titled He at low cost without using a large heat exchanger by allowing a saturated He having superfluidity to boost its pressure with pressurizing by a bellows-type pump. CONSTITUTION:Liquid He IIs obtained by reducing the pressure of liquid He I in a vessel 10 with a vacuum pump 11 is sucked into a working chamber 13A from a suction valve 13C of a bellows-type pump 13 dipped in the liquid He IIs. The titled HE (IIp) is obtained through a delivery pipe 14 via a delivery valve 13D by boosting the pressure of the liquid He (IIs) sucked in the bellows by allowing the internal volume of the bellows to change with the expanding and contracting of the bellows 13B consisting of a stainless steel, etc.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、超電導マグネットに使用される冷媒の如く
、極低温に冷却するための冷却媒体に最適な加圧超流動
ヘリウムの製造方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a method for producing pressurized superfluid helium, which is most suitable as a cooling medium for cooling to extremely low temperatures, such as a cooling medium used in superconducting magnets. .

従来の技術 従来から超電導マグネット等の冷却媒体としては液体ヘ
リウムが使用されている。通常の液体ヘリウムは質量数
が4の41−46からなるものであり、その4Heの状
態図(相図)を第4図に示す。
BACKGROUND OF THE INVENTION Liquid helium has been used as a cooling medium for superconducting magnets and the like. Ordinary liquid helium consists of 41-46 atoms with a mass number of 4, and the phase diagram of 4He is shown in FIG.

4Heの液相としては、液体ヘリウムエと称される液相
(以下これをHeIと記す)と液体ヘリウム■と称され
る液相(以下これをHeIIと記す)との2種の相があ
り、特に後者のHeIIは、粘性が実質的に零であって
所謂超流動現象を示す特異な液相として知られており、
そこでこのHeIIは一般に超流動ヘリウムとも称され
ている。そしてこのHenは、HeIと比較して格段に
熱伝導が良好でおり、そのためl−1elIを超電導マ
グネット等の冷却媒体として使用すれば、HeIを用い
た場合よりも格段に冷却効率が良好となる。そこで最近
ではHeIIを超電導マグネット等の冷却媒体として使
用することが検討され、一部では実用化も開始されてい
る。
There are two types of liquid phases of 4He: a liquid phase called liquid helium (hereinafter referred to as HeI) and a liquid phase called liquid helium (hereinafter referred to as HeII). In particular, the latter HeII is known to have a unique liquid phase that has virtually zero viscosity and exhibits the so-called superfluid phenomenon.
Therefore, this HeII is also generally called superfluid helium. This Hen has much better thermal conductivity than HeI, so if l-1elI is used as a cooling medium for superconducting magnets, the cooling efficiency will be much better than when HeI is used. . Therefore, recently, consideration has been given to using HeII as a cooling medium for superconducting magnets, etc., and practical use has begun in some cases.

ところでHeI[のうちでも、第4図の状態図における
HeIIと気相との気液境界線(飽和蒸気圧線)A−B
上にあるHeII (一般にこれを飽和超流動ヘリウム
と称し、以下HeII、と記す)は、比較的容易に得る
ことができる。すなわち、状態図上におけるHeIと気
相との気液境界線(飽和蒸気圧線)8−C上の飽和蒸気
圧下にあるf−feI(以下これをHeI、と記す)を
減圧すれば、飽和蒸気圧線B−Cに沿って温度降下し、
飽和蒸気圧下の遷移温度Tλ(≠2.172K >の点
Bを越えれば液相部分がHeI[、となる。具体的には
、例えばHeIを収容した容器内の気相(Heガス)を
真空ポンプにより吸引して減圧するか、あるいはHeI
を断熱膨張させればHeII、を得ることができる。
By the way, among HeI [particularly, the gas-liquid boundary line (saturated vapor pressure line) A-B between HeII and the gas phase in the phase diagram of FIG.
The above HeII (generally referred to as saturated superfluid helium, hereinafter referred to as HeII) can be obtained relatively easily. In other words, if f-feI (hereinafter referred to as HeI), which is under saturated vapor pressure on the gas-liquid boundary line (saturated vapor pressure line) 8-C between HeI and the gas phase on the phase diagram, is depressurized, it becomes saturated. The temperature drops along the vapor pressure line B-C,
When the transition temperature Tλ (≠2.172K > point B under the saturated vapor pressure is exceeded, the liquid phase becomes HeI. Specifically, for example, the gas phase (He gas) in a container containing HeI is vacuumed. Either use a pump to reduce the pressure, or HeI
By adiabatically expanding , HeII can be obtained.

しかしながらこのようにして得られるHeII。However, HeII obtained in this way.

は、温度が若干でも上昇すればその分ガス化が進行して
しまうから、これを実際に超伝導マグネット等の冷却媒
体に使用するには安定性に欠ける問題があり、そこで実
際の冷却媒体としては、飽和蒸気圧よりも高い圧力下(
例えば大気圧下= 1 atm)にある)−1eII、
すなわち所謂加圧超流動ヘリウム(以下これをHeII
pと記す)を使用する必要がある。例えば第4図の状態
図上における1 atmのD点のHeIIpについてみ
れば、等圧下では温度が△t1だけ上昇するまではHe
1Iの状態を維持し、ざらにl−1eIとなってからも
温度がΔt2上昇するまでは液相を維持するから、ガス
化までの温度上昇に余裕(△t1+△t2)があり、し
たがって冷却媒体として使用した場合に若干の温度上昇
があってもガス化することなく安定して冷却することが
できると言える。
If the temperature rises even slightly, gasification will proceed accordingly, so there is a problem of lack of stability when actually using it as a cooling medium for superconducting magnets, etc. Therefore, it is difficult to use it as an actual cooling medium. is under a pressure higher than the saturated vapor pressure (
-1eII at atmospheric pressure = 1 atm),
That is, so-called pressurized superfluid helium (hereinafter referred to as HeII)
(denoted as p) must be used. For example, if we look at HeIIp at point D at 1 atm on the phase diagram in Fig. 4, under equal pressure, until the temperature rises by △t1, HeIIp
Since the state of 1I is maintained and the liquid phase is maintained until the temperature rises by Δt2 even after it becomes roughly l-1eI, there is a margin (Δt1+Δt2) for the temperature rise until gasification, and therefore cooling is possible. It can be said that even if there is a slight temperature rise when used as a medium, stable cooling can be achieved without gasification.

上記のようなHeII、(加圧超流動ヘリウム)の従来
の製造方法としては次のような方法が知られている。
The following methods are known as conventional methods for producing HeII (pressurized superfluid helium) as described above.

すなわち最も一般的な方法は、大気圧の如き加圧下のH
eIをHeI[3と熱交換してその圧力下で温度降下さ
せ、He1I、を得る方法である。この方法は、原理的
には例えば第5図に示すような装置で実施される。
That is, the most common method is to use H under pressure such as atmospheric pressure.
This is a method in which eI is heat exchanged with HeI[3 and the temperature is lowered under the pressure to obtain He1I. In principle, this method can be carried out using an apparatus as shown in FIG. 5, for example.

第5図において、容器1の上下方向の中間には隔壁2が
設けられており、この隔壁2によって容器1内は上室1
A、王室1Bに区分されており、かつ隔壁2には連通孔
3が形成されており、この連通孔3は栓4によって開閉
可能とされている。
In FIG. 5, a partition wall 2 is provided in the middle of the container 1 in the vertical direction.
It is divided into A and Royal 1B, and a communication hole 3 is formed in the partition wall 2, and this communication hole 3 can be opened and closed by a stopper 4.

また上ilA内に先端が開口する管路5は断熱膨張弁6
を介して下室1B内の熱交換器7に連絡しており、この
熱交換器7の先端側は真空ポンプ8に連絡されている。
In addition, the pipe line 5 whose tip opens into the upper ilA is an adiabatic expansion valve 6.
It is connected to a heat exchanger 7 in the lower chamber 1B via the heat exchanger 7, and the tip side of the heat exchanger 7 is connected to a vacuum pump 8.

このような装置を用いてHen、を製造するにあたって
は、先ず前記連通孔3を開放した状態で例えばi at
mの圧力下において容器1の上室1A、下室1B内にH
eIを注入する。そして前記1 atmの圧力を保持し
たまま、栓4によって連通孔3を閉じた状態で前記真空
ポンプ8を作動させることにより、上室1A内のHeI
を断熱膨張弁6に導き、そのHeIを断熱自由膨張(J
T膨張)させることによりHeff1.に変え、そのH
eI、を下ulB内のHeI中に浸漬されている熱交換
器7に導いて下室1B内のHeIと熱交換させることに
より、そのHeIを1atmの圧力下で温度降下させ、
HeII、に変化させる。したがって王室1BにはHe
n、が得られることになる。なお連通孔3は栓4によっ
て一応は閉じられているが、実際には、王室1B内のH
en、の体積が減少すれば栓4と連通孔3の内面との間
の間隙を介して上室1A内のHeIが下室1B内に流入
して温度降下し、HenDに変化するから、常時補給が
なされることになる。
When manufacturing Hen using such an apparatus, first, with the communication hole 3 open, for example, i at
H in the upper chamber 1A and lower chamber 1B of the container 1 under the pressure of m.
Inject eI. Then, by operating the vacuum pump 8 with the communication hole 3 closed by the stopper 4 while maintaining the pressure of 1 atm, HeI in the upper chamber 1A is removed.
is introduced into the adiabatic expansion valve 6, and the HeI is subjected to adiabatic free expansion (J
Heff1. , change it to H
eI, is guided to the heat exchanger 7 immersed in HeI in the lower chamber 1B to exchange heat with HeI in the lower chamber 1B, thereby lowering the temperature of the HeI under a pressure of 1 atm,
Change to HeII. Therefore, He
n, will be obtained. The communication hole 3 is temporarily closed by the stopper 4, but in reality, the H in the royal room 1B
If the volume of en decreases, HeI in the upper chamber 1A flows into the lower chamber 1B through the gap between the plug 4 and the inner surface of the communication hole 3, the temperature decreases, and it changes to HenD. Replenishment will be provided.

上記のような方法のほか、HeIIp@得る方法として
はGGG (ガリウムガドリニウムガーネット)結晶を
用いた磁気冷凍機により圧力下でHeIを温度降下させ
てHe II、を得る方法も提案されでおり、また、そ
のほか、3Heを例えば4.2にで圧縮して、これを断
熱自由膨張させて4.2によりも充分に低い温度として
圧力下のHeIと熱交換させ、HeIをHeII、に変
化させる方法も提案されている。
In addition to the methods mentioned above, a method for obtaining HeIIp@ has also been proposed in which HeII is obtained by lowering the temperature of HeI under pressure using a magnetic refrigerator using a GGG (gallium gadolinium garnet) crystal. , In addition, there is also a method of compressing 3He to, for example, 4.2, and then subjecting it to adiabatic free expansion to a temperature sufficiently lower than 4.2 to exchange heat with HeI under pressure, thereby converting HeI into HeII. Proposed.

発明が解決すべき問題点 前述のようなHeIIp (加圧超流動ヘリウム)を得
る方法のうち、最も一般的な圧力下のHeIをHeI 
 と熱交換してHeII、を得る方法では、熱交換器が
絶対的に必要な条件でおる。ところがこの場合には、熱
交換器として表面積が著しく大きいものを使用する必要
がある。すなわち、一般に伝熱壁の境界熱抵抗はKap
 i tZaの式で表わされるように絶対温度の3乗に
反比例することが知られており、したがって絶対零度近
くの極低温では境界熱抵抗が著しく大きくなり、そのた
め極低温の熱交換にあたっては、極低温流体とそれに接
する熱交換器伝熱壁との間の境界熱抵抗による温度差が
著しく大きくなってしまうから、熱交換効率を上げるた
めには熱交換器伝熱壁の表面を著しく大きくする必要が
生じる。したがって前記のような熱交換による熱交換器
全体も大型化せざるを得ず、またその結実装置全体も大
型化せざるを得なかったのである。
Problems to be Solved by the Invention Among the methods for obtaining HeIIp (pressurized superfluid helium) as described above, the most common method is to convert HeI under pressure to HeIp.
In the method of obtaining HeII by heat exchange with HeII, a heat exchanger is absolutely necessary. However, in this case, it is necessary to use a heat exchanger with a significantly large surface area. That is, in general, the boundary thermal resistance of a heat transfer wall is Kap
It is known that it is inversely proportional to the cube of the absolute temperature, as expressed by the formula i tZa. Therefore, at extremely low temperatures near absolute zero, the boundary thermal resistance becomes extremely large, and therefore, when exchanging heat at extremely low temperatures, Since the temperature difference due to boundary thermal resistance between the low-temperature fluid and the heat exchanger heat transfer wall in contact with it becomes significantly large, the surface of the heat exchanger heat transfer wall must be significantly enlarged to increase heat exchange efficiency. occurs. Therefore, the entire heat exchanger for heat exchange as described above had to be increased in size, and the entire fruiting device had to be increased in size as well.

一方前記の磁気冷凍機を用いた方式は、技術面およびコ
スト面などから未だ実用化には至っておらず、また3H
eを用いる方式も、3Heが天然には存在せず、著しく
高価でおることから、実用化には至っていないのが実情
である。
On the other hand, the method using the magnetic refrigerator described above has not yet been put into practical use due to technical and cost aspects, and
The actual situation is that the method using e has not been put into practical use because 3He does not exist naturally and is extremely expensive.

この発明は以上の事情を背景としてなされたもので、大
型の熱交換器を用いることなく、加圧超流動ヘリウム(
HeII、)を効率良く低コストで製造し得る方法を提
供することを目的とするものである。
This invention was made against the background of the above circumstances, and it is possible to use pressurized superfluid helium (pressurized superfluid helium) without using a large heat exchanger.
The purpose of this invention is to provide a method for efficiently producing HeII, ) at low cost.

問題点を解決するための手段 上記の目的を達成するべく、本発明者等は種々検討を重
ねた結果、本発明者等が既に「低温工学」Vol、20
.(1985) o 35〜p 41において発表して
いるようなベローズ式液体ヘリウムポンプを応用するこ
とによって、熱交換器を用いることなく加圧超流動ヘリ
ウムを効率良く製造し得ることを見出し、この発明をな
すに至ったのである。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have made various studies, and as a result, they have already published "Cryogenic Engineering" Vol. 20.
.. (1985) It was discovered that pressurized superfluid helium could be efficiently produced without using a heat exchanger by applying a bellows-type liquid helium pump as announced in p. 35 to p. 41, and this invention This is what we came to do.

すなわちこの発明の加圧超流動ヘリウムの製造方法は、
飽和超流動ヘリウムをベローズ式ポンプによって加圧し
て圧力上昇させることにより加圧超流動ヘリウムを得る
ことを特徴とする作    用 既に述べたように飽和超流動へ!ノウム(HeII3)
は容易に得ることができる。そこでこの発明では予め得
ておいたHeII、をベローズ式ポンプによって所定の
圧力まで加圧して加圧超流動ヘリウム(HeIIp)を
製造する。すなわち、第1図の4Heの状態図に示すよ
うに、例えば1.8にのHeI[の飽和蒸気圧は12T
orrで必り、したがってその温度におけるHell5
の蒸気圧も12Torrでおるから、このHeII、を
矢印で示すように等温で加圧することによって例えば1
 atm 、  1.8にのHeII、を得ることがで
きる。したがってこの発明の方法では原理的に熱交換は
不要となるのである。すなわち、従来の熱交換器方式で
は極低温の熱交換効率を高めるために伝熱面積を大きく
した大型の熱交換器を必要としていたが、この発明では
熱交換器自体が不要となるため、装置全体の小型化を図
ることが可能となった。
That is, the method for producing pressurized superfluid helium of this invention is as follows:
The action is characterized by obtaining pressurized superfluid helium by pressurizing saturated superfluid helium with a bellows pump and increasing the pressure. As already mentioned, it becomes saturated superfluid! Noumu (HeII3)
can be easily obtained. Therefore, in the present invention, HeII obtained in advance is pressurized to a predetermined pressure using a bellows pump to produce pressurized superfluid helium (HeIIp). That is, as shown in the phase diagram of 4He in Figure 1, for example, the saturated vapor pressure of 1.8 HeI is 12T
orr, therefore Hell5 at that temperature
The vapor pressure of HeII is also 12 Torr, so by pressurizing HeII at an isothermal temperature as shown by the arrow, for example, 1
ATM, HeII of 1.8 can be obtained. Therefore, in principle, the method of this invention does not require heat exchange. In other words, the conventional heat exchanger method required a large heat exchanger with a large heat transfer area to increase heat exchange efficiency at extremely low temperatures, but with this invention, the heat exchanger itself is not required, so the equipment This made it possible to downsize the entire system.

なお従来一般のピストン−シリンダ方式のポンプではシ
リンダとピストンとの摩擦部分があるために発熱が大き
く、そのため実際上Hen、の加圧に応用すれば、発熱
による温度上昇によってHe■ がガス化するだけでH
e II o @ 得ることはできず、また回転式のポ
ンプもあるが回転式ポンプでは加圧力が小さく、圧力の
低い例えば12Torr程度のHell3を1atmま
で充分に加圧して、充分に圧力の高いHeIIpを得る
ことは困難であった。
In addition, conventional piston-cylinder type pumps generate a lot of heat due to the friction between the cylinder and the piston, so if it is actually applied to pressurize He, the temperature rise due to heat generation will cause He to gasify. Just H
e II o @ There are also rotary pumps, but rotary pumps have a small pressurizing force, so you can sufficiently pressurize Hell 3, which is at a low pressure of about 12 Torr, to 1 atm, and generate a sufficiently high pressure HeIIp. It was difficult to obtain.

これに対し本発明者等が先に開発したベローズ式ポンプ
によれば、摩擦部分が原理的に存在しないため発熱がな
く、しかも大きな圧力上昇を得ることができるため、ガ
ス化を招くことなくl−16I[。
On the other hand, according to the bellows-type pump that the present inventors developed earlier, there is no frictional part in principle, so there is no heat generation, and it is possible to obtain a large pressure increase, so it can be used without causing gasification. -16I[.

を加圧して充分に圧力の高いHeIIpを得ることが可
能となったのである。
It became possible to obtain HeIIp at a sufficiently high pressure.

実施例 第2図にこの発明の方法を実施する装置を原理的に示す
Embodiment FIG. 2 shows the principle of an apparatus for carrying out the method of the present invention.

第2図において、容器10内にはHeI、が収容されて
いる。このHeII、は例えば容器10内のHeIを真
空ポンプ11によって減圧することなどによって得られ
る。容器10内のHeII、中にはベローズ式ポンプ1
3が浸漬されており、このベローズ式ポンプは容器10
内のHen、を取り入れて加圧することによりHeII
、を作成し、吐出管14からそのHeII、を吐出させ
る。
In FIG. 2, a container 10 contains HeI. This HeII can be obtained, for example, by reducing the pressure of HeI in the container 10 using the vacuum pump 11. He II in the container 10, inside the bellows type pump 1
3 is immersed in the container 10, and this bellows pump is immersed in the container 10.
By taking in the Hen inside and pressurizing it, HeII
, and the HeII is discharged from the discharge pipe 14.

前記ベローズ式ポンプ12の最も基本的な構成例を第3
図に示す。このベローズ式ポンプ13は、内側の作動室
13Aの内容積が、ステンレス鋼等からなるベローズ1
3Bの伸縮により変化するように構成されており、かつ
その作動i 3Aと外部との間には一方向弁からなる吸
入弁13Cが設けられ、また作動13Aと吐出管14と
の間には一方向弁からなる吐出弁13Dが設けられてい
る。したがってベローズ13Bの伸長時には外部のHe
II、が吸入弁13Cを介して作動至13A内に吸入さ
れ、ベローズ13Bの縮小時には作動i aA内のHe
II、に圧力が加えられてHeII、に変化するととも
にそのHen、が吐出弁13Bを介して吐出管14へ吐
出される。
The most basic configuration example of the bellows pump 12 is shown in the third example.
As shown in the figure. This bellows type pump 13 has a bellows 1 made of stainless steel or the like, with an internal volume of an inner working chamber 13A.
A suction valve 13C consisting of a one-way valve is provided between the actuator 3A and the outside, and a one-way valve 13C is provided between the actuator 13A and the discharge pipe 14. A discharge valve 13D consisting of a directional valve is provided. Therefore, when the bellows 13B is extended, the external He
II, is sucked into the actuator 13A through the suction valve 13C, and when the bellows 13B is contracted, He in the actuator i aA
Pressure is applied to II, and it changes to HeII, and the Hen is discharged to the discharge pipe 14 via the discharge valve 13B.

発明の効果 この発明の製造方法によれば、原理的に熱交換を行なう
ことなく加圧超流動ヘリウム(HeII、)を得ること
ができ、そのため従来の熱交換方式の如(極低温での境
界熱抵抗を考慮して充分な熱交換効率を連成するために
大表面・大型の熱交換器を使用する必要がなくなったか
ら、製造装置を小型化することが可能となるとともに、
効率良くHeIIpを得ることができる。
Effects of the Invention According to the production method of the present invention, pressurized superfluid helium (HeII) can be obtained without heat exchange in principle, and therefore it is possible to obtain pressurized superfluid helium (HeII) without performing heat exchange. Since it is no longer necessary to use a large heat exchanger with a large surface to achieve sufficient heat exchange efficiency in consideration of thermal resistance, it is possible to downsize the manufacturing equipment, and
HeIIp can be obtained efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法を原理的に説明するための4H
eの状態図、第2図はこの発明の方法を実施する装置の
一例を原理的に示す略解図、第3図はこの発明の方法に
使用されるベローズ式ポンプの一例を示す略解図、第4
図は従来の方法を説明するための4Heの状態図、第5
図は従来の熱交換方式による加圧超流動ヘリウムの製造
方法の一例を実施する装置を原理的に示す略解図である
Figure 1 shows 4H for explaining the principle of the method of this invention.
Fig. 2 is a schematic diagram showing the principle of an example of an apparatus for carrying out the method of the present invention; Fig. 3 is a schematic diagram showing an example of a bellows pump used in the method of the present invention; 4
The figure is a 4He state diagram for explaining the conventional method.
The figure is a schematic diagram showing the principle of an apparatus for carrying out an example of a method for producing pressurized superfluid helium using a conventional heat exchange method.

Claims (1)

【特許請求の範囲】[Claims] 飽和超流動ヘリウムをベローズ式ポンプによって加圧し
て圧力上昇させることにより加圧超流動ヘリウムを得る
ことを特徴とする加圧超流動ヘリウムの製造方法。
A method for producing pressurized superfluid helium, characterized in that pressurized superfluid helium is obtained by pressurizing saturated superfluid helium with a bellows pump to increase the pressure.
JP18362786A 1986-08-05 1986-08-05 Production of pressurized helium having superfluidity Granted JPS6340712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18362786A JPS6340712A (en) 1986-08-05 1986-08-05 Production of pressurized helium having superfluidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18362786A JPS6340712A (en) 1986-08-05 1986-08-05 Production of pressurized helium having superfluidity

Publications (2)

Publication Number Publication Date
JPS6340712A true JPS6340712A (en) 1988-02-22
JPH0517166B2 JPH0517166B2 (en) 1993-03-08

Family

ID=16139080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18362786A Granted JPS6340712A (en) 1986-08-05 1986-08-05 Production of pressurized helium having superfluidity

Country Status (1)

Country Link
JP (1) JPS6340712A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296251U (en) * 1988-09-28 1990-07-31
JPH0491563U (en) * 1990-12-25 1992-08-10

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119789A (en) * 1974-02-22 1975-09-19
JPS58158173U (en) * 1982-04-17 1983-10-21 日本フイ−ダ−工業株式会社 reciprocating pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119789A (en) * 1974-02-22 1975-09-19
JPS58158173U (en) * 1982-04-17 1983-10-21 日本フイ−ダ−工業株式会社 reciprocating pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296251U (en) * 1988-09-28 1990-07-31
JPH0491563U (en) * 1990-12-25 1992-08-10

Also Published As

Publication number Publication date
JPH0517166B2 (en) 1993-03-08

Similar Documents

Publication Publication Date Title
TW444103B (en) Reciprocating pumps with linear motor driver
US3485054A (en) Rapid pump-down vacuum chambers incorporating cryopumps
JPS58168854A (en) Refrigerator
US3902328A (en) Method of refrigeration combining two thermodynamic cycles and a corresponding cryogenic machine
US6523366B1 (en) Cryogenic neon refrigeration system
Nagao et al. Helium liquefaction by a Gifford-McMahon cycle cryocooler
CN201463425U (en) High-frequency regenerator adopting stainless steel fiber regenerative materials and pulse tube refrigerator thereof
JPS6340712A (en) Production of pressurized helium having superfluidity
CN101603750B (en) High-frequency heat regenerator adopting stainless steel fibre regenerative material and pulse tube refrigerator thereof
US4281517A (en) Single stage twin piston cryogenic refrigerator
JPS63302259A (en) Cryogenic generator
Uhlig Cryogen-free dilution refrigerators
US4019336A (en) Refrigerator
CN108915991B (en) A kind of fast cooling type cryogenic pump with heat bridge
CN101071007A (en) Environmental heat energy reasonable utilization system
CN108590793A (en) A kind of sink temperature that reduces is to the method and apparatus that improve generating efficiency
JPH0814678A (en) Pulse tube freezer machine with liquid piston
RU2042894C1 (en) Plant for obtaining low temperatures
Luck et al. Thermoacoustic oscillations in cryogenics. Part 2: Applications
JPS61225556A (en) Cryogenic cooling device
JPS6023761A (en) Refrigerator and system thereof
JPH08189716A (en) Cool storage vessel type refrigerating machine
JPH09229502A (en) Double inlet type pulse pipe refrigerating machine
Schuck Performance Tests of a Reciprocating Liquid Helium Pump Used in Forced Convection Cooling
JPH0933130A (en) Cold accumulator type refrigerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees