JPS6340624B2 - - Google Patents
Info
- Publication number
- JPS6340624B2 JPS6340624B2 JP59033335A JP3333584A JPS6340624B2 JP S6340624 B2 JPS6340624 B2 JP S6340624B2 JP 59033335 A JP59033335 A JP 59033335A JP 3333584 A JP3333584 A JP 3333584A JP S6340624 B2 JPS6340624 B2 JP S6340624B2
- Authority
- JP
- Japan
- Prior art keywords
- amorphous alloy
- alloy ribbon
- present
- amorphous
- thick
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 26
- 229910045601 alloy Inorganic materials 0.000 claims description 22
- 239000000956 alloy Substances 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 18
- 230000003746 surface roughness Effects 0.000 claims description 7
- 238000003825 pressing Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 24
- 239000002184 metal Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 238000007711 solidification Methods 0.000 description 10
- 230000008023 solidification Effects 0.000 description 10
- 230000005381 magnetic domain Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000011162 core material Substances 0.000 description 8
- 230000005291 magnetic effect Effects 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910008423 Si—B Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
- C21D8/1211—Rapid solidification; Thin strip casting
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Continuous Casting (AREA)
Description
(産業上の利用分野)
本発明は移動する冷却基板の表面で溶融状態に
ある金属(合金)を急冷凝固する方法によつてつ
くられる板厚の大きなFe基非晶質合金薄帯に関
するものである。
(従来技術)
金属(合金)を溶融状態から急冷して連続的に
薄帯をつくる方法として基本的なものに遠心急冷
法、単ロール法で代表される溶融紡糸法がある。
この方法は回転する金属製ドラムの内周面又は外
周面に溶融金属のジエツトを噴出して急冷凝固さ
せ、一気に金属の薄帯や線をつくるものである。
この方法によれば冷却速度がきわめてはやいの
で、合金組成を適正に選ぶならば液体金属に類似
した構造をもつ非晶質金属(合金)を得ることが
できる。
非晶質金属(合金)は特異な性質によつて実用
的に注目されている金属材料であるが、冷却速度
に関する制約から薄い板厚の材料しか製造できな
い点が応用範囲を制限していた。
一般に非晶質合金の最大板厚は合金組成と装置
の冷却能に依存する。非晶質化可能な板厚の組成
依存性は実用的に重要な鉄基合金を中心に調べら
れており、Hagiwaraらの報告Sci.Rep、Res.
Inst.Tohoku Univ.A−29(1981)、351によれば
鉄基半金属系合金で最も非晶質化しやすいのは
Fe−Si−BおよびFe−P−C系合金で、最大板
厚はFe−Si−Bの場合Fe75Si10B15の250μmと報
告されている。
しかしながらこの方法は厚い板厚の試料を得る
ために冷却基板(ロール)の回転に急ブレーキを
かけることによつて、回転速度を落とすという特
別の手段を講じており、はじめに設定した一定条
件では厚い非晶質材料が得られず、このような非
定常状態でのみ厚手の非晶質薄帯が得られること
も明らかにしている。したがつてHagiwaraらの
方法によつて得られる材料は工業的に利用可能な
材料ではないことは明らかである。しかも、この
報告にある最大板厚250μmという値については
異論が唱えられている。すなわちLuborskyらの
報告IEEE Trans.Magnetics、MAG−18(1982)
1385によればFe−Si−B合金で実質的に完全な
非晶質状態で得られる最大板厚はFe74Si10B16の
42μmで、これ以上板厚が大きくなると微細結晶
の形成によると考えられる保磁力の増加が認めら
れると述べている。Luborskyらはまた
Hagiwaraらとの結果の食い違いについて、
Hagiwaraらが非晶質化の判定に光学顕微鏡(倍
率100倍)を用いたことを挙げ、光学顕微鏡で検
出できない程度の微量の結晶でも、磁性などの特
性を劣化させると指摘している。
Luborskyらの説が正しいとするならば、
Hagiwaraらの報告にある250μmの板厚の非晶質
材料には光学顕微鏡では観察されないが、特性を
劣化させる微結晶が含まれていることになる。ま
たもしHagiwaraらの厚い試料が完全に非晶質で
あつたとしても、彼らの実験は幅約1mmの狭い試
料で行なわれたものであり幅広の材料で同じ厚さ
は保証されない。狭幅材料の場合基板を伝わる熱
の流れは2次元的であるのに対して、幅広材料で
は基板を伝わる熱の流れが1次元的となり、結果
として冷却速度は大幅に低下するためである。
ところで非晶質合金のうちFe基合金は安価で
特性もすぐれており実用的に極めて有用な材料で
あるが、非晶質形成能が低いため薄いものしか得
られず、従つて用途として非常に有用とされてい
るトランス用鉄心に使用する場合にも巻鉄心の形
でしか使用できない等の問題があつた。いずれに
しても現在の技術では板厚が大きくかつ幅の広い
Fe基非晶質合金薄帯を工業的に生産することは
困難とされていた。
(発明の目的)
本発明は前記のような従来技術では達成できな
かつた厚くて幅の広いFe基非晶質合金薄帯を提
供するものである。
(発明の構成、作用)
本発明のFe基非晶質合金薄帯は広幅で従来の
ものに比べて板厚が大きいのが特徴である。板厚
の大きさは少なくとも50μm超、幅は少なくとも
20mmである。また板厚の大きさが少なくとも55μ
m、幅は少なくとも25mmであるものも好適であ
る。
本発明のFe基非晶質合金薄帯はさらにその表
面が、従来の単ロール法で作製される薄帯に比べ
て、ロール面、フリー面ともに滑らかである。薄
帯の幅方向にJIS B0601に規定された方法で測定
したカツトオフ値0.8mmにおける中心線平均粗さ
Raは第1表に示す通りいずれもロール面、フリ
ー面ともに0.5μm以下であつた。この値は従来材
のロール面0.6〜1.3μm、フリー面0.6〜1.5μmに
比べて小さくすぐれた値となつている。
板厚が大きく、表面が滑らかな特徴を反映して
本発明の非晶質合金薄帯は積層したときの占積率
がきわめて高い。従来材の占積率75〜85%である
のに対し、本発明の非晶質合金薄帯は85〜95%で
ある。
本発明の非晶質合金薄帯は、板厚が大きいにも
かかわらず、特性の劣化がない。理由は、厚くて
も全板厚を通して実質的に非晶質状態にあるた
め、非晶質特有の性質を保持しているからであ
る。例えば、磁性に関して、Fe80.5Si6.5B12C1(at
%)の25μm厚、25mm幅の非晶質合金薄帯の50Hz
(ヘルツ)、1Oe(エルステツド)における磁束密
度は、1.53T(テスラ)であるが、同じ組成で65μ
m厚、25mm幅の本発明の非晶質合金薄帯は、50
Hz、1Oeにおいて同じ1.53Tを示し、劣化のない
ことが明らかである。
次に本発明の厚手非晶質合金薄帯をつくる方法
について述べる。
本発明の非晶質合金薄帯は次のような本質的に
冷却速度を高める手段によつて作製することがで
きる。
単ロール法(又はベルト法)のように移動する
冷却基板の表面に噴出された溶融金属は基板上に
湯溜り(以下パドルと呼ぶ)を形成し、基板に接
した部分から凝固が進行する。大きな板厚を得る
ためには大きな凝固速度が必要である。従来から
採用されているような、噴出圧を高める、冷却基
板の移動速度を小さくする、ノズルと基板間のギ
ヤツプ距離を広げるなどの方法では作製できる薄
帯の厚さには限界(ほぼ45μm、ただし20mm幅以
上の場合)があり、無理にそれ以上の板厚をつく
ろうとすると形状や表面性状、特性が劣化する。
したがつて形状や特性を損わずに厚い板厚を得る
ためには、本質的に凝固速度を高める手段を講ず
る必要がある。凝固速度を高めるために本発明者
らは次の方法を適用し、厚手幅広非晶質合金薄帯
を作製した。
本発明の厚手幅広非晶質合金薄帯は凝固時の冷
却速度を高める方法によつて作製される。すなわ
ちパドルから引き出された合金が未凝固状態にあ
る間に、合金と冷却基板との間の熱的接触を高め
る手段を有する方法による。具体的にはガス圧
力、あるいは第2、第3のノズル開口部から噴出
される溶湯流の圧力を利用する。
ガス圧力を利用する方法には2つの方法があ
り、1つはパドルから引き出された合金薄帯の自
由面側が未凝固状態にある部分に直接ガス噴射に
よつて圧力を加える方法で、他はパドルを含む未
凝固薄帯全体を囲む雰囲気の圧力を高める方法で
ある。
前者は、従来から提案されている方法、例えば
米国特許第3862658号明細書記載の方法と一見似
ているが次の点で全く異なるものである。従来の
方法はパドルから引き出された非晶質合金薄帯が
完全に凝固した部分にガス圧や補助ロール(又は
ベルト)などを押し付ける。したがつて凝固速度
を高めるものではなく厚い板厚の非晶質合金薄帯
をつくることはできない。
第2の方法は雰囲気全体を高圧にするもので、
引き出された非晶質合金薄帯の部分だけでなくパ
ドル自身に圧力が加えられるので凝固速度はさら
に大きくなり、厚い非晶質合金薄帯の製造が一層
容易になる。
ガスの圧力を利用しない方法としては、本発明
者の発明に係る溶湯流の圧力を利用する方法があ
る(特願昭58−216287号)。この方法は1つのパ
ドルから引き出された非晶質合金薄帯が凝固を完
了する前に第2のパドルを重ね合わせるもので、
第2のパドルによつて加えられる押し圧によつて
冷却基板との熱的コンタクトが高まり凝固速度は
増加する。このように次々とパドルと重ね合わせ
ることによつて高められた冷却速度の下で合金の
非晶質臨界板厚に相当する厚い非晶質合金薄帯の
製造が可能である。
本発明の非晶質合金薄帯は板厚が大きいだけで
なく表面性状がすぐれている点が特徴である。す
でに述べたように、厚い板厚を得るために、非晶
質合金薄帯と冷却基板との熱的コンタクトを良く
する手段が講じられるが、これは同時に基板面側
に巻き込む気泡のサイズおよび数を低減させる。
この結果非晶質合金薄帯の基板面は単ロール法な
ど片面冷却法特有の気泡によるくぼみが小さく、
かつ少ない滑らかな表面性状を有する。非晶質合
金薄帯と冷却基板との熱的接触が向上した効果は
自由面側の表面性状にも表われる。パドル内にお
ける熱伝達の不均一性が減ずるので、凝固界面は
平坦になり、その結果、引き出される非晶質合金
薄帯の自由面も平滑になる。本発明の厚手幅広非
晶質合金薄帯の表面を幅方向にJIS B0601法で測
るとカツトオフ値0.8mmに対して基板側の面(単
ロール法の場合、ロール面側)のRaは0.2〜0.5μ
m、自由面は0.1〜0.5μmであり、従来の片面冷
却法で作製される非晶質合金薄帯の基板面0.6〜
1.3μm、自由面0.6〜1.5μmに比べてきわめて滑め
らかなことが明らかである。
本発明の非晶質合金薄帯は厚く、表面が平滑で
あることに由来して、積層したときの占積率がき
わめて高い。本発明の板厚平均60μm、幅25mmの
非晶質合金薄帯を外径40mmのボビンに750gを2
Kgの張力で巻き取つたときの占積率は91%であつ
た。これに対して従来材の占積率は30μm厚の場
合80〜85%が普通である。占積率の高い材料は磁
気コアなどに用いる場合、小型化でき実用上有利
である。
本発明の非晶質合金薄帯はFeを主成分とし、
B、Si、C、P等の1種または2種以上を半金属
として含む合金であり、また要求される特性に応
じてFeを一部他の金属と置換してもよい。すな
わち磁気特性を要求される場合にはFeの1/2以内
の量をCo、Niの1種または2種と置換してもよ
い。また磁気特性改善のためにMo、Nb、Mn、
Snの1種または2種以上、耐食性改善のために
Mo、Cr、Ti、Zr、V、Hf、Ta、Wの1種また
は2種以上、機械的特性改善のためにMn、Al、
Cu、Sn等を添加してもよい。なお含有量の範囲
はFeは50〜82%(at%、以下同じ)(但しFeの1/
2以内をCo、Niの1種または2種と置換可能)、
Bは8〜17%、Siは1〜15%、Cは3%以下、そ
の他の元素は合計10%以下の範囲で用途に応じて
選択される。また合金を構成する全元素の合計を
100%とする。
本発明の非晶質合金薄帯を例えば鉄心材料とし
て用いる場合の組成はFea Bb Sic Cdが好適
であり、各成分の範囲はa:77〜82、b:8〜
15、c:4〜15、d:0〜3である。
次に本発明の実施例を示す。
実施例 1
Cu製の単ロールを用いて、第1表の組成の合
金を幅25mmの非晶質合金薄帯に鋳造した。但しノ
ズルは第1図に示すような3重のスロツト状の開
口部(幅d0.4mm、長さl25mm、間隔a1mm)を有す
るものを用い、製造条件は噴出圧0.20〜0.35Kg/
cm2、ロール周速20〜28m/sec、ノズルとロール
の間隔0.15〜0.25mmで行なつた。各組成の非晶質
合金薄帯の板厚、表面粗さ、占積率を第1表に示
した。
また第1表には、単ロール法を用いて作製され
る、従来材の代表的特性を比較例として挙げた。
本発明の非晶質合金薄帯は従来材に比べて、板厚
が大きく表面粗さが小さく、占積率が高いことが
明らかである。本発明非晶質合金薄帯(板厚62μ
m)と比較材(板厚40μm)の表面粗さのプロフ
イルの例を第2図a〜dに示した。aは本発明非
晶質合金薄帯の自由面、bは同上ロール面、cは
比較材の自由面、dは同上ロール面である。
また、実施例1の方法によつて作製された本発
明の非晶質合金に従来材にはない次の特徴があ
る。すなわち第1表の合金No.1の鋳造ままの非晶
質合金薄帯の磁区構造は第3図aのようである。
第3図bに示す従来材の鋳造ままの磁区構造に比
べて本発明の非晶質合金薄帯のそれは全く異なる
様相をしている。すなわち従来材は複雑な迷路状
の磁区模様を示すのに対して、本発明の非晶質合
金薄帯は鋳造ままですでに長さ方向に揃つた180゜
磁区から成つている。これは非晶質合金薄帯内部
のひずみ量、分布などが両者全く異なることを示
すものである。
本発明の非晶質合金薄帯は第3図aの磁区模様
から示唆されるように鋳造ままでも高周波トラン
スの鉄心など多様な磁気応用が考えられる。
第4図a,bは磁界中焼鈍後の磁区構造を比較
したものである。本発明の非晶質合金薄帯aは従
来材bに比べて磁区の幅が数倍に大きい。これは
表面の滑らかさに由来して、磁壁の移動を抑える
表面欠陥が少ないためと考えられる。
実施例 2
実施例1と同じ単ロール、ノズル、製造条件に
より第2表の組成の合金を幅25mmの非晶質合金薄
帯に鋳造した。各組成の非晶質合金薄帯の板厚、
表面粗さ、占積率を比較例とともに第2表に示し
た。本発明の非晶質合金薄帯は従来材に比べて、
板厚が大きく、表面粗さが小さく、かつ占積率が
高いことが明らかである。従つて種々の用途に活
用することができる。
(発明の効果)
以上説明したように本発明のFe基非晶質合金
薄帯は板厚が大きくかつ表面が滑らかであるの
で、例えばトランスの鉄心に用いる場合従来の薄
い非晶質合金薄帯は積層作業の能率、鉄心の機械
強度など問題が多く積鉄心方式への採用は不可と
考えられ巻鉄心の形で用いざるを得なかつたが、
本発明の非晶質合金薄帯は積鉄心に適用すること
が可能となり、しかも積層したときの材料の占積
率を大幅に向上させ鉄心を小型化することができ
る。また鉄心以外の用途に使用する場合にも板厚
が大きいので機械的強度が高く、また表面が平滑
であるため種々の用途に活用することができる等
その効果は極めて大きい。
(Industrial Application Field) The present invention relates to a thick Fe-based amorphous alloy ribbon produced by a method of rapidly solidifying a metal (alloy) in a molten state on the surface of a moving cooling substrate. be. (Prior Art) The basic methods for continuously producing thin ribbons by rapidly cooling metals (alloys) from a molten state include the centrifugal quenching method and the melt spinning method represented by the single roll method.
In this method, a jet of molten metal is jetted onto the inner or outer peripheral surface of a rotating metal drum and rapidly solidified, thereby creating a metal ribbon or wire all at once.
According to this method, the cooling rate is extremely fast, so if the alloy composition is appropriately selected, an amorphous metal (alloy) having a structure similar to that of liquid metal can be obtained. Amorphous metals (alloys) are metal materials that have attracted practical attention due to their unique properties, but the range of applications has been limited by the fact that only thin plates can be manufactured due to constraints on cooling rates. Generally, the maximum thickness of an amorphous alloy depends on the alloy composition and the cooling capacity of the device. The composition dependence of the plate thickness that can be made amorphous has been investigated mainly for iron-based alloys, which are of practical importance, as reported by Hagiwara et al., Sci.Rep, Res.
According to Inst. Tohoku Univ. A-29 (1981), 351, the iron-based metalloid alloy that is most likely to become amorphous is
For Fe-Si-B and Fe-P-C based alloys, the maximum plate thickness is reported to be 250 μm for Fe 75 Si 10 B 15 in the case of Fe-Si-B. However, this method takes special measures to slow down the rotation speed by suddenly applying a brake on the rotation of the cooling substrate (roll) in order to obtain a thick sample. It has also been revealed that thick amorphous ribbons can only be obtained under such unsteady conditions, with no amorphous material being obtained. Therefore, it is clear that the material obtained by the method of Hagiwara et al. is not an industrially usable material. Moreover, the value of the maximum plate thickness of 250 μm in this report is disputed. Namely, the report by Luborsky et al. IEEE Trans.Magnetics, MAG-18 (1982)
According to 1385, the maximum thickness that can be obtained in a substantially completely amorphous Fe-Si-B alloy is Fe 74 Si 10 B 16.
It is stated that the coercive force increases, which is thought to be due to the formation of microcrystals, when the plate thickness increases beyond this value of 42 μm. Luborsky et al.
Regarding the discrepancy in results with Hagiwara et al.
Hagiwara et al. used an optical microscope (100x magnification) to determine amorphization, and point out that even minute amounts of crystals that cannot be detected with an optical microscope can degrade properties such as magnetism. If Luborsky et al.'s theory is correct, then
The 250 μm thick amorphous material reported by Hagiwara et al. contains microcrystals, which are not observed under an optical microscope, but which degrade the properties. Also, even if Hagiwara et al.'s thick sample were completely amorphous, their experiments were performed on a narrow sample, about 1 mm wide, and the same thickness cannot be guaranteed for a wider material. This is because in the case of a narrow material, the heat flow across the substrate is two-dimensional, whereas in the case of a wide material, the heat flow across the substrate is one-dimensional, and as a result, the cooling rate is significantly reduced. By the way, among amorphous alloys, Fe-based alloys are inexpensive, have excellent properties, and are extremely useful materials in practice, but because of their low amorphous formation ability, only thin materials can be obtained, and therefore they are extremely difficult to use. Even when used as a transformer core, which is considered useful, there were problems such as it could only be used in the form of a wound core. In any case, with current technology, the plate thickness is large and wide.
It has been considered difficult to industrially produce Fe-based amorphous alloy ribbons. (Objective of the Invention) The present invention provides a thick and wide Fe-based amorphous alloy ribbon that could not be achieved with the prior art as described above. (Structure and operation of the invention) The Fe-based amorphous alloy ribbon of the present invention is characterized by being wide and thicker than conventional ribbons. The plate thickness is at least 50 μm or more, and the width is at least
It is 20mm. Also, the plate thickness is at least 55μ
m, the width is also preferably at least 25 mm. The surface of the Fe-based amorphous alloy ribbon of the present invention is smoother on both the roll surface and the free surface than a ribbon produced by the conventional single roll method. Center line average roughness at a cut-off value of 0.8 mm measured in the width direction of the ribbon using the method specified in JIS B0601
As shown in Table 1, Ra was 0.5 μm or less on both the roll surface and the free surface. This value is smaller and superior than the conventional material, which has a roll surface of 0.6 to 1.3 μm and a free surface of 0.6 to 1.5 μm. Reflecting the large thickness and smooth surface, the amorphous alloy ribbon of the present invention has an extremely high space factor when laminated. While the space factor of conventional materials is 75 to 85%, the amorphous alloy ribbon of the present invention has a space factor of 85 to 95%. Despite the large thickness of the amorphous alloy ribbon of the present invention, there is no deterioration in properties. The reason is that even if the material is thick, it remains substantially amorphous throughout the entire thickness and thus retains properties unique to amorphous materials. For example, regarding magnetism, Fe 80.5 Si 6.5 B 12 C 1 (at
%) of 25μm thick, 25mm wide amorphous alloy ribbon at 50Hz
(Hertz), 1Oe (Oersted) magnetic flux density is 1.53T (Tesla), but with the same composition it is 65μ
The amorphous alloy ribbon of the present invention with a thickness of 50 mm and a width of 25 mm is
It shows the same 1.53T at Hz and 1Oe, and it is clear that there is no deterioration. Next, a method for producing the thick amorphous alloy ribbon of the present invention will be described. The amorphous alloy ribbon of the present invention can be produced by the following means that essentially increase the cooling rate. Molten metal ejected onto the surface of a moving cooling substrate as in the single roll method (or belt method) forms a puddle (hereinafter referred to as a puddle) on the substrate, and solidification progresses from the portion in contact with the substrate. A high solidification rate is required to obtain a large plate thickness. Conventional methods such as increasing the jetting pressure, reducing the moving speed of the cooling substrate, and increasing the gap distance between the nozzle and the substrate limit the thickness of the thin strip that can be produced (approximately 45 μm, However, if the width is 20mm or more), if you try to make the board thicker than that, the shape, surface quality, and properties will deteriorate.
Therefore, in order to obtain a thick plate without impairing the shape or properties, it is essentially necessary to take measures to increase the solidification rate. In order to increase the solidification rate, the present inventors applied the following method to produce a thick and wide amorphous alloy ribbon. The thick and wide amorphous alloy ribbon of the present invention is produced by a method that increases the cooling rate during solidification. That is, by a method having means for increasing the thermal contact between the alloy and the cooled substrate while the alloy is in an unsolidified state drawn from the paddle. Specifically, gas pressure or the pressure of the molten metal flow jetted from the second and third nozzle openings is used. There are two methods of using gas pressure: one is to apply pressure directly to the unsolidified free side of the alloy ribbon pulled out from the paddle, and the other is This method increases the pressure of the atmosphere surrounding the entire unsolidified ribbon including the paddle. The former method appears to be similar to previously proposed methods, such as the method described in US Pat. No. 3,862,658, but is completely different in the following points. In the conventional method, a gas pressure or an auxiliary roll (or belt) is pressed against the completely solidified amorphous alloy ribbon pulled out from the paddle. Therefore, it does not increase the solidification rate and it is not possible to produce a thick amorphous alloy ribbon. The second method is to make the entire atmosphere high pressure.
Since pressure is applied not only to the drawn amorphous alloy ribbon but also to the paddle itself, the solidification rate is further increased, making it easier to manufacture thick amorphous alloy ribbons. As a method that does not utilize gas pressure, there is a method that utilizes the pressure of the molten metal flow according to an invention by the present inventor (Japanese Patent Application No. 216,287/1987). In this method, the amorphous alloy ribbon drawn from one paddle is superimposed on a second paddle before it completes solidification.
The pressure applied by the second paddle increases thermal contact with the cooled substrate and increases the rate of solidification. By stacking the paddles one after another in this manner, it is possible to produce a thick amorphous alloy ribbon corresponding to the amorphous critical thickness of the alloy under the increased cooling rate. The amorphous alloy ribbon of the present invention is characterized not only by its large thickness but also by its excellent surface quality. As mentioned above, in order to obtain a thick plate, measures are taken to improve the thermal contact between the amorphous alloy ribbon and the cooling substrate, but this also reduces the size and number of bubbles that are drawn into the substrate surface. Reduce.
As a result, the substrate surface of the amorphous alloy ribbon has fewer dents caused by air bubbles that are characteristic of single-sided cooling methods such as the single-roll method.
and has less smooth surface texture. The effect of improved thermal contact between the amorphous alloy ribbon and the cooling substrate is also reflected in the surface texture of the free surface side. Since the non-uniformity of heat transfer within the puddle is reduced, the solidification interface becomes flat and, as a result, the free surface of the drawn amorphous alloy ribbon is also smooth. When the surface of the thick and wide amorphous alloy ribbon of the present invention is measured in the width direction using the JIS B0601 method, the cutoff value is 0.8 mm, and the Ra on the substrate side surface (in the case of the single roll method, the roll surface side) is 0.2 ~ 0.5μ
m, the free surface is 0.1-0.5 μm, and the substrate surface of the amorphous alloy ribbon produced by the conventional single-sided cooling method is 0.6-0.6 μm.
It is clear that it is extremely smooth compared to the free surface of 1.3 μm and 0.6 to 1.5 μm. Since the amorphous alloy ribbon of the present invention is thick and has a smooth surface, it has an extremely high space factor when laminated. 750 g of the amorphous alloy ribbon of the present invention with an average thickness of 60 μm and a width of 25 mm is placed on a bobbin with an outer diameter of 40 mm.
The filling factor was 91% when wound with a tension of Kg. In contrast, the space factor of conventional materials is normally 80 to 85% when the thickness is 30 μm. When a material with a high space factor is used for a magnetic core or the like, it is practically advantageous because it can be miniaturized. The amorphous alloy ribbon of the present invention mainly contains Fe,
It is an alloy containing one or more of B, Si, C, P, etc. as a semimetal, and Fe may be partially replaced with other metals depending on the required characteristics. That is, when magnetic properties are required, up to 1/2 of Fe may be replaced with one or both of Co and Ni. In addition, Mo, Nb, Mn,
One or more types of Sn to improve corrosion resistance
One or more of Mo, Cr, Ti, Zr, V, Hf, Ta, W, Mn, Al,
Cu, Sn, etc. may be added. The content range for Fe is 50 to 82% (at%, same hereinafter) (however, 1/ of Fe
2 or less can be replaced with one or two of Co and Ni),
B is selected from 8 to 17%, Si from 1 to 15%, C from 3% or less, and other elements from a total of 10% or less depending on the use. Also, the total of all elements that make up the alloy is
Set as 100%. When the amorphous alloy ribbon of the present invention is used, for example, as an iron core material, the preferred composition is Fe a B b Si c C d , and the range of each component is a: 77-82, b: 8-8.
15, c: 4-15, d: 0-3. Next, examples of the present invention will be shown. Example 1 Using a single roll made of Cu, an alloy having the composition shown in Table 1 was cast into an amorphous alloy ribbon having a width of 25 mm. However, the nozzle used has three slot-shaped openings (width d0.4 mm, length l 25 mm, spacing a 1 mm) as shown in Figure 1, and the manufacturing conditions are a jetting pressure of 0.20 to 0.35 kg/
cm 2 , a roll circumferential speed of 20 to 28 m/sec, and a nozzle-to-roll distance of 0.15 to 0.25 mm. Table 1 shows the plate thickness, surface roughness, and space factor of the amorphous alloy ribbon of each composition. Furthermore, Table 1 lists typical characteristics of conventional materials produced using the single roll method as comparative examples.
It is clear that the amorphous alloy ribbon of the present invention has a larger thickness, lower surface roughness, and higher space factor than conventional materials. Amorphous alloy ribbon of the present invention (plate thickness 62μ
Examples of the surface roughness profiles of the material (plate thickness: 40 μm) and the comparative material (plate thickness: 40 μm) are shown in FIGS. 2a to 2d. a is the free surface of the amorphous alloy ribbon of the present invention, b is the roll surface of the same as above, c is the free surface of the comparative material, and d is the roll surface of the same as above. Furthermore, the amorphous alloy of the present invention produced by the method of Example 1 has the following characteristics not found in conventional materials. That is, the magnetic domain structure of the as-cast amorphous alloy ribbon of alloy No. 1 in Table 1 is as shown in FIG. 3a.
Compared to the as-cast magnetic domain structure of the conventional material shown in FIG. 3b, the amorphous alloy ribbon of the present invention has a completely different aspect. That is, while the conventional material exhibits a complicated labyrinth-like magnetic domain pattern, the amorphous alloy ribbon of the present invention already consists of 180° magnetic domains aligned in the length direction even after being cast. This shows that the amount and distribution of strain inside the amorphous alloy ribbon are completely different. As suggested by the magnetic domain pattern in FIG. 3a, the amorphous alloy ribbon of the present invention can be used in various magnetic applications, such as the iron core of a high-frequency transformer, even when it is cast. Figures 4a and 4b compare the magnetic domain structures after annealing in a magnetic field. The amorphous alloy ribbon a of the present invention has a magnetic domain width several times larger than that of the conventional material b. This is thought to be due to the smoothness of the surface, which has fewer surface defects that inhibit the movement of domain walls. Example 2 Using the same single roll, nozzle, and manufacturing conditions as in Example 1, an alloy having the composition shown in Table 2 was cast into an amorphous alloy ribbon having a width of 25 mm. Thickness of amorphous alloy ribbon of each composition,
The surface roughness and space factor are shown in Table 2 along with comparative examples. Compared to conventional materials, the amorphous alloy ribbon of the present invention has
It is clear that the plate thickness is large, the surface roughness is small, and the space factor is high. Therefore, it can be used for various purposes. (Effects of the Invention) As explained above, the Fe-based amorphous alloy ribbon of the present invention has a large thickness and a smooth surface. However, there were many problems such as the efficiency of lamination work and the mechanical strength of the core, so it was considered impossible to use it in the stacked core method, so it had to be used in the form of a wound core.
The amorphous alloy ribbon of the present invention can be applied to laminated iron cores, and when laminated, the space factor of the materials can be greatly improved and the core can be made smaller. Furthermore, even when used for purposes other than iron cores, its large thickness provides high mechanical strength, and its smooth surface allows it to be used in a variety of applications, making it highly effective.
【表】【table】
【表】【table】
第1図は本発明非晶質合金薄帯を製造するノズ
ルを示す下面図、第2図a〜dは本発明非晶質合
金薄帯(a:自由面、b:ロール面)と比較材
(c:自由面、d:ロール面)の表面粗さを示す
説明図、第3図a,bは本発明非晶質合金薄帯と
従来材の鋳造ままの自由面の金属磁区構造を示す
写真、第4図a,bは同じく焼鈍後の自由面の金
属磁区構造を示す写真である。
Fig. 1 is a bottom view showing a nozzle for manufacturing the amorphous alloy ribbon of the present invention, and Fig. 2 a to d show the amorphous alloy ribbon of the present invention (a: free surface, b: roll surface) and a comparative material. (c: free surface, d: roll surface) An explanatory diagram showing the surface roughness, Figures 3a and b show the metal magnetic domain structure of the as-cast free surface of the amorphous alloy ribbon of the present invention and the conventional material. The photographs, FIGS. 4a and 4b, are also photographs showing the metal magnetic domain structure of the free surface after annealing.
Claims (1)
面粗さが、JIS−B0601法で測定したとき、カツ
トオフ値0.8mmに対して、フリー面のRaが0.5μm
以下、ロール面のRaが0.5μm以下であり、片面
冷却法により、かつ冷却基板上の合金の未凝固時
に圧力を加えられて作製された板厚の大きなFe
基非晶質合金薄帯。 2 板厚が55μm以上、板幅が25mm以上である特
許請求の範囲第1項記載の板厚の大きなFe基非
晶質合金薄帯。[Claims] 1. The plate thickness is more than 50 μm, the plate width is more than 20 mm, and the surface roughness is 0.5 μm on the free surface with respect to the cut-off value of 0.8 mm when measured according to JIS-B0601 method.
The following is a large-thick Fe plate whose roll surface Ra is 0.5 μm or less and which is produced by a single-sided cooling method and by applying pressure while the alloy on the cooling substrate is not solidified.
Base amorphous alloy ribbon. 2. The thick Fe-based amorphous alloy ribbon according to claim 1, which has a thickness of 55 μm or more and a width of 25 mm or more.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59033335A JPS60177936A (en) | 1984-02-25 | 1984-02-25 | Thin strip consisting of fe-base amorphous alloy having large thickness |
DE19843442009 DE3442009A1 (en) | 1983-11-18 | 1984-11-16 | AMORPHOUS ALLOY TAPE WITH LARGE THICKNESS AND METHOD FOR THE PRODUCTION THEREOF |
US07/102,274 US4865664A (en) | 1983-11-18 | 1987-09-28 | Amorphous alloy strips having a large thickness and method for producing the same |
US08/083,851 US5301742A (en) | 1983-11-18 | 1993-06-25 | Amorphous alloy strip having a large thickness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59033335A JPS60177936A (en) | 1984-02-25 | 1984-02-25 | Thin strip consisting of fe-base amorphous alloy having large thickness |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60177936A JPS60177936A (en) | 1985-09-11 |
JPS6340624B2 true JPS6340624B2 (en) | 1988-08-11 |
Family
ID=12383685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59033335A Granted JPS60177936A (en) | 1983-11-18 | 1984-02-25 | Thin strip consisting of fe-base amorphous alloy having large thickness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60177936A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102618806A (en) * | 2012-04-06 | 2012-08-01 | 东莞市晶磁科技有限公司 | Manufacturing method of amorphous strip capable of increasing direct current superposition performance |
US11427054B2 (en) | 2020-01-16 | 2022-08-30 | Honda Motor Co., Ltd. | Vehicle sunshade assembly |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6133740A (en) * | 1984-07-26 | 1986-02-17 | Nippon Steel Corp | Thin amorphous fe alloy strip having large sheet thickness |
JPS62250153A (en) * | 1986-04-21 | 1987-10-31 | Tdk Corp | Amorphous thin body and its production |
JPS63119957A (en) * | 1986-11-10 | 1988-05-24 | Kawasaki Steel Corp | Manufacture of rapid cooling metal thin strip and its device |
MY111637A (en) * | 1992-11-30 | 2000-10-31 | Bhp Steel Jla Pty Ltd | Metal strip casting |
WO1998007890A1 (en) * | 1996-08-20 | 1998-02-26 | Alliedsignal Inc. | Thick amorphous alloy ribbon having improved ductility and magnetic properties |
ATE313146T1 (en) * | 1998-05-13 | 2005-12-15 | Metglas Inc | AMORPHIC METAL TAPE WITH HIGH STACKING FACTOR AND TRANSFORMER CORE |
JP2007217757A (en) * | 2006-02-17 | 2007-08-30 | Nippon Steel Corp | Amorphous alloy thin strip excellent in magnetic property and space factor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5353525A (en) * | 1976-10-22 | 1978-05-16 | Allied Chem | Method and device for continuously casting metal strip |
JPS5518582A (en) * | 1978-07-26 | 1980-02-08 | Matsushita Electric Ind Co Ltd | Manufacture of amorphous metal |
JPS5877750A (en) * | 1976-10-22 | 1983-05-11 | アライド・コ−ポレ−シヨン | Strip of slender or continuous isotropic amorphous metal |
JPS6340629A (en) * | 1986-08-02 | 1988-02-22 | Enbishi Arumihoiile Kk | Formation of divided type rim |
-
1984
- 1984-02-25 JP JP59033335A patent/JPS60177936A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5353525A (en) * | 1976-10-22 | 1978-05-16 | Allied Chem | Method and device for continuously casting metal strip |
JPS5877750A (en) * | 1976-10-22 | 1983-05-11 | アライド・コ−ポレ−シヨン | Strip of slender or continuous isotropic amorphous metal |
JPS5518582A (en) * | 1978-07-26 | 1980-02-08 | Matsushita Electric Ind Co Ltd | Manufacture of amorphous metal |
JPS6340629A (en) * | 1986-08-02 | 1988-02-22 | Enbishi Arumihoiile Kk | Formation of divided type rim |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102618806A (en) * | 2012-04-06 | 2012-08-01 | 东莞市晶磁科技有限公司 | Manufacturing method of amorphous strip capable of increasing direct current superposition performance |
US11427054B2 (en) | 2020-01-16 | 2022-08-30 | Honda Motor Co., Ltd. | Vehicle sunshade assembly |
Also Published As
Publication number | Publication date |
---|---|
JPS60177936A (en) | 1985-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5301742A (en) | Amorphous alloy strip having a large thickness | |
JP4402960B2 (en) | Fe-based amorphous alloy ribbon with excellent soft magnetic properties, iron core produced using the same, and master alloy for producing rapidly solidified ribbon used therefor | |
US8968490B2 (en) | Ferromagnetic amorphous alloy ribbon with reduced surface protrusions, method of casting and application thereof | |
KR20020041292A (en) | Fe-BASED AMORPHOUS ALLOY THIN STRIP AND CORE PRODUCED USING THE SAME | |
JP2013537933A (en) | Ferromagnetic amorphous alloy ribbons with reduced surface defects and their applications | |
JP2018123424A (en) | Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY THIN STRIP HAVING EXCELLENT SOFT MAGNETIC PROPERTIES | |
JP2018083984A (en) | Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY RIBBON WITH EXCELLENT SOFT MAGNETIC PROPERTY | |
JPS6340624B2 (en) | ||
JP6077445B2 (en) | Ferromagnetic amorphous alloy ribbons and their manufacture | |
JP2012174824A (en) | MELT-QUENCHED Fe-BASED SOFT MAGNETIC ALLOY THIN BAND AND MAGNETIC CORE | |
KR870002021B1 (en) | Amorphous metals | |
JP2001295005A (en) | Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS | |
WO2018062037A1 (en) | Iron-based amorphous alloy ribbon | |
JPS6335688B2 (en) | ||
JPH08283919A (en) | Iron-base amorphous alloy foil and its production | |
JP3366681B2 (en) | Low iron loss iron-based amorphous alloy with high magnetic flux density and excellent insulation coating processability | |
JPS60255243A (en) | Tough and strong fe-base thin amorphous alloy strip having large sheet thickness | |
JP3083940B2 (en) | Metal / alloy ribbon manufacturing method | |
US6103396A (en) | Thick amorphous metal strip having improved ductility and magnetic properties | |
JP3280778B2 (en) | Thick amorphous metal / alloy ribbon with good thickness accuracy | |
JP2002283012A (en) | Iron-base amorphous alloy having good strip forming performance | |
JPH07113151A (en) | Ferrous amorphous alloy | |
JPS6340629B2 (en) | ||
JPS6134909A (en) | Laminated core for transformer | |
JP2817965B2 (en) | High frequency wound core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |